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Introduction

Large-Scale Numerical Linear Algebra is primarily concerned

with the following problems:

• Solution of linear systems Ax = b;

• Solution of (generalized) eigenproblems Ax = λBx;

• The approximation of matrix functions f(A); often, one

is interested in evaluating f(A)b for a given b.

Here the matrices A, B are very large and not necessarily

sparse. These and related problems arise frequently in

computational science and engineering, and research on

effective algorithms is ongoing.



Introduction (cont.)

The main difficulties are due to the following features:

1. The ever-increasing size of the problems to be solved,

which makes multilevel methods virtually mandatory;

2. The complexity of the problems: strong couplings, multi-

physics, multiple scales, etc.

3. Ill-posedness, ill-conditioning, non-normality ...

These challenges call for increasingly sophisticated solution

approaches. In this talk I will discuss some recent work that

should be of interest to the transport community.



Introduction (cont.)

We are especially interested in cases where

• The coefficient matrices may not be explicitly available;

instead, users have to provide procedures for evaluating

the action of an operator on a vector.

• Such matrix-vector products are computationally expen-

sive, and/or difficult to parallelize.

• Two or more nested levels of iteration are present.

• Elaborate preconditioning strategies are needed.

Before giving illustrative examples, a brief review of Krylov

subspace methods is in order.



Krylov Subspace Methods

Suppose x0 is an initial guess for the solution of Ax = b, and

let r0 = b−Ax0 be the corresponding residual. Here A is N×N .

Krylov subspace methods are iterative (approximation) schemes

whose kth iterate xk satisfies

xk ∈ x0 +Kk(A, r0), k = 1,2, . . .

where

Kk(A, r0) ≡ span{r0,Ar0, . . . ,Akr0}

denotes the kth Krylov subspace generated by A and r0. The

Krylov subspaces form a nested sequence

K1(A, r0) ⊂ K2(A, r0) ⊂ · · · ⊂ Kd(A, r0) = · · · = KN(A, r0).



Krylov Subspace Methods (cont.)

Since the kth Krylov subspace Kk(A, r0) is k-dimensional

(for k ≤ d), there are k degrees of freedom in the choice of

the iterate xk.

Uniquely defined iterates are obtained by imposing k con-

straints, in the form of orthogonality of the kth residual rk
with respect to a prescribed k-dimensional subspace Ck:

rk = b−Axk ∈ r0 +AKk(A, r0), rk ⊥ Ck.

Different choices of the constraint subspace Ck lead to dif-

ferent types of Krylov subspace methods.



Krylov Subspace Methods (cont.)

Theorem. Assume dimKk(A, r0) = k, and let x∗ = A−1b.

1. If A is SPD and Ck = Kk(A, r0), then xk is uniquely defined

and satisfies

‖ek‖A ≡ ‖x∗−xk‖A = min
z∈x0+Kk(A,r0)

‖x∗−z‖A = min
p∈Πk

‖p(A)e0‖A.

2. If A is nonsingular and Ck = AKk(A, r0), then xk is

uniquely defined and satisfies

‖rk‖2 ≡ ‖b−Axk‖2 = min
z∈x0+Kk(A,r0)

‖b−Az‖2 = min
p∈Πk

‖p(A)r0‖2.

Here Πk denotes the set of all polynomials of degree at most

k such that p(0) = 1.

The method of conjugate gradients (CG) is of Type 1, while

minimal residual methods (like GMRES) are of type 2.



Krylov Subspace Methods (cont.)

Besides these two basic classes of methods, there exist

a number of variations (included restarted and truncated

variants) and hybrids. Not all of these methods satisfy an

optimality (or “quasi-optimality”) property.

However, all Krylov methods share the property that the

coefficient matrix A is accessed only in the form of matrix-

vector products. In some older methods the transpose of A
is also needed, but such methods are seldom used nowadays.

This property makes Krylov method attractive, and some-

times the only option, when A is not explicitly available.



Krylov Subspace Methods (cont.)

Krylov subspace methods are projection methods: the

approximate solution at step k is obtained from the solution

of a projection of the original N-dimensional problem onto a

k-dimensional subspace, where k � N .

The same idea is used to solve eigenvalue problems and to

approximate expressions of the form f(A)b, where f is a

function and b a given vector, for example e−tAb.

Clearly, it is desirable to keep the dimension k of the

approximating Krylov subspace as small as possible: in other

words, convergence of the Krylov approximation should be

fast.



Preconditioning

Characterizing the rate of convergence of Krylov subspace

methods is a non-trivial problem, still open in the case of

general, non-normal matrices.

In the case of linear systems, however, a tightly clustered

spectrum of the system matrix A often results in rapid

convergence of the iterates xk to x∗.

A clustering of the spectrum is typically obtained by precon-

ditioning: the original system is replaced by the equivalent

left- or right-preconditioned system

P−1Ax = P−1b, or AP−1y = b, x = P−1y.

Here the nonsingular matrix P is the preconditioner, chosen

such that P ≈ A, or P−1 ≈ A−1.



Preconditioning (cont.)

The choice of a suitable preconditioner is key to the success

of the Krylov subspace solver: for most problems, the

Krylov method alone is unable to achieve convergence in a

reasonable number of iterations.

A good preconditioner must be effective at reducing the

number of iterations to convergence, while at the same time

being relatively inexpensive to set-up and to apply.

In the last 15 years or so, a great deal of effort has

been put into the development of effective preconditioning

techniques. Although the best preconditioners are usually

problem-dependent, there has also been considerable interest

in general-purpose, algebraic preconditioners.



Preconditioning (cont.)

Preconditioning usually requires solving a linear system of

the form Pz = vk at the kth step of the Krylov subspace

method (sometimes more than once) for each k = 1,2, . . .

In some cases this is accomplished by an inner iteration,

where the number of iterations may vary from one outer

iteration to the next. This is an example of variable, or

non-linear, preconditioning.

In this case the outer iteration is, in general, no longer a true

Krylov method: we have instead flexible variants of standard

methods like GMRES, QMR, CG. The most popular among

these is FGMRES (Saad, 1993).



Schur Complements

Suppose A can be partitioned into a 2× 2 block form

A =

[
A B
C D

]
,

where A is invertible. The Schur complement of A in A is

the matrix

S = D − CA−1B .

Schur complements naturally arise in many contexts.

Note that if A is invertible, A admits the block factorization

A =

[
In O

CA−1 Im

] [
A O
O S

] [
In A−1B
O Im

]
,

with n+m = N . Hence if A is nonsingular, A is nonsingular

if and only if S is.



Schur Complements (cont.)

Suppose now we want to solve Ax = b; partition A, x and b

as

A =

[
A B
C D

]
, x =

[
y
z

]
, b =

[
c
d

]
.

Eliminating y from the system leads to the reduced system

Sz = h with h = d− CA−1c .

Once the reduced system has been solved for z, y is recovered

as the solution of

Ay = c−Bz .

This approach is often used when (n×n) linear systems with

A can be solved efficiently. The problem then is solving one

(m×m) linear system with S. Note that often m� n. Still,

usually S is dense and cannot be formed explicitly.



Schur Complements (cont.)

The reduced system

Sz = h , where S = D − CA−1B ,

can be solved by an iterative method requiring only matrix-

vector products with S.

Besides the matrix-vector multiplies with D, C and B, a

linear system with coefficient matrix A must be solved at

each iteration.

Unless A is “easy to invert” (for instance, diagonal or block

diagonal with small blocks), the solution of linear systems

with A is also performed iteratively, by an inner Krylov

method, leading to a nested iterative scheme.



Schur Complements (cont.)

Schur complements may arise as a consequence of a natural

partitioning induced by the original problem (e.g., the

presence of two unknown fields, like velocity and pressure in

fluid mechanics).

In other cases, a partitioning may be imposed on the problem

to facilitate its solution (e.g., domain decomposition).

In these examples, the Schur complement system arises

as a reduced system, upon elimination of part of the variables.

An advantage of this approach is that often, the Schur com-

plement is better behaved than the original, unreduced sys-

tem: for example it may be definite rather than indefinite, or

well-conditioned rather than ill-conditioned.



Some Examples

The first example is from incompressible fluid mechanics.

Consider the Stokes problem: Given a force field f in Ω ⊂ Rd,

with d = 2 or d = 3, find a velocity field u and a pressure

field p such that

−∆u +∇p = f in Ω

div u = 0 in Ω

Bu = 0 on ∂Ω .

Here B denotes some kind of boundary operator. To uniquely

determine p one may impose the condition∫
Ω
p dx = 0 .



Some Examples (cont.)

LBB-stable discretizations by finite elements or MAC

schemes lead to discrete saddle point systems of the form

[
A BT

B O

] [
u
p

]
=

[
f
0

]
, or Ax = b ,

where A is SPD and B has full row rank. Thus, A is

symmetric, but indefinite.

Elimination of the velocity vector u leads to a reduced (Schur

complement) system for the pressure:

BA−1BTp = BA−1f , or Sp = h ,

where S = BA−1BT and h = BA−1f .



Some Examples (cont.)

The pressure Schur complement matrix S = BA−1BT is

dense and cannot be formed explicitly. However, it is SPD.

Also, it can be shown that S is well-conditioned, and is

spectrally equivalent to the pressure mass matrix Mp.

Therefore, the system

Sp = h

can be solved by a rapidly convergent iterative method, like

CG, preconditioned with the matrix D = diag(Mp).

At each PCG iteration, a matrix-vector multiply with S =

BA−1BT must be computed. This requires solving linear sys-

tems with A, which amounts to solving d (= 2 or 3) discrete

Poisson equations.



Some Examples (cont.)

These Poisson problems can be solved efficiently by a multi-

grid iteration, leading to an inner-outer iterative scheme.

If these problems are solved inexactly, the resulting method

is an inexact Uzawa algorithm (Elman & Golub, 1994).

Similar approaches can be applied to more general problems,

including the Oseen problem (Picard linearization of the

incompressible Navier–Stokes equations), and also to other

types of saddle point problems (see Benzi, Golub & Liesen,

2005).

Also, many block preconditioning strategies require the ap-

proximate solution of Schur complement systems. This also

leads to inner-outer iterative schemes.



Some Examples (cont.)

The next example is from domain decomposition or, possibly,

from graph partitioning.

For a given integer p, we would like to find a reordering

(symmetric permutation) of A into the block form

Â =

[
A B
C D

]
=


A1 B1

A2 B2
. . . ...

Ap Bp
C1 C2 · · · Cp AS

 ,

with the size m of the block D = AS as small as possible.

With such a partitioning we have

A = diag (A1, A2, . . . , Ap) and S = AS −
p∑

i=1

CiA
−1
i Bi .



Some Exaples (cont.)

Such a reordering of A can be obtained using graph

partitioning by vertex separator (GPVS) techniques.

Given an undirected graph G = (V,E) and an integer p, the

p-way GPVS problem consists of finding a set of vertices

VS of minimum size whose removal decomposes a graph

into p disconnected subgraphs V1, V2, . . . , Vp with balanced

sizes. The problem is NP-hard.

Standard graph partitioning software (like METIS) can be

applied to the undirected graph G associated with the sym-

metrized matrix A+AT . Note that

|V | = N and |E| = nnz(A+AT ) .



Some Examples (cont.)

The matrix A can be put into the 2× 2 block structure

Â =


A1 B1

A2 B2
. . . ...

Ap Bp
C1 C2 · · · Cp D


by permuting the rows and columns associated with the

vertices in
⋃
k Vk before the rows and columns associ-

ated with the vertices in the separator set VS. That is,

VS defines the rows and columns of the (2,2) block D ≡ AS.

Hence, the size of the separator set is |VS| = m. This is the

number of unknown in the reduced (Schur complement)

system,

SxS = h, where S = D − CA−1B.



Some Examples (cont.)



Some Examples (cont.)

The following important properties hold:

• If A is SPD, so is S;

• If A is an M-matrix, so is S;

• If A is a discretization of a 2nd order, elliptic operator,

then S is usually much better conditioned than A; typi-

cally

κ(A) = O(h−2) , κ(S) = O(h−1)

where h denotes the mesh size.



Some Examples (cont.)

The last example is from transport. Denoting the vector of

angular fluxes with ψ, the discretized transport equation can

be written as

Lψ = MSDψ+ q ,

where L is the discrete streaming and removal operator, M

maps a vector of scalar flux moments onto angular fluxes,

S is a diagonal matrix of scattering cross sections on the

cells, D = MTW where W is a diagonal matrix of quadrature

weights, and q is a source.

Note that M and D are rectangular. Furthermore, φ = Dψ is

the vector of scalar fluxes, of size much smaller than ψ.



Some Examples (cont.)

Now the equations Lψ = MSDψ + q and φ = Dψ can be

written as a 2× 2 block matrix system:[
L −MS
−D I

] [
ψ
φ

]
=

[
q
0

]
, or Ax = b .

Eliminating the angular fluxes leads to the reduced system

for the scalar fluxes:

(I −DL−1MS)φ = DL−1q , or Sφ = g .

This is a fixed point problem for the (discretized) compact

operator DL−1MS, leading to source iteration:

φk+1 = DL−1MSφk + g , k = 0,1, . . .

This iteration is often combined with DSA preconditioning

and Krylov acceleration.



Some Examples (cont.)

At each iteration, the action of the inverse of the discrete

streaming and removal operator L on a vector must be

evaluated. This is done by sweeping and can be expensive,

especially for calculations involving unstructured grids.

On parallel computers, appropriate schedules have to be

found; these should be of minimal length. This is a hard

problem, although good heuristics exist.

Here we note that computing the action of L−1 can be done

by an inner iteration and it is of interest to determine how

accurate this evaluation needs to be.



Inexact Methods

Besides the case of Schur complement systems, there are

other situations where the exact evaluation of matrix-vector

products may be expensive or even impossible.

An important example occurs in computational electromag-

netics, where A represents the discretization of a non-local

operator, for example, a boundary integral operator.

In this case the exact evaluation of matrix-vector products

with A is prohibitively expensive, but fast multipole methods

can be used to approximate the action of A on a given vector.



Inexact Methods (cont.)

Another important example is that of the inverse power

method for evaluating the smallest (generalized) eigenvalue

of a matrix or, more generally, shift-and-invert methods for

approximating interior eigenvalues. These methods take the

form

xk+1 = (A− µB)−1rk, k = 0,1, . . . ,

followed by a normalization of the iterate.

The above mat-vec requires solving the linear system

(A− µB)x = rk ,

which is usually done by a direct method. When A and B
are large, however, this becomes impractical and an inner

iteration must be used.



Inexact Methods (cont.)

Around the year 2000, several researchers (Golub, Ye,

Bouras, Frayssé, Giraud...) observed that it is often possible

to terminate the inner iteration early on, without sacrificing

the accuracy and convergence rate of the outer iteration

process.

More precisely, at step k of the basic “Krylov” method the

mat-vec zk = Avk can be replaced by

ẑk = (A+ Ek)v = zk + fk ,

where Ek is an error matrix and fk = Ekv.

Surprisingly, it was experimentally discovered by Bouras et

al. that the magnitude ‖Ek‖ can be quite large. The key is

that ‖Ek‖ must vary in a certain way with k.



Inexact Methods (cont.)

It turns out that the norm of the error matrix ‖Ek‖ should

be small in the first iterations of the Krylov method, after

which it can grow.

In the context of minimal residual methods, let r̂m denote

the computed residual at step m; then if

‖fk‖ ≤ ck
ε

‖r̂k−1‖
for k ≤ m,

where the ck’s are suitable problem-dependent constants,

then one has ‖rm − r̂m‖ ≤ ε, where rm is the true residual

(with the “exact” A). Moreover, the convergence properties

are the same as for the exact (Ek = 0) method!

The constants ck, however, are not readily computable.



Inexact Methods (cont.)

Bouras et al. showed that taking ck ≡ 1 for all k resulted in

good results in some problems, and poor results (in terms of

attained accuracy) in others.

In the context of radiation transport problems, we (Warsa et

al.) have used an inner-outer iteration strategy with variable

inner residual tolerance given by

εinner = τ
εouter

‖r̂k‖
, where τ ≈ 0.1.

This is a very conservative strategy, but it is reliable and it

results in significant savings in overall solution times. It is

now implemented in some of the LANL transport codes.



Inexact Methods (cont.)

Inexact Krylov methods have been successfully applied for

solving linear systems and eigenvalue problems, and for

approximating functions of matrices.

A complete theory of these methods has been given in

recent papers by Simoncini & Szyld and, independently, by

Sleijpen & van den Eshof.

Roughly speaking, the early mat-vec products must be com-

puted to high accuracy so that the appropriate invariant sub-

space is well-approximated; after that, the mat-vecs are al-

lowed to become more and more inexact. If restarts are used,

high accuracy is required at the beginning of each cycle.



Inexact Methods (cont.)

We now sketch a more formal explanation for the case of

inexact GMRES. Instead of the standard Arnoldi relation

AVm = Vm+1Hm+1,m, we now have

AVm = Vm+1Hm+1,m − [E1v1 , E2v2 . . . , Emvm].

Let ym = [η(m)
1 , η

(m)
2 . . . , η

(m)
m ]T be such that xm = Vmym,

then

‖rm − r̂m‖ ≤
m∑
k=1

|η(m)
k |‖Ek‖

and

‖WT
mrm‖ ≤ ‖Hm+1,m‖

m∑
k=1

|η(m)
k |‖Ek‖.



Inexact Methods (cont.)

The first inequality is the residual gap, whereas the second

measures how far we are from the “exact” case (where we

would have WT
mrm = 0.)

Clearly, if the |η(m)
k | are small, then the right-hand sides in

the above inequalities can be small even if the norms ‖Ek‖
are not. All one needs is the products |η(m)

k |‖Ek‖ to be small.

It turns out that the magnitude of the components of ym
is decreasing: |η(m)

1 | ≥ |η(m)
2 | ≥ . . . ≥ |η(m)

m |, so that the

magnitude of the error matrices can grow as the iteration

progresses.

The quantity |η(m)
k | is of the order of the residual at the

(k − 1)th step. See Simoncini & Szyld for details.



Inexact Methods (cont.)

The theory also covers the case of flexible Krylov methods

with variable preconditioning: the mat-vecs with the precon-

ditioned matrix AP−1
k can be interpreted as inexact mat-vecs.

This is useful, for instance, for preconditioners based on

approximate Schur complements, or for DSA-type precondi-

tioners in transport.

An interesting open question is whether the theory can be

used to justify the use of non-deterministic (Monte Carlo)

solvers as “inner” approximate solvers—for example, for per-

forming sweeps in transport calculations.
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