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Research thrust areas:

1 Computational-based science
— Pushing the limits in simulation-based applications for nuclear
engineering in
1 Reactor Analysis / Shielding Methodology,

1 Neutron Transport Inverse Problems (Smuggled Nuclear Material
Detection).

I Reactor Analysis and Design

— Improving the cost savings and safety margins of nuclear fuel
assemblies and cores
1 Optimization for Minor Actinides and Transuranics management,
1 Optimization for higher burn-up capabilities.
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Brief “picturesque” research interests

Reactor core and assembly designs Smuggled Material Detection
e Methodology

Known flux at the boundarie

iminating source

+

High fidelity multi-physics 5) +<W W, > = (ST W) +< Wy, W >,
/ accident scenario simulations i

Mesh adaptation for solving neutron balance
equations accurately on complex geometries




Foreword : Needs related to High-fidelity simulations

28 Numerical error is intrinsic to any computer simulation of physical
phenomena.

1 Requirements for HiFi:
— To automatically monitor the numerical error

— To obtain guaranteed solutions (solutions converged to a desired, i.e.,
user prescribed, tolerance)

— To obtain guaranteed quantities of interest (i.e., functionals of the
solution)

1 Tools:
— Error estimates
— Automated mesh refinement strategies
— Dual (adjoint) problems
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Mesh adaptation: what is that?

1 Engineering problems are complex = no analytical solutions are
available for real-life problems - methods - need to mesh
the domain / need to pick a method to discretize the PDEs

1 A solution can be improved by
— Either refining the grid (i.e., put more meshes)
— Or increasing the solution space (i.e., augmenting the polynomial order)

1 The can either be:
— Uniform : All mesh cells are divided, poly. order is uniformly increased.

— Adaptive : Only selected cells will be divided/will have their poly. order
Increased.

1 Classical approaches such as uniform mesh refinement will tell you
about the achieved accuracy (unless you run a finer computation!!!).

Usually, uniform refinement is:
— CPU expensive,
— Not automated,
— Not the best use of an engineer’s time !!!
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Mesh adaptation: what is that?

1 How to 27?7
— The effort put into the numerical solution must be driven by the accuracy
required (user’s choice)

8 Additionally, do you need accuracy everywhere in the mesh ???

, Obtaining a highly accurate solution everywhere may not be desired
from an engineering Point of View:
1 Reaction rate in a sub domain (e.g, power in a pin, or detector reaction rate)
1 Or the flux (or the current) at a point (e.g., after a thick shield).

— We develop goal-oriented approaches for specific quantities of interest.

1 Our work: to use/devise algorithms that

— automatically (user-independent)
— adapt the mesh (sensible usage of the resources)
— to a user-prescribed tolerance (guaranteed accuracy)

— for a specific quantity of interest (goal-driven)
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A picture Is better than a thousand words ...

IAEA 2D benchmark solved using 2-g diffusion:

DB: solufion-1,
Cycle: 7
Preudo 59,

Thermal flux on the initial mesh (left) and at mesh iteration #8 (right)
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FEM 101

1 Simple diffusion eq.: ——Dd¢+2 $=S on0<x<L +B.C
dx dx ° o -

1 Get a mesh - subdivide segment [O,L] into N smaller segments [X;,X:,,]

I Seek the flux as a linear continuous function

I=N
#(x) =D @B (X) o, are the N +1 unknown coefficients

?,
gDi +1

i i+1
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FEM 101

1 A little more on the basis functions

X_Xi+1
gp———+tp——

Xijg — X Xy — X
———— —

B; ‘element i BiJrl‘element i

E B. - so-called “hat” functions

1+1
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FEM 101

i 1 eq. but so many unknowns !

1 |dea: pre-multiply this equation by any B, (O<|<N) and integrate over the
entire domain [0,L] = obtain enough equations to solve for the unknowns

dB

dx dx

—’D—dx}+2¢, {jz (x)Bj(x)dx} :JL.S(X)Bj(x)dx

(+BC treatment) forany 0< j<N
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PDE’s 101

1 The multigroup diffusion equations are
— Elliptic
— Positive Definite (but not SPD)

As such, the ‘natural’ norm to analyze/quantify the error is the H-1 norm

HY(Q) U V¢ V¢+¢ J |¢H L) +||¢ L2(Q)

1 A technical nicety (Poincare’s inequality). It is sufficient to use the semi-

H-1 norm
2
200 = IQV¢°V¢

- fewer computations
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PDE’s 102
1 The variational boundary value formulation of the multigroup equations
IS:
b(d.0)=f (@), ded+XcH(Q), VpeX

where the terms of the bilinear and linear forms are:

b(g.0) = iﬁg{DW Ve Tl far 1], 0" (5)(5)d,

g=1

—ZZJ- 297909 godr — ZZJ 7°'vZie® ¢%dr .

9=19'#g g=1 ¢

f(p) = Z{j S2(Ng*(dr+] I8 (0)0* (5)dr, +2]  I2(5)0° (5 )e, |

1 Also, note that the bilinear inner product is a norm equivalent to the H-1
norm (and to the semi-H-1 norm, cf. Poincare’s inequality)

b(4,4)=| | DV$-Vg+24 | o
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Mesh adaptation: principles

Initial (coarse and uniform) mesh;
Adaptation numberi=1

Solve for the solution ¢’
on mesh i

Use 7 to create the new
mesh i+1 o
Compute the error estimation 7

using the current solution ¢,

Convergence?
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Adaptive Mesh Refinement: refinement options

-refinement:
— Selective subdivision of the mesh, the polynomial order is kept fixed

— Good for singularities in the solution (boundary singularities, data
singularities)

— Not optimal for regions where the solution is smooth (e.qg., if the true
solution is quadratic, a linear approximation would still require some mesh
subdivision to be performed)

-refinement:

— The initial mesh is kept unchanged, selective increase in the polynomial
order

— Good for computing a smooth solution with large mesh cells
— Not optimal for singularities

-refinement:
— Combines h-refinement and p-refinement

J. Ragusa Texas A&M
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h versus p: (1/2)

1 Suppose your solution is not smooth, increasing the polynomial order
will get you nowhere.

p=1 p=3 p=10

1 You'd be better off cutting the interval into 3 subintervals and use linear
functions in each new interval.

1 |n this example, the number of unknowns is:
— One interval, p=10 - 11 unknowns
— 3 intervals, p=1, = 4 unknowns !!!!
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h versus p: (2/2)

1 Suppose your solution is smooth (say quadratic, i.e., p=2), then the
exact solution is given by an approximation using only one interval and
a polynomial order of 2 !l!

1 On the other hand, using linear functions but Increasing the number of
Intervals will get you somewhere (but slowly).

#=1 #=3 7t

[
&)

1 You'd be better off using a higher polynomial order approximation.

1 In this example, the number of unknowns is:
— One interval, p=2 = 3 unknowns
— 5intervals, p=1, = 6 unknowns !!!!
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hp-Adaptive Mesh Refinement: convergence rates

Log of the error as a
Refinement strategy Error ‘ehp . (elslelgi[oEIRI| function of the number of
unknowns N

e
Uniform h-refinement min(p,r)xlog(N)

;

Adaptive h-refinement P g( )

Uniform and adaptive p- —rxlog(N)
refinements

Adaptive hp-refinement e ™, a>0, 0= _1
where d is the problem’s dimension —a x N 241

Q hp-refinement provides (seminal work by
Babuska et al.)

O h-refinement only possesses convergence rates
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Multigroup issues in mesh adaptation

1 The smoothness of the flux in a given energy group depends on the
smoothness of the data (XS and rhs).

— Fast flux: usually much smooth than thermal flux
— = Do not use the same mesh for each group !

1 Yeah, but what about the coupling in group g due :
— to scattering from other groups g’ to group g
— to fission from other groups g’ to group g

~9-(D, (074,000 + 2, 4006, (00 =2, 2V 4 O) (0 + X B,

eff 9'#g
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Multigroup issues in mesh adaptation

1 - adaptive integration:

Instead of integrating over the

g
whole element K9 , we split it into g (x)Bj g (%)
subintervals and integrate over n n

each subinterval separately and then add the corresponding contributions.
— The subintervals are determined adaptively as needed.

1 - analysis of the refinement depth:

For a given cell,
— look-up the difference in refinement levels between group g and other
groups g’,
— then project/restrict the basis functions of groups g’ accordingly,
— and finally use a numerical quadrature to perform the integral.
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Mesh adaptation applications: MG diffusion / SPN

% Multigroup Diffusion and Simplified PN Transport (SPN) equations
1 Ongoing work : Multigroup SN Transport equations

1 Application examples:

A. Standard adaptivity with 3 different error estimates:
1., Projection-based interpolation (hp-adaptivity in 1D, diffusion)
2. Hessian-based (h-adaptivity, multi-D , diffusion)
3. Error jump-based (h-adaptivity, multi-D , diffusion SPN)

B. Goal oriented adaptivity:
1. Projection-based interpolation (hp-adaptivity in 1D, diffusion)
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hp-Adaptive Mesh Refinement: error estimates

1 The key is to use a powerful lemma (Céa’s lemma), which states that

the In the

H-1 norm.
[exs|| = ¢ = o] < C ¢ — 11,9

The role of the exact solution ¢ will be played by a reference numerical
solution:

Hehp H - H¢ - ¢hp H <C H¢hp—fine — th—coarse¢hp—fine

Let us call the current hp-mesh the “hp-fine” mesh and let us denote it

by h/2,p+1
;

The “hp-coarse” mesh is simply a coarsening of the “hp-fine” mesh
and let us denote it by h,p

The local error in a given cell K is, therefore, given by

Tk = H%/Z,pﬂ B th¢h/2,p+1 Hl K
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hp-Adaptive Mesh Refinement: error estimates

1 The adaptation process has converged when the relative error is within
a user-prescribed tolerance

Y=Y

Mk
H¢h/2,p+1 Hl K K ‘¢h/2,p+1 Hl K

H¢h/2,p+1 B th¢h/2,p+1 H K

< gUSER

1 Otherwise, we will mark for refinement all elements such that:

1
Tik ngKaX Tk

(bulk error chasing)

1 Again, only [ZYEE%¥ needs to be solved for.

1 All other computations are simply projections and norms (i.e., integrals)
performed cell by cell !
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hp-Adaptive Mesh Refinement: competitive refinement

1 At this point, we are ready to competitively choose the best refinement
mode for each element [i.e., h- or p-refinement >hp-refinement].

— If p-refinement is chosen, we keep the current mesh but increase
the polynomial order by 1: h'e" =ho and p = p% +1

— If h-refinement is chosen, we keep the old poly. order but subdivide
the mesh:

new 4 New L
hK,Ieft T hK,right T

— For an element of initial polynomial degree p, the number of cases
to check is p+1. D —

p=1 p=1
h-ref h-ref p=1 p=2

p-ref p-ref
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hp-Adaptive Mesh Refinement: competitive refinement

1 Our goal is to go for the maximum error reduction with the minimum
Increase in the number of unknowns (degrees of freedom or DOF in the
FE jargon).

1 The optimal local refinement choice driven by the rate of decrease in
the error:

H%IZ,pH B Hhold pold ¢h/2,p+1 HL K B H¢h/2,p+1 o thewpneW¢h/2,p+l

H!(K)

Local
quantity !!!

1
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hp-Adaptive Mesh Refinement: some results

i Two-group 7-region eigenproblem

Flux (1/cm2/sec)

’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’

hp- solution

thermal flux

fast flux divided by 40/3

x (cm)

200 300 400 500 600

Density of elementary polynomial order (1/cm)
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hp-Adaptive Mesh Refinement: Log(err) vs. unknowns

hp- versus uniform h-refinements

107

hp- versus adaptive h-refinements

107}

—+— hp-refinement; fast group

Relative error of flux in semi-H norm (%)

Relative error of flux in semi-H norm (%)

107 — thermal group | —+— hp, fast E
—— h-uniform, p=1; fast group | ] —+—  thermal

10°1 —*— thermal group 1O'A | —=e— h-adaptive p=1 fast ]
—*— h-uniform, p=2; fast group | 3 thermal E|
—— thermal group i —— h-adaptive p=2 fast

= 5 ——  thermal
10 Ll L L L ol L L L PR 10 Ll L L L Lol L L - L
10" 10° 10° 10! 10° 10° 10"

Number of degrees of freedom Number of degrees of freedom

hp- versus uniform p-refinements

10° ‘

hp- versus h-refinements (semi log plot’

Relative error of flux in semi-H norm (%)
Relative error of flux in semi-H norm (%)

|

10'3 L | —*— hp; fast 10°L i L —+— hp-refinement i
— thermal \ | ——=—— uniform p; 28 elements
—=— uniform p; 14 elements; fast j: ! h-adaptive p=1

w0l thermal \ ) \ 107 f\; ! —a— h-adaptive p=2 4
—— uniform p; 28 elements; fast \ * —%— h-uniform p=1
— thermal " —=— h-uniform p=2

10.5 L A 10'5 L L L L L Il L L L

101 102 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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esh Refinement: CPU cost

hp-Adaptive M

———— hp-refinement
——e—— h-refinement, p=1
—®— h-refinement, p=2

—*— h-refinement, p=3

0.6 0.8 1 1.2 14
CPU time normalized to the hp CPU time
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Mesh adaptation applications: MG diffusion / SPN

% Multigroup Diffusion and Simplified PN Transport (SPN) equations
1 Ongoing work : Multigroup SN Transport equations

1 Application examples:

A. Standard adaptivity with 3 different error estimates:
1. Projection-based interpolation (hp-adaptivity in 1D, diffusion)
2.| Hessian-based (h-adaptivity, multi-D , diffusion)
3. Error jump-based (h-adaptivity, multi-D , diffusion SPN)

B. Goal oriented adaptivity:
1. Projection-based interpolation (hp-adaptivity in 1D, diffusion)

J. Ragusa Texas A&M 33




Hesslan-based h-adaptivity

1 Starting from Cea’s lemma, (approximation error is controlled by
Interpolation error)

e || =14 — 4, < Cll¢ ~ 1,4

1 But let’s do a Taylor series expansion of the interpolation error. Let’s
choose a square element and start the TSE from one of its corner.

(u—TI,u)a@) = (u—-TI,u)x)+ <x ~a,V(u —Hhu)(x)> + j'dt<x —a,H, (x1-t)+ta)(x —a))

1 No interpolation error at a
1 Interpolation error is maximum (i.e., its gradient =0) at
some point X for element K:

1

gr =max|(u-TI,u)(x)| = maxjdt(x —a,H, (x(1-t) +ta)(x —a))

XeK XeK
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Hesslan-based h-adaptivity

i Use vector v and decompose on the element’s edges

Ju-T1.u], =& <cmaxmax(v,[H,(X)|v)

veK xeK

<cmaxmax(e,[H, (x)le)

eeEx XxeK

1 The matrix of second derivatives (known as the Hessian) is:

d%u  9u 94
ox2 oxoy 0X0z

H (x)=| . 2u 2u

oy? 0yoz
2’u
oz?

i The interpolation error in element K is monitored through
— the values of the second derivatives
— and the mesh size

J. Ragusa Texas A&M
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Hesslan-based h-adaptivity

1 Last tricksy (LORT) thing: how to estimate the second derivatives ...
1 The Hessian at point P is evaluated numerically as follows:

— Write a Taylor series expansion for any vertex P, in the neighborhood of P

u(P.):u(P)+ﬁ:’;-V_lj(P)+%<ﬁ,ﬂu(P)ﬁ>+...

— choose P, as the 1st and 2"d nearest neighbors of point P, e.g.,

[

L ,.,

— - an over-determined system (more neighbors than elements of matrix #,)
(3 unknowns in 2-D and 6 unknowns in 3-D).

— the resulting linear system is solved by a standard mean square root
technique.
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Hesslan-based h-adaptivity: pretty pix

1 8x8 assembly, 2-g diffusion equation with X-S representative of a MSLB
accident (sym. peaked solution near the boundaries)

1 4 adaptations
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Hesslan-based h-adaptivity

Adaptation # # # # of vertices for a uniform mesh
number of faces of edges of vertices composed of the smallest size elements
of the adapted mesh

430
120
3431

Comparison of geometric data between adapted grids and uniformly refined grids

1 ~77% fewer vertices
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Mesh adaptation applications: MG diffusion / SPN

% Multigroup Diffusion and Simplified PN Transport (SPN) equations
1 Ongoing work : Multigroup SN Transport equations

1 Application examples:

A. Standard adaptivity with 3 different error estimates:
1. Projection-based interpolation (hp-adaptivity in 1D, diffusion)
2. Hessian-based (h-adaptivity, multi-D , diffusion)
3.|_Error jump-based (h-adaptivity, multi-D , diffusion SPN)

B. Goal oriented adaptivity:
1. Projection-based interpolation (hp-adaptivity in 1D, diffusion)
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Error jump-based adaptivity

1 For a very simple elliptic equation (the Poisson equation: Au =—f), it
has been proven that the jJump in the solution gradient across the cell
edges (or faces in 3D) is a reliable error estimator.

% For governing equations containing a Laplace operator, the Kelly error
estimate has been proven to be a reliable quantification of the error.

Mok = Vhk In- VFZl 55

error estimate for the g-th group, n-th moment flux component inicell K

¥

K € T79 is a cell of the mesh for the g-th group, n-th moment flux component

1 Refinement criterion: Mg, ) > Q1 IAX 1, g g

1 Coarsening criterion :  [KENERECIECIIES
1<n<N

KeTs
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Multi-D: mesh-refinement for multigroup diffusion

1 |AEA 2D benchmark solved using 2-g diffusion:

DB: solufion-1,
Cycle: 7

% 160
Feudocolor

i

Thermal flux on the initial mesh (left) and at mesh iteration #8 (right)

L. suman - 1y
“vola: DB: selution-1

\C,'\_’_d”'o 160 t 1 Cycle: 7

hesh Meth 161

120

120+




_Multi-D: mesh-refinement for multigroup diffusion

1 2-g NEA-LUOX/MOX benchmark (NEACRP-L-336




Multi-D: mesh-refinement for multigroup diffusion

1 2-g NEA-LUOX/MOX benchmark (NEACRP-L-336)
1 fast flux solution thermal flux solution
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| Multi-D:

[a]
[
[
o
Ll
1
-
c
=
L
=]
C
C
w

21 uniforn
01 adaptiwve
22 uniforn
02 adaptive
03 uniforn
A3 adaptive

[a]
[
[
o
Ll
1
-
c
=
L
=]
C
C
w

21 uniforn
01 adaptiwve
22 uniforn
02 adaptive
03 uniforn
A3 adaptive

mesh-refinement for multigroup diffusion

18848 188888

Degrees of freedon

18 188 1888 1868688 188888 1e+d6

Conpute time in seconds
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Extension to multi-D multigroup SPN equations

1 Simplified PN (SPN) transport equations can be recast into a system of
coupled diffusion-like equations

1 - Possibility to re-use all the diffusion mesh adaptivity technology to
SPN equations !!!
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SPN equations: Conventional formulation (1/4)

1 In 1-D PN transport, the angular flux is expanded on a Legendre basis:

o0

241 - |
V(x, p) = Z 5 Go(x) Py(p) with ¢,(z) = / 1 dpV (x, ) Po()
(=0 .

st

2 The 1-D multigroup PN equations are:

n do, (x) n+1do,. () o o |
2n +1 % U 2n+1 % + 0t nOn(T) = 5,(7)0pno for any 0 <n < 4\

— With Rl RS o (possibly full) matrix of size GxG
— Any vector (flux or source) is of length G
— The external source was assumed isotropic
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SPN equations: Conventional formulation (2/4)

1 Defining

dia’g(gt.ov Ot,1,"°" ,0¢t,N-1, O-f.;'\")

0 1
1/3 0 2/3

v r5

the 1-D multigroup PN equations are: AZE 4 C¢=s +BC
€T

1 Elimination of the odd moments from the odd equations and substitution
Into the even equations yields

n d| [n—1 do, ,(x) n  do,(x)]]
C2n+1dx L 12n —1 dx +2'n,—1 dr ||
n+1 d | ‘n+1do,(z) n+2dp, o(x)]]
on41de | PP 2n+3  dox on+3 dr
Sn()dn,0 for any 0 <n < N —1 and n EVEN
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SPN equations: Conventional formulation (3/4)

1 Multi-D equations are obtained formally by replacing

d (do

by V-0, Vo

1‘.

dr dr

1 Defining composite moments as follows concludes the derivation

Fo=n+1)p,+(n+2)p, ., forany 0 <n < N —1and n EVEN

J. Ragusa Texas A&M
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SPN equations: Conventional formulation (4/4)

1 Example: SP7

1o 2 8 16
O't__lvFO O'tOFO—30_§Jt0F2_FO’tOF—L_?O’tOF6

.l 1 g 4 5 r 2 2 r 16 4 r 32 8 r
-V O' -0+ =0 = ——5p+—=0 —0:g+ =0 0+ —o -
£3 27| g9to T g9t2 2 350 30%t0F 0| 200 T 5Tt2 4~ 10- £0 T 579t 6

1, 64 16 9 8 8 /16 1
—V - =0, 5VFa+ | 5520t0+770t2+5-0ta | Fa = ——-so— —otoFo+ \ 75760 T gt F2

11 295 %0 T 45 25 15 15 45

128 2 5 -
595 t0 T 10- t 2T 17- Ot.4 6

T 15782 T 1225744 T 10 _58[’5_5"“"%

32 8.\,
— |\ —=£0ot0+ =0
105 t0 T 517t2 ) 2

128 32 54 -
T340 T 105752 T 1757 ) T

64 324 13 ) 16 | 16
ote | Fe —
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SPN equations: Alternative formulation (1/3)

1 Using the fact that the Legendre basis is orthogonal, the angular flux is

expanded as =
Uz, 1) =) audy()Po(p)

£=0

The coefficients g8 are chosen so that matrix A is as simple as
possible to allow easy elimination/substitution of the odd moments.

The choice of coefficients Is

1
4m? — 1

mom—1

Performing the elimination/substitution of the odd moments and defining
composite moments as follows concludes the derivation

Frn=0,+0,.,forany0<n <N —1andn EVEN
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SPN equations: Alternative formulation (2/3)

1 Relationship between the moments and composite moments:

1 -1 +1 -1 +1
1 -1 1 -1
d.=C;tF= 1 -1 1]|-F
1 -1
1

De = (]Z(Ig [(—-Tt_,(} Ot2 Ot4a
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SPN equations: Alternative formulation (3/3)
1 Example: SP7

—V -0 1VFo+ 040F0 +50+ 0ro (F2— Fa+Fe) |

—V 0, 3VF2+ (0104 0t2) Fo —50+ 0toF 0+ (0to+ 02) Fa— (0r0+ 042) Fe
—V 07 5VF4+ (0t0+ 042+ 0¢4) Fa +50 — 0toF 0+ (00 + 0t 2)iF 2+ (0ro+ 0eo+ 014) Fe

0, 2VFe+ (0ro+ 012+ 014+ 016) Fe —s0+ 0¢0F 0 — (0¢0 + gi&,?)éFE + (040 + 012+ 0¢4)Fa

1 Simpler coefficients, more amenable coding and generalization to any
N order.
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Multi-D: mesh-refinement for multigroup SPN transport

1 2-g UOX/MOX benchmark (reflective BC):
1 Shown: moments 0 and 2 of the thermal flux (SP3 calculation)

"zsolution-1.8.2.g9pl1"

8.8045
g.oed P e Y
@. 9835 ) H'Hﬁm]ﬂﬁ?"'?"
8.083 - ! ”’l"’ﬂ' ’{! ' ' "solution-1.1.2.gpl"
8. 8825 - ',f';m

i

B.@8E2

S
i

B.868135
g.681

le-B4
a Se-55
8

-Se-a5 [

-g.@e81 | i .|_,'.||'-:l. d

TN
-B.08B15 i l I
i

Magnitude is decreasing with moments
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SPN transport

igroup

t for mult

Inemen

mesh-refi

Multi-D

1 2-g UOX/MOX benchmark (3D extension)

i Shown

) and

ion

moments O of the fast and thermal flux (SP3 calculat

moment O thermal mesh
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Multi-D: mesh-refinement for multigroup SPN transport

1 Kobayashi, modified problem #3 (SP5 results).

_______________

DB: solution-0.04. vtk
Cycle: 4

Mesh
Var:

DB: solution-0.04.vtk
Cycle: 4

30 40 60 (em)

ser: ragusa
011:45:02 2007

user: rag
Tue Jul 1
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Mesh adaptation applications: MG diffusion / SPN

% Multigroup Diffusion and Simplified PN Transport (SPN) equations
1 Ongoing work : Multigroup SN Transport equations

1 Application examples:

A. Standard adaptivity with 3 different error estimates:
1. Projection-based interpolation (hp-adaptivity in 1D, diffusion)
2. Hessian-based (h-adaptivity, multi-D , diffusion)
3. Error jump-based (h-adaptivity, multi-D , diffusion SPN)

B. Goal oriented adaptivity:
1./ Projection-based interpolation (hp-adaptivity in 1D, diffusion)
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Goal-Oriented hp-technology

1 Combines the properties of hp-adaptivity with
calculations

1 Why?
— We do not necessarily want the best solution everywhere but only in
localized sub-domains -

i Typical quantities of interest:
— reaction rates in sub-domains
— point-wise fluxes
— point-wise currents
— any linear functional of the solution

J. Ragusa Texas A&M
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hp-Goal-Oriented : reaction rate as a Q of Interest

1 Detector response (reaction rate)

() =2 [, Z2004° (X)dx

1 Error in the quantity of interest is given by

S =[1(#) = 1(4,))

1 Let us take a look at the dual (adjoint) problem

27 (x) for x e Q,,

_ vg=12,---,G
0 otherwise

— Adjoint source Q‘“(x):{

i CNAEUEUSHERCWTIEUIR ' (4", ) = | () =Db(p,¢"), Vo e HY(Q)

— Error in the quantity of interest ‘ | (g) — | (¢hp)‘ = ‘b(¢ _ ¢hp ’ ¢T)‘ — ‘b(ehp , ¢T)‘

1 By Galerkin orthogonality,

Sy =|1(#) = 1(#hp)| = 0(Erp €1)| = [P — b 8 — )]

Error is measured in the bilinear inner product ~ H-1 norm
- re-use all the standard hp-techniques !!!
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Goal-Oriented hp- error estimates

1 Goal-oriented error is given by

Sho =[1(@) = 1(dhy)] = |p(erp €0 )| = [P = dh 6" — 1)

1 Same ‘trick’ as for standard hp-techniques

— Use for fine solution =@ . = ¢h/2 .
p— fine ,p+

— Use for coarse solution ¢h
p

—coarse th—coarse¢hp—fine = th¢h/2;p+l

— Goal-oriented error :
t t
5hp — ‘b(ﬂw/z,pﬂ o th¢h/2;p+1’ ¢h/2,p+1 - th¢h/2;p+1)

G
g _ g gt _ 9.t
< Z‘%/Z,pﬂ thﬂwlz;pﬂlKg /12,p+1 th /2;p+11Kg
g:1 Kg 1 1

— Error indicator:

g _| A9 _ g 9,7 _ g,f
:uK_‘¢h/2,p+1 th%/Z;pﬂ 12,p+1 th /2;p+1

1,K9

1,K9
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hp-Goal-Oriented : Q of Interest = flux or current

1 Point-wise flux

— Adjoint source term:  [OEREI(DERI(® —g')xﬁ-?(Dﬁ(f—?o))

— Quantity of interest functional

() =2 (#*.Q" (M) = (4", Q" (7)) = [ ,d°r ¢*(MA-V(DS(F - ) = I (R) -7

1 Point-wise current

— Adjoint source term: Qg"T(T) =5(g-9g")xS(F—F)

— Quantity of interest functional

1(¢) = Z_(¢g',Qg"T(F)) = (¢°,Q%"(M) = |_d°r ¢*(N3(F 1) = ° (%))
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distribution

Flux

Flux distribution

— Goal-oriented solution (for an accurate solution only in 100<x<300)

Goal-oriented hp-Adaptive Mesh Refinement: results

1 Two-group, 7-region eigenproblem
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—=— thermal
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results
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Goal-oriented hp

1 Two-group, 7-region eigenproblem

Flux distribution

—=— fast vertices
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—+— thermal
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Mesh structure
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——e— fast group
——e—— thermal group

Adjoint flux distribution

Goal-oriented adjoint flux
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Mesh adaptation for Sn Transport

1 Work in progress ...

1 |deas:
— To propose an additional flux solver option for NEWT (2D SN Transport)
— Flux solver > DGFEM (Discontinuous Galerkin FEM)

— As with all FEM techniques, properties of DG techniques have been
intensively investigated by mathematicians, reliable error estimates exist;
we’ll apply DG mesh adaptivity techniques to transport (not as easy as it
sounds...)

1 So far,

— Translated a NEWT geometrical description into a triangular mesh upon
which DG will be applied

J. Ragusa Texas A&M

65



Mesh adaptation for Sn Transport

1 NEWT mesh:

Figure F21.4.9. Mixture placement for quarter-assembly model of Example 4.
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Mesh adaptation for Sn Transport

RN

A

d

EJ

X

FAAN

SR
P

N

N v Lv{a
P

K

‘
")"‘i?

Y

A
K

L

d
N

Eg
7

4

=

W

P

A
14
i

~
N
7 O
W 1 0
SKBOA R
P

SO
s
o
N

o N
)52 000 5

N/
N A;‘A LOSPNLSER
LA

N PN
S

LS
iscls de e
¢ ‘;ng N/ ’!!‘J L db
A S S S
PSS

A

"\
\‘\ ‘4
=~

;

7

{4
LN

;

=3 ==

s
P

i

S

]

=

NN
s

NN
oS

7

A

X7

b
N
3
)

e s

&

.

K

A

2
k)

p
X

LN

X
N

5

&

;\A

ALK
x|

A

A
AN
PN

A
ik

=
25

N
2

X/

rany
<
k7]

)

ey

R

“'@'ﬁ
W
4

SCAZN]

SOSBTK
) >

AN AV A Y
R AL PN
R
18 e [t T
AR

AT
Y

754
AW
el

5

ANV
Py

D
S
DSOS
P}ﬁw/ﬁ! S _
a N .“'_

N2

SES/
2

K

o

vvnﬂ

O

AV AN
a4

%, 7

R,
[/

ot
»

4

<

TN
)
X7
<5
L}
)

]

X
X
X

N\
\

%

%
e
Ve,

e

X

L

|
4

S
X
AN

2

AN
N

7
AN,

)
)

N

L

)

28

T

3

Ay
;“?(
EAY,

/
E‘i.

7

)

)
)

25
X

N7

;

2
X

.
o

2V
/]

Ay

P

7

v
S

4

74
o
Y
R
Y

4

4

N
&

Y7

5
N
)

N0
A
ANPA?

PaAYRAY)
¥

G

o

A

)

§
%

S
e

o
.

YA
)

KR
AN
17 q‘;’ o

A

5

{4
!‘

Nt

{i

KX
Y(‘
LN

\

N,

NN

N
K

i
i i W

v

)

%,

N
A

¥
O

=

LA

K
4

3 4

%
e et O
W“\‘\v‘ww 2T ‘
R v Rl
00 0 s
I \

o,

RIS
RIS
SR

,
o
3

AT

AN

7
.‘4}\

A
P
AN

T R
VAN NN

5508

7y
4
LY
)

J

a)
r

iRy,

s

Y
Y
K

4
),
N

Y,
PAVZA7AN
B

5
gf
;

]
>
Y

\‘Yj
R
P

A
X

X
X
‘L‘

X
5
4

4

2

X
4
N

K
G
&

AT

3
Y ‘s;(‘
%
o

N
R

TN
A

>
s
K
N
KOS

ZAVAN AN
N
|

al iy
S gw}@z‘i‘?

AR

i

Y

™

X
2

Wi

S
2

=

AL

A5
X7

NSIAL

NVava)
ST

V% VY
e ﬁvﬂ(\(g 4
4\.\4}‘!.

RAAIER
'i‘&?g

4

K V
L 2

D PR
Nt

/

>
2y

S
Y
A

1l

>

AR
[Aw i ]
7 AN IR
SEE A
ST o
£y £

LR IR
el

A

1%

s

i i
KA

p

STRUAY Vi
A v s
D b

DETREIA
ERED

A

Y

ok}

a4
T
A

A

NNAKK
EXRGF I
AT

S [N
0

-

R
2

W,

53
S

AT
3
£l
A

Pl
”

X
4
i

%\

;.
TR
MY YAV
SHLEREY
}4@? ol

=i

%
¥,
N

<
X
‘

Y
2
7

S

,_4;1
&
f
Rl

)
I

iy

i

e
Vi

X

i
=

YAV,
TEATAN

o

S
X
/|

£ el Ny
SR X

PARY V)
RIS
s O

i
AKX,

PANZA ANV AN
ho?

Pa)
TSNNA
AR
R DA

NN
SR

P
O

VI W7AvY
S 7
QK

17

ANV\V7AVY
syt
'Eﬂ%\ ;

AV
%

Lot
SR
X0

A

X

<

SRS

RN
/

X7
4
N

0.
0%

)
%
ANV,

SN
‘ Y
RS
RO

7
o/

AAVAL PN
SSre

¢
2

7

]
X



Conclusions

2 Numerical error is intrinsic to the computer simulation of physical
phenomena

1 Sensible usage of available resource naturally favors automatic mesh
adaptivity

1 |n the last decade or so, the theory of a posteriori error estimations
has matured and allows the measure, control, and minimization of
approximation errors.

— In this theory, the computed solution itself is used to inexpensively provide
point-wise error estimations.

— By effectively estimating the error, the entire computational process can be
seen as the control of the error in a succession, within a single
calculation, of adaptively refined meshes.

—> This should be one major component towards the goal of guaranteed-
accuracy solutions (along with uncertainties assessment)
1 More recently, goal-oriented computations have been combined with
mesh adaptation to adapt the mesh only in regions of importance
towards a certain quantity of interest (use of a dual or adjoint

solution).
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... and then some ... Inverse problems

1 What are inverse problems?

1 Let first answer what are (usual) direct problem. In a direct problem,
— the givens are:
1 The domain geometry
1 The material properties
1 The boundary conditions (e.g., inflow of particles)
— The unknowns are:
1 The fluxes in the domain

2 For an inverse problem,
— the givens are:

1 The domain geometry

1 The fluxes in a part of the domain (could be known only at the boundary, e.g.,
outflow of particles)

1 The boundary conditions (e.g., inflow of particles)

— The unknowns are:
1 The material properties
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A pIX

Known flux at the boundaries

IHluminating source

Applications:

Meutron Source

1 Biomedical field (computed tomography X-ray scan, computed
tomography MRI)
1 Border control (detection of smuggled Special Nuclear Material)
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X-ray vs. neutron CT

1 Choice of incident particle is important:
— X-rays cannot help in differentiating nuclei (same Z, but different A)
— Deep penetration in high-Z material is troublesome for X-rays

——X-ray 100keV
[em2ig]

X-ray 250 keV/
[em2/g]

thermal neutrons
[em2ig]

—
=
o
E
&
—
=
2
@
<
(&)
[ —
Q
-
o]
=
e
@
b )
[}
w
L]
L)
E

atomic number Z [-]
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From http://neutra.web.psi.ch

Neutronen (thermisch) Neutronen (14MeV)

Neutron radiography

X-ray radiography



http://neutra.web.psi.ch/

Issues with current CT techniques

1 Current reconstruction algorithms use in ‘inverse Radon transform’ to
reconstruct the inside of an object.

1 Main assumption in the procedure: scattering is ignored
1 But scattering can decrease the resolution or worse

3175 micron diameter hole

(a)

Fig. 4. Image on the left (a) 1s a neutron radiograph of a thick carbon fiber composite object with a 1/8tl
inch hole present. Image on the right (b) shows the object and the hole.
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Fig. 3. Neutron radiograph of two cadmium strips displayi od 1mage resolution for highly absorbing,
low scattering materials. Each strip contains a number of different sized holes. The strips are supported on
an aluminum plate.
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Some scalar products and the duality principle

1 Let the direct and adjoint transport problems be:

X =Dxex(4r)
I, =D xex(27),
Y(x) x=(r,E,Q)

B=Q-V+X-H-P

where the transport operators are n
B'=—Q-V+X-H'-P

1 Defining the following scalar products:

(f.9)=[ dr[ dE[ dQ(fg)(rE.Q)
<f,g >i:_[rd8_[ dEj(m)dQ\n-Q\(fg)(r,E,Q)

1 Duality is a generalized conservation statement

(Ph,S)+<¥P" W, > =(S",¥)+<¥! ¥>.

out !
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Functional to be minimized

The functional to be minimized is a measure of the discrepancy at the boundary
I" of the domain between

— the neutron fluxes ¥ obtained by solving the transport equation and

— the measured fluxes WREF,

Regularization terms, £, can be added to suppress unwanted features in the
parameters X. The type of regularization is usually dictated by the application
and insight into physical and unphysical features of solutions (here, we want
0<X<wm).

Constrained minimization case:

F(P,3)= %<\P — PREF W pREF > + B(Z)
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Nonlinear optimization process

1 The reconstruction problem is a nonlinear optimization problem.

— Find the distribution of the optical properties X of the object under scrutiny
so that :

the neutron fluxes ¥ recovered at the boundary I
of the domain best match the measured data WREF,

l.e., Fis minimized.

First sketch of the optimization algorithm:

1. material properties X are given,

2. Solve for ¥
3. Evaluate F

4, F > tolerance
Compute a new set of material properties >/*1 and go back to step 2

Problem has converged
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Optimization 101

1 Unconstrained case:

If F(x) eC*, then minF < VF =0.

1 Constrained case;

VF « VG

VFE+AVG =0

Find minF such thatG(x):O<:>{

G(x)=0

/
/

J. Ragusa Texas A&M
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1 Introducing the function (Lagrangian £) [REl=EWIe

VF +AVG =0
G(x)=0

Find minF such thatG(x)=O©{

%E:VF+1VG=O
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1 The PDE-constrained problem involves the Lagrangian functional L :

,[,(LP,Z,‘PT) _ %<‘P _LPREF’\_P _LPREF>

+(PBY-S)+ (W, Y-

+

1 The optimality conditions are given by the stationary of the Lagrangian
L, e, 0. L(¥,2,¥)=0 forx={¥,%, ¥}

1) 2—£:(1,BT\PT)+<1,TT—\P+‘{’REF>

0L [
() —=(¥".@:B)¥)

8L inc
3) a——(l,B‘P—S)+<1,\P—‘P )

gt

+

- Eq1l: adjoint problem [adjoint flux = Lagrange multiplier in optimization] driven by the
misfit outgoing source at the boundary
- Eqg3: forward problem [the ‘constraint’]

- Eq2: minimum w.r.t. to material properties Lyl a, (‘PT,(GZB)‘P)
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Goal : stationarity of the Lagrangian

0, L(V,2,1)=0 forx={¥,%, 1}

Use a Newton’s method to solve that problem:

0, L(x)ox™h=-0 L(x")

Xv€+1 — §X(,’+1 + X€

The Hessian of the Lagrangian is needed but many second derivatives terms
vanish because the transport operator is linear in both X and V.
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Previous work (Dr. Bangerth b/c he has prettier pix)

1 IS a relatively new
medical imaging modality:

1 A pulsed laser illuminates the skin, and light diffuses into the tissue

1 Lightis absorbed by a dye that is previously injected and accumulates
In tumors

1 The dye emits fluorescent light that diffuses throughout the tissue
% Fluorescent light amplitude and phase is recorded on the skin

1 Inverse problem:
— Try to reconstruct dye concentrations from the measured fluorescent light

— Hard problem since the setting is inherently 3-D, rather high resolution is
required, and the problem is very ill-posed due to the diffusive process
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Surface of mesh used Interior of mesh used for
forward modeling forward modeling




Surface of mesh used for Interior of mesh used for
reconstruction reconstruction



100211:1011 and size
(sphere)

Adaptive resolution around the target: 0.625 mm in
a tareet volume of 890 cm’.
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