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1. Neutron Transport Equation1. Neutron Transport Equation1. Neutron Transport Equation

Special case of Boltzmann equation: First-order integrodifferential
Neutral particles no electro-magnetic forces
Low particle densities ignore neutron-neutron collisions linear

Balance over infinitesimal element in phase space: 
Dependent variable: Angular flux
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1. Interface & Boundary Conditions1. Interface & Boundary Conditions1. Interface & Boundary Conditions
Steady state: Time derivative vanishes
Interface condition: Angular flux continuous along direction of 
motion,    , across material boundaries
Physical intuition: Can specify what goes into a system

What comes out is a consequence of the transport process inside
Example: shining light into crystal

Can choose color/intensity of incoming light
Can’t choose color/intensity of outgoing light: depends on what happens inside

Typical Boundary Condition (BC):
Set incoming flux                                            for:

All energies: 
Each     on the boundary S
Each incoming angle:                  ;      is the normal unit vector at 
pointing out of the volume enclosed by S

The function                      can be specified explicitly or implicitly
Vacuum BC: 

Ω̂
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1. Discretization of Transport Equation1. 1. DiscretizationDiscretization of Transport Equationof Transport Equation

Implementation on digital computer discretize independent 
variables & consequently dependent variables
Energy: Multigroup discretization into bins Eg

Victory, 1985: Total & scattering cross section fluctuations diminish with 
refinement of energy group structure

Multigroup solution exact solution
Angle: Discrete-ordinates discretization along discrete

Madsen, 1971: Quadrature formula converges with increasing order
Discrete Ordinates solution exact one-speed solution

Space: Multitude of methods to discretize on spatial mesh
Madsen, 1972: Exact solution has bounded 3rd derivatives

Diamond Difference solution exact Discrete Ordinates solution
Smoothness hypothesis unrealistic for most applications

ˆ
nΩ

ψ∇
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1. Spatial Approximation Methods1. Spatial Approximation Methods1. Spatial Approximation Methods
Diamond Difference (DD) method

Originally derived in slab geometry ψ
continuous over thin cells justifies:

Central differencing of streaming derivative
Cell-averaged flux = simple average edge 
fluxes (aux)

Arbitrarily High Order Transport (AHOT)
Nodal (AHOT-N): Transverse-averaging then 
exact solution of resulting ODEs
Characteristic (AHOT-C): Integration of streaming 
operator along characteristics (or particle path)

Difficulties with extension to
multi-dimensions:

Potential for flux discontinuity: If specified 
incoming boundary flux discontinuous at corner
Potential for derivative discontinuity: Across 
characteristic rays emanating from corners
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5. Conclusion5. Conclusion5. Conclusion
Local error analysis of WDD methods solutions do not converge with 
diminishing cell size if incoming face-averaged fluxes unequal
WDD solution converges with mesh refinement away from the singular 
characteristic because flux inequality diminishes
AHOT-C locally exact, but large global error dominance of outgoing 
face flux smearing effect
High-order methods: higher accuracy, but almost same rate of 
convergence
The case against smearing of the outgoing face flux:

Only approximation in AHOT-C0: locally exact
Maximum error (fine meshes) located near characteristic where smearing worst
ξ =1 case with no smearing across discontinuity cell-wise convergence
New Singular Characteristic Tracking algorithm avoids smearing convergence

Error estimation with scattering: Method of Manufactured Solutions
Rigorous a posteriori error estimator Adaptive Mesh Refinement, AMR
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2. Local Error Analysis2. Local Error Analysis2. Local Error Analysis

Configuration: Rectangular region
σ = total cross section, non-scattering
μ,η > 0, without any loss of generality
εx , εy = cell optical dimensions, e.g. εx = 2σ a/μ
ξ = cell optical aspect ratio = εy /εx

Local analysis Assume exact:
Incoming face-averaged fluxes: ψB , ψL (constant approximation)
Cell-averaged distributed source: S (constant approximation)

Characteristic method: Exactly solve transport equation over cell
Determine ψ(x,y) in three cell regions defined by characteristics
Compute cell-averaged flux: Ψ
Compute outgoing face-averaged (top & right) fluxes: ΨT & ΨR
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2. WDD Local Solution2. WDD Local Solution2. WDD Local Solution

The generic WDD set of equations:
Balance: (ψR – ψL)/ εx + (ψT – ψB)/ εy + ψ = S/σ
WDD: 2 ψ = (1+ αx) ψR + (1 – αx) ψL = (1+ αy) ψT + (1 – αy) ψB
Spatial weights, αu [0,1], u = x or y, selects solution method: 

αu = 0 DD
αu = 1 Step Method (SM)
αu = coth(εu /2)–2/ εu AHOT-N0

Solve 3 WDD equations 
For: Cell-averaged flux: ψ and outgoing face-averaged fluxes: ψT & ψR
In terms of incoming face-averaged fluxes ψB, ψL and cell-averaged 
source S

Reduce parameter space dimensionality by 1:
Solution proportional to sources: Normalize ψB + ψL+ S/σ =1
Require ψB+ ψL < 1 eliminate S/σ > 0 from parameter space

Compute error δq = q – Q, q = ψ, ψT , ψR , for DD, AHOT-N0, 
SM as function of εx , ξ (0,1] & various {ψB, ψL} combinations

∈

∈
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2. Local Error for ψL =0, ψB =12. Local Error for 2. Local Error for ψψLL =0, =0, ψψBB =1=1
AHOT-N0 error 

DD error as 
εx 0, ξ = const.

Errors do not 
vanish for most 
ξ as εx 0

DD
SM
AHOT-N0
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Same as 
previous case

DD
SM
AHOT-N0

2. Local Error for ψL =1, ψB =02. Local Error for 2. Local Error for ψψLL =1, =1, ψψBB =0=0
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Solution is 
continuous 
across 
characteristic

Errors vanish 
as εx 0

DD
SM
AHOT-N0

2. Local Error for ψL =0.5, ψB =0.52. Local Error for 2. Local Error for ψψLL =0.5, =0.5, ψψBB =0.5=0.5
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2. Results of Local Analysis2. Results of Local Analysis2. Results of Local Analysis
If ψB = ψL:

Solution continuous across characteristic line; first derivative discontinuous
WDD solutions converge like O(εx)

Otherwise:
Solution discontinuous across characteristic line
WDD solutions do not converge as εx 0, ξ = const.

Asymptotic behavior of exact solution:
Ψ (1 – ξ/2) ψB + (ξ/2) ψL + O(εx)

Asymptotic behavior of WDD (with fixed αx & αy) solution:
ψ [1+ξ(1+αy)/(1+ αx)] –1 ψB + [1+ξ–1 (1+ αx)/(1+αy)]–1 ψL + O(εx)

Observations on asymptotic formulas:
Dependence on S is O(εx), on incoming face-averaged fluxes is O(1)
In general the exact & numerical formulas do not approach the same limit as εx 0
For DD (αu = 0) & AHOT-N0 (αu 0 as εu 0):

If ψB = ψL

Local error: δψ 0 as O(εx)
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3. Larsen’s Benchmark Problem3. Larsen3. Larsen’’s Benchmark Problems Benchmark Problem

Original configuration:
Rectangle: X × Y = 1.3 × 0.9 mfp
Uniform 2n × 2n mesh, n = 0,1,2, …
Single discrete ordinate: μ = 0.7 = η
Nonscattering material, source-free : S = 0
Equal constant incoming fluxes: ψB =1= ψL

Larsen’s analysis:
Determined exact point solution using the characteristic formula
Computed local error as difference between DD solution in a cell and 
exact point value of flux at cell center
Error order of convergence same if exact cell-averaged flux used instead

Larsen’s conclusion:
DD error 0 as a fractional power of cell optical size
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3. Global Error Norm Definitions3. Global Error Norm Definitions3. Global Error Norm Definitions

Global error analysis: Accumulate numerical errors in edge fluxes

Absolute difference between exact and numerical cell-averaged 
angular flux:

: Exact cell-averaged flux evaluated from characteristic solution
: Approximate cell-averaged flux computed via mesh sweep

Error norms:

L1:

L2:

L∞ :

, ,, i j i ji jε ψ= Ψ −

Convergence in 
integral sense

,1
,

i j i j
i j
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3. Variations on Larsen’s Benchmark3. Variations on Larsen3. Variations on Larsen’’s Benchmarks Benchmark

Numerical method:
DD: lowest order spatial approximation
AHOT-N0/1/2: AHOT-N0 same behavior as DD as cell size 0
AHOT-C0/1/2: locally exact

Incoming boundaries fluxes:
Determines degree of smoothness of exact solution

For meshes n = 0,…,15, compute in 64-bit arithmetic:
Exact cell-averaged flux for each cell
Numerical method cell-averaged flux for each cell
Error distribution by cell
L1 , L2 & L∞ norms of the error
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3. Bounded 3rd Derivative3. Bounded 33. Bounded 3rdrd DerivativeDerivative
BCs: Bounded 2nd derivatives &

σ [ηψ’L (0) – μψ’B (0) ] = μ 2ψ”B (0) –η 2ψ”L (0)
Consistent with Madsen’s proof: DD solution is O(h2) accurate 
under this stringent smoothness condition

Angular Flux (exact solution) Error Norms vs. h (mesh size) 

2
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h

3. Bounded 2nd Derivative3. Bounded 23. Bounded 2ndnd DerivativeDerivative

BCs: Bounded 1st derivatives & σ ψL(0) = –ηψ’L(0) –μψ’B(0)
DD has different convergence orders depending on Ll norm

Angular Flux (exact solution) Error Norms vs. h (mesh size) 

2

h
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h

3. Bounded 1st Derivative3. Bounded 13. Bounded 1stst DerivativeDerivative

BCs: ψB(0) = ψL(0) continuous flux
DD convergence order falls below 1 for L∞ norm

Angular Flux (exact solution) Error Norms vs. h (mesh size) 

2

h
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h

3. Discontinuous Angular Flux3. Discontinuous Angular Flux3. Discontinuous Angular Flux

BCs: ψB(0) ≠ ψL(0)
DD does not converge in L∞ norm (cell-wise) to the exact solution
Similar general behavior by AHOT-N0 & AHOT-C0

Angular Flux (exact solution) Error Norms vs. h (mesh size) 
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3. Perspective on Discontinuity Effect3. Perspective on Discontinuity Effect3. Perspective on Discontinuity Effect
Detrimental effect of discontinuity 
evident from L∞ norm of error

Convergence of L1 & L2 error 
norms:

Adverse effect of discontinuity is 
local
Mesh refinement squeezes extent of 
error narrower

Plots of cell-wise flux:
Ripples in DD solution below 
singular characteristic line
Width of ripple band diminishes with 
mesh refinement
No ripples in AHOT-C0 solution but 
wider transition region

Exact n=4 DD n=4 AHOT-C0 n=4

Exact n=5 DD n=5 AHOT-C0 n=5

Exact n=6 DD n=6 AHOT-C0 n=6

Exact n=8 DD n=8 AHOT-C0 n=8
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3. Cell-wise Error Distribution3. Cell3. Cell--wise Error Distributionwise Error Distribution

AHOT-N0 plots visually similar to 
DD

AHOT-C0 solution highly accurate 
below diagonal

AHOT-C0 worst error in tight band 
around singular characteristic:

Results from smearing effect of flux 
discontinuity
Recall: AHOT-C0 locally exact for 
constant incoming fluxes & source

AHOT-C0 cell-wise values more 
trustworthy?

DD n=4 AHOT-C0 n=4DD n=4

AHOT-C0 n=5DD n=5

AHOT-C0 n=6DD n=6

AHOT-C0 n=8DD n=8
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ψL = 1,  ψB = 1

 

ψL = 0,  ψB = 1 

DD

Asymptotic 
Convergence
Rate

AHOT-C0

3. Special Case ξ = 13. Special Case 3. Special Case ξ ξ = 1= 1

1.0

1.5

2.0

1.0

0.0

0.5

1.0

1.0
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3. Dependence on Optical Aspect Ratio3. Dependence on Optical Aspect Ratio3. Dependence on Optical Aspect Ratio

Effect of decreasing ξ on solution accuracy:
Generally better accuracy on finer meshes
Accuracy deteriorates on coarse meshes: Slower approach to asymptotic 
convergence
Asymptotic convergence rates almost unchanged

ξ = 1 Case: Substantial improvement in convergence rates
WDD cell-wise flux:

Converges like O(εx) with mesh refinement if solution continuous
Does not converge with mesh refinement if solution discontinuous

AHOT-C0 cell-wise flux converges like O(εx) regardless of solution 
continuity:

Face-averaged flux not smeared across discontinuity
Only remaining approximation: Averaging outgoing face flux
Expanding continuous face flux in Taylor series O(εx) approximation
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3. Singular Characteristic Tracking (STC)3. Singular Characteristic Tracking (STC)3. Singular Characteristic Tracking (STC)

STC Algorithm based on:
Separate Step Characteristic
stencil in each cell intersected
by singular characteristic
Standard DD stencil in all
other cells

Error computation for cases
with scattering:

Method of Manufactured solutions
Construct solution at will
Substitute into Transport Eq
Determine exact source & BCs
Use these numerical solution
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3. Accuracy of SCT vs DD3. Accuracy of SCT 3. Accuracy of SCT vsvs DDDD

Discontinuous flux (ψL = 1,  ψB = 0); S8; σs/σ = ½

New SCT

Standard

×
 

10–3

1.3

0.33
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3. Accuracy of SCT vs DD3. Accuracy of SCT 3. Accuracy of SCT vsvs DDDD

Discontinuous 1st derivative (ψL = 0,  ψB = 0); S4; σs/σ = ½

Standard

New SCT

1.33

0.86
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3. Error Patterns3. Error Patterns3. Error Patterns

Discontinuous 1st derivative (ψL = 0,  ψB = 0 ); S4; σs/σ = ½

DD SCT (×

 

5)
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4. High Order Methods4. High Order Methods4. High Order Methods
Spatial approximation of angular flux & source truncated at order 
higher than constant:

AHOT provides expressions for discretized transport equation at 
arbitrary truncation order Λ
AHOT-N: Solve transverse-averaged transport equation coupled ODEs
AHOT-C: Integrate full transport equation along characteristics then take 
spatial moments of flux
Here we consider only Λ = 0, 1, 2

Case of ψL = 1, ψB = 0 discontinuous exact solution:
Accuracy improves significantly with increasing spatial approximation 
order
Still fails to converge cell-wise fluxes
AHOT-C generally more accurate than AHOT-N of same order
Convergence rates approximately same for all methods/orders

Except L1 for AHOT-C1/2 higher order
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4. Error Norms4. Error Norms4. Error Norms

L∞

L1

L2
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4. AHOT-N Error Distribution4. AHOT4. AHOT--N Error DistributionN Error Distribution

Maximum Error decreases with 
increasing approximation order

Oscillation pattern persists with smaller 
amplitude 0.573ε

∞
=

0.361ε
∞

=0.192ε
∞

=
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4. AHOT-C Error Distribution4. AHOT4. AHOT--C Error DistributionC Error Distribution

Maximum Error decreases with 
increasing approximation order

Band where error is largest narrows with 
increasing order 0.462ε

∞
=

0.328ε
∞

=0.174ε
∞

=
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5. Conclusion5. Conclusion5. Conclusion
Local error analysis of WDD methods solutions do not converge with 
diminishing cell size if incoming face-averaged fluxes unequal
WDD solution converges with mesh refinement away from the singular 
characteristic because flux inequality diminishes
AHOT-C locally exact, but large global error dominance of outgoing 
face flux smearing effect
Case ξ =1: AHOT-C0 converges cell-wise, WDD does not
High-order methods: higher accuracy, but almost same rate of 
convergence
The case against smearing of the outgoing face flux:

Only approximation in AHOT-C0: locally exact
Maximum error (fine meshes) located near characteristic where smearing worst
ξ =1 case with no smearing across discontinuity cell-wise convergence
New Singular Characteristic Tracking algorithm avoids smearing convergence

Error estimation with scattering: Method of Manufactured Solutions
Rigorous a posteriori error estimator Adaptive Mesh Refinement, AMR
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SCT vs AHOT-N1 (Nodal Linear)SCSCTT vsvs AHOTAHOT--N1 (Nodal Linear)N1 (Nodal Linear)

Discontinuous 1st Partial Derivative: σs/σ = ½

L1, L2 and L∞ error norms for AHOT-N1 and SCT for the case 
with zero boundary conditions. S4

 

Quadrature.
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SCT vs AHOT-N1 (Nodal Linear)SCSCTT vsvs AHOTAHOT--N1 (Nodal Linear)N1 (Nodal Linear)

Discontinuous 1st Partial Derivative: σs/σ = ½

SCT gives the same level of error that AHOT-N1 for fewer number of unknowns saving 
computational time.
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ConclusionsConclusionsConclusions

Convergence properties of the 2D Discrete Ordinates Method have been 
numerically characterized.

Using the rate of convergence and error pattern as guiding parameters, a new 
algorithm has been devised.

The SCT algorithm has been tested successfully in two dimensional problems with 
isotropic scattering.

The SCT algorithm yields comparable accuracy to a linear nodal method at a much 
lower (number of unknowns) cost.
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