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Global Sustainability Goals 
Combined Fuel Cycles 
Nuclear-Fossil Liquid Fuels 

Nuclear-Biomass Liquid Fuels 
Nuclear-Renewable Electricity 

Chemical Engineering Challenges
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Two Goals are Likely to Determine 
What is Required for Sustainability 

No Crude Oil                No Climate Change

06-050

Tropic of Cancer

Arabian Sea 

Gulf of Oman 

Persian 

Red 

Sea 

Gulf of Aden

Mediterranean  Sea 

Black Sea 

Caspian 

Sea 

Aral Sea 

Lake Van 

Lake Urm ia 

Lake Nasser 

T'ana Hayk 

Gulf of  Suez Gulf o f Aqaba 

Stra it of  Horm uz Gulf 

Suez  Canal 

 

 
 

Saudi Arabia 

Iran  
Iraq 

Egypt 

Sudan 

Ethiopia 

Somalia 

Djibouti 

Yemen 

Oman 

Oman 

United Arab Em irates 

Qatar 

Bahrain 

Soc otra (Yemen) 

Turkey 

Syria 
Afghanistan 

Pakistan 

Romania 

Bulgaria 

Greece 

Cyprus 

Lebanon 

Israel 

Jordan 

Russia 

Eritrea 

Georgia 

Armenia Azerbaijan 

Kazakhstan 

Turkmenistan 

Uzbekistan 

Ukra ine 

0 200 

400 m iles 

400 

200 0 

600 kilom eters 

Middle East 

Tropic of Cancer

Arabian Sea 

Gulf of Oman 

Persian 

Red 

Sea 

Gulf of Aden

Mediterranean  Sea 

Black Sea 

Caspian 

Sea 

Aral Sea 

Lake Van 

Lake Urm ia 

Lake Nasser 

T'ana Hayk 

Gulf of  Suez Gulf o f Aqaba 

Stra it of  Horm uz Gulf 

Suez  Canal 

 

 
 

Saudi Arabia 

Iran  

Iraq 

Egypt 

Sudan 

Ethiopia 

Somalia 

Djibouti 

Yemen 

Oman 

Oman 

United Arab Em irates 

Qatar 

Bahrain 

Soc otra (Yemen) 

Turkey 

Syria 
Afghanistan 

Pakistan 

Romania 

Bulgaria 

Greece 

Cyprus 

Lebanon 

Israel 

Jordan 

Russia 

Eritrea 

Georgia 

Armenia Azerbaijan 

Kazakhstan 

Turkmenistan 

Uzbekistan 

Ukra ine 

0 200 

400 m iles 

400 

200 0 

600 kilom eters 

3

Athabasca Glacier, Jasper National Park, Alberta, Canada
Photo provided by the National Snow and Ice 
Data Center
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Traditional Sustainability Strategies 
Treat Each Fuel Cycle Separately

Separate Fuel Cycles will not 
Eliminate Oil or Stop Climate Change
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Combined Fuel 
Cycles are 

Required for 
Sustainability
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Examples of 
Combined Fuel Cycles
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Example:  Combined Nuclear-Fossil 
Liquid-Fuels Fuel Cycle 

Underground Refining

7

C. W. Forsberg, “Changing Biomass, Fossil, and Nuclear Fuel Cycles for 
Sustainability”, American Institute of Chemical Engineers Annual Meeting, Salt Lake 

City, Utah, November 4-9, 2007.



Liquid-Fuels Fuel Cycle for Crude Oil
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Conversion of Fossil Fuels to 
Liquid Fuels Requires Energy 

Greenhouse Gas Releases and Energy Use In Fuel Processing Increase As Use Lower-Quality Feedstocks
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An Alternative:  Underground Refining 
Produces Light Crude Oil While Sequestering Carbon From the 

Production and Refining Processes as Carbon
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In-Situ Refining May Require 
Nuclear Heat Source
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Nuclear-Heated In-Situ 
Oil-Shale Conversion Process

Nuclear Heat Avoids Greenhouse-Gas Releases from Oil Production
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Example:  Combined Nuclear- 
Biomass Liquid-Fuels Fuel Cycle 

Process Energy from a Nuclear Reactor

12

C. W. Forsberg, “Meeting U.S. Liquid Transport Fuel Needs with a Nuclear Hydrogen 
Biomass System’, American Institute of Chemical Engineers Annual Meeting, Salt 

Lake City, Utah, November 4-9, 2007.
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Fuel Cycle for Liquid Fuels 
from Biomass

13
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Biomass Production, Transport, and 
Fuel Factories Use Energy
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Logging ResiduesAgricultural Residues

Energy CropsUrban Residues

1.3-Billion-Tons Biomass are Available 
per Year to Produce Liquid Fuels 

Available Biomass in the United States without Significantly Impacting Food, Fiber, and Timber
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Biomass Liquid-Fuel Yield Depends 
Upon How the Biomass is Processed 
Measured in Equivalent Barrels of Diesel Fuel/Day
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The Nuclear-Hydrogen-Biomass 
Liquid-Fuel Cycle
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Nuclear Energy With Biomass Liquid Fuels 
Could Replace Oil-Based Transport Fuels in the United States
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Nuclear Biomass Liquid Fuels 

The Details
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Three Step Strategy to a Nuclear- 
Biomass Liquid-Fuels Economy

•
 

Three implementation steps
−

 

Starch (corn, potatoes, etc.) to ethanol
−

 

Cellulose to ethanol and gasoline and diesel
−

 

Biomass to diesel
•

 
Basis of implementation strategy
−

 

Economics and ease of implementation
−

 

Each step
•

 

Larger biomass resource available
•

 

More liquid fuel production
•

 

Increased liquid fuel yield per unit of biomass
−

 

Nuclear energy input from simple to complex 
•

 

Steam (Starch)
•

 

Steam and hydrogen (Cellulose)
•

 

Hydrogen (All biomass) 



The Biotech Revolution
20

Sugar (Sugarcane and Sugar Beets)

 Sugar → Ethanol (Traditional Technology)

 Process has been Used for Millennia

Starch (Corn, Barley, etc.)

 Starch → Sugar → Ethanol

 Process has been Used for Millennia

 New Low-Cost Enzymes for Rapid Starch-to-Sugar 
Conversion (Corn-to-Ethanol Boom)

Cellulose (Trees, Agricultural Waste, Etc.)

 Cellulose → Sugar → Ethanol

 Enzyme Costs Dropping Rapidly; 
Precommercial Plants Operating



Starch to Ethanol

Option for Today 

Nuclear Input: Low-Pressure Steam
(Experience outside the United States)



Starch to Ethanol Requires Low- 
Temperature Steam

•

 

Energy input to grow corn and convert it to 
ethanol is 70% of the energy value of the 
ethanol

•

 

Low-pressure (150 psi) steam for 
distillation and other uses is half the 
nonsolar energy input

•

 

Nuclear plants can provide this steam
−

 

Cuts fossil inputs and greenhouse gas 
releases from ethanol production in half

−

 

Cost of nuclear heat is about half that of 
natural gas (~$3/106

 

MBTU)
•

 

Production of one billion liters of 
ethanol/year requires 260 MW(t) of steam

•

 

Ethanol production limited by availability of 
corn, potatoes, and other feedstocks

22
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Economics are favorable and no new technology is required
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Cellulose to Ethanol 
Lignin to Hydrocarbon Fuel

Midterm Option

Nuclear Inputs
Low-Pressure Steam

Hydrogen for Hydrocracking Lignin



One-Third of U.S. Liquid Fuel Demand 
Could be Met with Ethanol By 2030 

Cellulose to Ethanol and Lignin as Burnt as Fuel

Source:  NREL – Bob Wooley

25

Projected Ethanol Production

Distribution of 
Biomass Sources
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Cellulosic Liquid Fuel Yields Increased by 
50% Using Nuclear Heat and Hydrogen
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Nuclear-Cellulosic Liquid Fuels Requires 
Lignin Conversion to a Liquid Fuel

•

 

Conventional cellulose-to-

 ethanol process burns plant 
lignin for energy

•

 

Nuclear cellulose ethanol 
option
−

 

Nuclear steam is an option 
for cellulose feedstock only 
if a use is found for lignin

−

 

Lignin conversion to liquid 
fuels required (no other 
market large enough)

−

 

Hydrogen required to 
hydrocrack lignin to 
gasoline-type fuel

−

 

Processes under 
development Lignin (Biological precursor to crude oil)



Biomass to Hydrocarbon Fuels 
(Gasoline, Diesel, Jet Fuel)

Longer-term Option

Nuclear Input: 
Large Quantities of Hydrogen
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Conversion of Biomass to Diesel Fuel
Biomass

(1.3 billion tons/year)

Gasoline/
Diesel

Nuclear Reactor

Hydrogen
(large quantities)

Steam

3-4X Fuel Output/Unit Biomass

Electricity

Liquid Fuels 
Plant

•

 

Biomass is a carbon 
feedstock

•

 

Full conversion to 
hydrocarbon fuels to 
maximize liquid fuels 
production per unit of 
biomass

•

 

Requires large 
quantities of hydrogen

•

 

Several process 
options including 
Fischer-Tropsch

 

(same 
as coal liquefaction)

•

 

Economics depends 
upon hydrogen costs



Example: Combined 
Nuclear-Renewable Electricity 

Peak Electricity Production

30

C. W. Forsberg, “Economics of Meeting Peak Electricity Demand Using Nuclear 
Hydrogen and Oxygen,” Proc. International Topical Meeting on the Safety and 

Technology of Nuclear Hydrogen Production, Control, and Management, Boston, 
Massachusetts, June 24-28, 2007, American Nuclear Society, La Grange Park, Illinois.  

See backup slides for nuclear-fossil peak electricity options



Electricity Demand Varies with Time 
Example: Daily Cycle
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Large-Scale Renewable 
Electric Production may 

not be Viable without 
Electricity Storage

•
 

Renewable electric output does 
not match electric demand

•
 

Problems exist on windless 
days, cloudy days, and at night

•
 

Low-cost backup power options 
are required

32



Fossil Fuels are Used Today to Match 
Electricity Demand with Production

•
 

Fossil fuels are inexpensive to store
 

(coal piles, oil 
tanks, etc.)

•
 

Carbon dioxide sequestration is likely to be very 
expensive for peak-load fossil-fueled plants

•
 

If fossil fuel consumption is limited by greenhouse or 
cost constraints, what are the alternatives for peak 
power production?

•
 

Systems to convert 
fossil fuels to 
electricity have 
relatively low capital 
costs

33



Hydrogen Intermediate and Peak 
Electric System (HIPES)

06-015
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Norsk Atmospheric Electrolyser

•
 

Near term
−

 
Electrolysis

−
 

Electricity supply options
•

 

Base load
•

 

Night time and surplus 
renewables

•
 

Longer term 
−

 
High-temperature 
electrolysis

−
 

Hybrid
−

 
Thermochemical

35

Nuclear Hydrogen Production Options

Key Nuclear Hydrogen Characteristics
(H2

 

, O2

 

, Heat, Centralized Delivery) 
are Independent of the 

Nuclear Hydrogen Technology



Bulk Hydrogen Storage is a Low-Cost 
Commercial Technology
•

 
Chevron Phillips H2

 

Clemens Terminal
•

 
160 x

 
1000 ft cylinder salt cavern

•
 

Same technology used for natural gas
•

 
In the United States, one-third of a 
year’s supply of natural gas is in 400 
storage facilities in the fall

36

Use Same 
Technology for 
Oxygen Storage



Oxy-Hydrogen Turbine for Electricity 
Low-Capital-Cost Efficient Conversion of H2

 

and O2

 

to 
Electricity for a Limited Number of Hours per Year

06-016

•
 

High-temperature 
steam cycle
−

 

2H2

 

+ O2

 

→ Steam
•

 
Low cost
−

 

No boiler
−

 

High efficiency 
(70%)

•
 

Unique feature: 
Direct production 
of high-pressure 
high-temperature 
steam
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Hydrogen
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Pump
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Burner
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Out
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Oxy-Fuel Combustors Are Being 
Developed for Advanced Fossil Plants

06-040

•
 

A hydrogen-oxygen 
combustor similar 
to natural gas–

 oxygen combustor
•

 
CES test unit
−

 
20 MW(t)

−
 

Pressures from 2.07 
to 10.34 MPa

−
 

Combustion 
chamber 
temperature:  
1760ºC

Courtesy of Clean Energy Systems (CES)
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HIPES may Enable Large-Scale 
Nuclear-Renewable Electricity

07-017

•
 

HIPES strategy
−

 

Low-cost daily, weekly, 
and seasonal bulk H2

 
and O2

 

storage
−

 

Low-cost conversion to 
electricity 

•
 

Match production with 
demand
−

 

Renewables have highly 
variable power output

−

 

Can adjust to rapidly 
varying renewables 
output (full utilization)

15000

17500

20000

22500

25000

0:00 4:00 8:00 12:00 16:00 20:00 0:00

Sy
st

em
 L

oa
d 

(M
W

)

22200

22250

22300

22350

22400

8:00 8:15 8:30 8:45 9:00

Regulation

15000

17500

20000

22500

25000

0:00 4:00 8:00 12:00 16:00 20:00 0:00

Sy
st

em
 L

oa
d 

(M
W

)

22200

22250

22300

22350

22400

8:00 8:15 8:30 8:45 9:00

Regulation

39



07-062

Combined Fuel 
Cycles have 

Implications for 
Nuclear Energy 
and Chemical 
Engineering

40



There Are Significant Chemical 
Engineering Challenges

•
 

Underground Refining
−

 

High-temperature heat-transfer loops
−

 

Process development (heating rates, etc.)
•

 
Nuclear-Biomass Liquid Fuels
−

 

Hydro cracking of lignin biomass to gasoline
•

 

Cellulose to ethanol with nuclear heat
•

 

Lignin to hydrocarbon fuels with hydrogen
−

 

Direct hydrogenation of cellulosic feedstock to gasoline 
and diesel (replace Fischer-Tropsch)

•
 

Nuclear-Renewable Peak Electricity
−

 

Underground oxygen storage
−

 

Hydrogen production

41



Conclusions

•

 

Sustainability goals
−

 

No oil consumption
−

 

No climate change
•

 

Sustainability will require integration of fossil, biomass, and 
nuclear fuel cycles with different nuclear products
−

 

Steam
−

 

High-temperature heat
−

 

Hydrogen
•

 

Combined fossil, renewable, nuclear fuel cycles include 
challenges for chemical engineers
−

 

Development of “underground refining”
−

 

Lignin to hydrocarbon fuel
−

 

Better methods to convert biomass to hydrocarbon fuels
−

 

Oxygen storage
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Questions
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—Abstract—

Combining Nuclear, Renewable, and Fossil Fuel Cycles For Sustainability
Charles W. Forsberg

Oak Ridge National Laboratory; P.O. Box 2008; Oak Ridge, TN 37831-6165
Tel:  (865) 574-6783; Fax:  (865) 574-0382; E-mail:  forsbergcw@ornl.gov

The energy and chemical industries face two great sustainability challenges:  the need to avoid climate change and the need to replace 
crude oil as the basis of our transport and chemical industries. These challenges can be met by changing and synergistically combining 
the fossil, biomass, renewable, and nuclear fuel cycles.

Fossil fuel cycles.  Fossil fuel cycles must be changed to reduce greenhouse impacts and will require options beyond carbon-dioxide 
sequestration.  In situ thermal cracking of heavy oils, oil shale, and coal may enable the production of high-quality transport fuels while 
sequestering the byproduct carbon from the production processes without moving it from the original underground deposits.  These 
options require integration of non-greenhouse-gas producing high-temperature heat from nuclear reactors with fossil systems for oil 
production.

Biomass fuel cycles.  The use of biomass for production of liquid fuels and chemicals avoids the release of greenhouse gases.  However, 
biomass resources are insufficient to (1) meet liquid fuel demands and (2) provide the energy required to process biomass into liquid 
fuels and chemicals.  For biomass to ultimately meet our needs for liquid fuels and chemicals, outside sources of heat and hydrogen are 
required for the production facilities with biomass limited to use as a feedstock to maximize liquid-fuels production per unit biomass.

Renewable electric fuel cycles. Nuclear energy can economically provide base-load but not peak-load electricity. Increased use of 
renewable electric systems implies variable electricity production (depending upon wind and solar) that does not match electric demand. 
Today, peak electricity is produced using fossil fuels—an option that may not be viable if there are constraints on greenhouse gas 
emissions. Nuclear-produced hydrogen combined with underground hydrogen storage may create new methods to meet peak electric 
power production needs and thus enable the larger-scale use of renewable electricity production technologies. 

It is the combined nuclear-fossil-renewable fuel cycles that can meet our energy needs, replace crude oil, and avoid excess greenhouse 
gas releases.
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