Radiation Effects Studies at NASA'’s Center for
Radiation Research (CARR)
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“Point and Shoot Experiments”

{ Total Ionization Dose and Displacement Damage

¢ Samples are evaluated both in situ (Dynamic testing) and ex situ
(Static testing)

* Samples are compared to pre-irradiation characteristics and control
samples

Outcome: Radiation tolerance data and radiation damage curves

Parametric Analyzer
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Shielding Experiments
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Shielding Experiments (Cont.)

Material Targets Studied:
1. Various thicknesses of Polyethylene
2. Various thicknesses of Carbon
Shield 3. Various thicknesses of Aluminum
DUT Board __, . 4. Boron and Lithium Enriched Polyethylene
5. Simulated Mars Regolith with Epoxy Binder
6. Transhab Cross-sections
7. ISS Food Containers
Beam Pipe 8. Carbon Composites

Particle Beam

Goal: Compare Shielding Effectiveness of
Various Materials for Both Human and Electronics

TEPC = Tissue Equivalent Proportional Counter.
* Measure Radiation Dose Equivalent Rates

* Changes In The Lineal Energy Spectra CARR students at Los Alamos

conducting shielding test with a
simulated ISS food container
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Current and Planned Research

| 1. Characterize the lower energy neutron
spectrum at LANSCE

2. Characterize the thermal and epithermal
neutron beams at the UT NETL

Talks are also on way for TAMU reactor

3. Characterize secondary radiation

environment on the US and Russian space
suit for EVA on ISS
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LANL: LANSCE Spectrum Characterization

% Characterize upper energy neutron beam (En > 10MeV)
. using n_TOF

% Characterize the lower energy neutron beam (En <
10MeV)

foil activation a challenge at low fluxes

TEPC does not have a good response at lower energy

n_TOF may not be well suited for lower energy due to pulse
buildup
Bonner Sphere may be an option
Calibration and response function is a huge challenge

Equipment and data analysis is a long term project with funding
commitment

f * Model the neutron beam using MCNPX
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N_TOF at LA

Experiment Set-Up
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%
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% Challenges:

 Exact time estimation, t,
2 Instrumentation and LabView interface

2 Potential detector saturation from gamma flash
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| % Fission Neutron Spectrum
i Spectrum can be characterized using

standard foil activation techniques

©Pulse mode operation could provide a
means to test n_TOF at lower energies
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i % Research Reactor Neutron //I
Beam:
= Higher neutron fluence

2 Student training and
involvement

2 Close proximity and easy
availability

% Experiments planned: ’ /' >

2 Materials performance testing of
Moon and Mars Regolith at \

Epithermal (1 MeV - 20 MeV)
neutron energies

2 Epithermal and Thermal neutron

] induced SEU in SRAM
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Space Suits : Designed for extreme environment

| % Temperature

| = direct sunlight: 248 °F (120 °C)
= shade: -148 °F (-100 °C)

“ Pressure
““Maintain 1 atm

“sMicrometeoroids

=2 Maintain flexibility and dexterity

“s Radiation

2 Primary and secondary radiation
environment

= Protons, electrons and neutrons

2 For International Space Station (ISS)
construction astronauts are expected
to spend 1000 hours EVA

| | Photo courtesy NASA
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Secondary Radiation from Space Suit

% Goals:
. 1. Evaluate the secondary radiation coming from the space suit and
helmet

2. Calculate the dose received by astronauts during EVA

“% Purpose:
r Plan future EVA
£ Design and improve new suits

F |

% Challenges:

22 Cross-sections data is limited for many
materials at very high energies >150 MeV

Nuclear
\ Data
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Pressure garment bladder
(urethane coated nylon)

Restraint (Dacron)

TMG liner (;

Wﬂ‘-
coated nylon ripstop)

TMG insulation
(muiti-layered insulation — MLI)
(aluminized mylar)

Figure 1-13. Major components of the EMU space suit assembly and life support system.
(Reproduced with permission from Hamilton Sundstrand.)
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NASA Groups

Shielding and Radiation Dosimetry:
» Dr. Frank Cucinotta, Space Radiation

B
Health Program, Johnson Space Center @ |
g

Materials:
» Dr. Sheila Thibeault, Advanced Materials and Processing Branch
Structures and Materials Competency, Langley Flight Research Center

» Dr. Robert Singleterry and Dr. John Wilson, Structures and Materials
Analytical and Computational Methods Branch, Radiation Physics
Group, Langley Flight Research Center

Electronics & Environment;

* Dr. E.G. Stassinopoulos, Radiation Physics Group, Goddard Space
Flight Center
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