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Third International Workshop on 
Knowledge Discovery from Sensor Data 

(SensorKDD’09) 
 
Wide-area sensor infrastructures, remote sensors, RFIDs, and wireless sensor networks yield massive 
volumes of disparate, dynamic, and geographically distributed data. As such sensors are becoming 
ubiquitous, a set of broad requirements is beginning to emerge across high-priority applications including 
adaptability to climate change, electric grid monitoring, disaster preparedness and management, national 
or homeland security, and the management of critical infrastructures. The raw data from sensors need to 
be efficiently managed and transformed to usable information through data fusion, which in turn must be 
converted to predictive insights via knowledge discovery, ultimately facilitating automated or human-
induced tactical decisions or strategic policy based on decision sciences and decision support systems.  
 
The challenges for the knowledge discovery community are expected to be immense. On the one hand, 
dynamic data streams or events require real-time analysis methodologies and systems, while on the other 
hand centralized processing through high end computing is also required for generating offline predictive 
insights, which in turn can facilitate real-time analysis. The online and real-time knowledge discovery 
imply immediate opportunities as well as intriguing short- and long-term challenges for practitioners and 
researchers in knowledge discovery. The opportunities would be to develop new data mining approaches 
and adapt traditional and emerging knowledge discovery methodologies to the requirements of the 
emerging problems. In addition, emerging societal problems require knowledge discovery solutions that 
are designed to investigate anomalies, hotspots, changes, extremes and nonlinear processes, and 
departures from the normal. The theme for the 2009 SensorKDD workshop is around three inter-related 
global priorities: climate change, energy assurance, and infrastructural impacts. While authors were 
strongly encouraged to submit all papers which may be of potential interest to the SensorKDD 
community, we also solicited submissions from authors who may be new to this community but have an 
interest in contributing to this year's theme.  
 
The workshop brings together researchers from academia, government, and the industry working in the 
following areas and applications: 
 

1. Offline Knowledge Discovery 
a. Predictive analysis from geographically distributed and heterogeneous data 
b. Computationally efficient approaches for mining unusual patterns, specifically, 

anomalies, extremes, nonlinear processes and change, from massive and disparate space-
time data 

2. Online Knowledge Discovery 
a. Real-time analysis of dynamic and distributed data, including streaming and event-based 

data 
b. Mining from continuous streams of time-changing data and mining from ubiquitous data 
c. Efficient algorithms to detect deviations from the normal in real-time 
d. Resource-aware algorithms for distributed mining 

3. Decision and Policy Aids 
a. Coordinated offline discovery and online analysis with feedback loops 
b. Combination of knowledge discovery and decision scientific processes 
c. Facilitation of faster and reliable tactical decisions as well as prudent and insightful 

longer term policies 
4. Theory 
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a. Distributed data stream models 
b. Theoretical frameworks for distributed stream mining 

5. Case Studies 
a. Success stories in national or global priority applications 
b. Real-world problem design and knowledge discovery requirements 

 

Motivation 
The expected ubiquity of sensors in the near future, combined with the critical roles they are expected to 
play in high priority application solutions, point to an era of unprecedented growth and opportunities. The 
requirements described earlier imply immediate opportunities as well as intriguing short- and long-term 
challenges for practitioners and researchers in knowledge discovery. In addition, the knowledge discovery 
and data mining (KDD) community would be called upon, again and again, as partners with domain 
experts to solve critical application solutions in business and government, as well as in the domain 
sciences and engineering. 
 
The main motivation for this workshop stems from the increasing need for a forum to exchange ideas and 
recent research results, and to facilitate collaboration and dialog between academia, government, and 
industrial stakeholders. Based on the positive feedback from the previous workshop attendees and our 
own experiences and interactions with the government agencies such as the United States Department of 
Energy, United States Department of Homeland Security, United States Department of Defense, and 
involvement with numerous projects on knowledge discovery from sensor data, we strongly believe in the 
continuation of this workshop. We also believe that the ACM SIGKDD conference is the right forum to 
organize this workshop as it brings the KDD community together in this important area to establish a 
much needed leadership position in research and practice in the near term, as well as in the long term. 
 

Success of Previous SensorKDD Workshops 
The previous two workshops – SensorKDD’07 and SensorKDD’08 – held in conjunction with the 13th 
and 14th ACM SIGKDD Conference on Knowledge Discovery and Data Mining respectively attracted 
several participants as well as many high quality papers and presentations.  The 2007 workshop was 
attended by more than seventy registered participants.  The workshop program includes presentations by 
authors of six accepted full papers and four invited speakers.  The invited speakers were Prof. Pedro 
Domingos of the University of Washington, Prof. Joydeep Ghosh of the University of Texas, Austin, Prof. 
Hillol Kargupta of the University of Maryland, Baltimore County, and Dr. Brian Worley of the Oak 
Ridge National Laboratory (ORNL).  There were also poster presentations by authors of six accepted 
short papers.  The extended versions of papers presented at the workshop were developed into a book 
titled “Knowledge Discovery from Sensor Data,” the first book published in this specific discipline. The 
four top accepted papers were awarded a cash prize of $500 each.  The prize money was donated by the 
Computational Sciences and Engineering Division (CSED) of the Oak Ridge National Laboratory and 
Information Society Technology Project KDUbiq-WG3 of the European Union.  The top papers were also 
published in a special issue of the Journal of Intelligent Data Analysis. This workshop was partially 
sponsored by the Geographic Information Science and Technology Group of CSED at ORNL. 
 
The 2008 workshop was attended by more than 60 registered participants.  There were presentations by 
authors of seven accepted full papers and six accepted short papers; the workshop program also include 
presentations by two invited speakers – Prof. Jiawei Han of the University of Illinois at Urbana-
Champaign and Dr. Kendra Moore of the Defense Advanced Research Projects Agency.  The extended 
versions of papers presented at the 2008 workshop are scheduled for publication as Springer's LNCS post-
proceedings in 2009.  The two top accepted papers were awarded a cash prize of $500 each; the prizes 
were donated by the Computational Sciences and Engineering Division of the Oak Ridge National 
Laboratory. This workshop was partially sponsored by the Geographic Information Science and 
Technology Group of CSED at ORNL. 
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SensorKDD’09 Cup 
This year we organize the first "SensorKDD Cup", similar in spirit to the KDD Cup, but in line with our 
2009 workshop theme. We challenge contestants with intriguing problems along with geographically 
distributed and dynamic data from sensors and model simulations. The datasets were provided or 
compiled by leveraging ORNL resources. 
 

Workshop Sponsors 
The SensorKDD’09 workshop is sponsored by the Geographic Information Science and Technology 
(GIST) Group at Oak Ridge National Laboratory, the Computational Sciences and Engineering (CSE) 
Division at the Oak Ridge National Laboratory, and Cooperating Objects Network of Excellence 
(CONET).  
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organizers, the authors of the submitted papers, the invited speakers, and the members of the Program 
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The workshop proceedings were compiled by Dr. Olufemi A. Omitaomu of the Computational Sciences 
and Engineering Division at Oak Ridge National Laboratory. The workshop proceedings have been co-
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wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for 
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INVITED TALKS 

A Data Modeling Approach to Climate Change Attribution 

Aurélie Lozano 
Research Staff Member 

IBM T.J. Watson Research Center 
 

Abstract:  
Climate modeling and analysis of climate change have largely been based on forward simulation 
with physical models. We propose here a data centric approach to climate study based solely on 
the actual observed data. This novel approach utilizes a variety of relevant statistical modeling 
and machine learning techniques such as spatial-temporal causal modeling and extreme value 
modeling, and suggests multiple future research directions. We will describe preliminary results 
using data for North America from CRU, NOAA, NASA, NCDC, and CDIAC, as well as certain 
technical challenges encountered. It is hoped that this alternative perspective will help uncover 
new insights, improve aspects of simulation models with known uncertainties, and provide a 
useful complementary approach to climate study. 
 

Bio-Sketch of the Speaker: 
Aurélie Lozano is a Research Staff Member in the Business Analytics and Mathematical 
Sciences department at the IBM T.J. Watson Research Center. Her research interests are in 
machine learning, data mining, and their applications. She received a Ph.D. in Electrical 
Engineering from Princeton University, where her research focused on statistical learning and 
wireless sensor networks. 
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Space Missions & Sensor Networking: Challenging Scenarios 

Alessandro Donati 
Head of Advanced Mission Concepts and Technologies Office 

Human Spaceflight and Exploration Operations Department  
European Space Agency - Darmstadt, Germany 

Abstract:  
Sensor networking is a paradigm getting familiar in space missions and services. The talk will 
provide a panoramic view of examples of challenging missions related to earth environment and 
to space exploration, where sensor knowledge discovery techniques might become instrumental 
to fulfill mission objectives. European Space Agency (ESA) missions such as GMES (Global 
Monitoring for Environment and Security) and the series of possible Mars exploration missions 
will be presented and put in context with the topic of the workshop. 

 

Bio-Sketch of the Speaker: 
Alessandro Donati is the lead of the Advanced Mission Concepts and Technology Office at the 
European Space Operations Centre of the European Space Agency, ESA. His team's interests are 
artificial intelligence technology applied to mission operations processes such as planning & 
scheduling, monitoring and diagnosis, resource management. He received an electronic 
engineering degree from La Sapienza University of Rome. 
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How Optimized Environmental Sensing Helps Address 
Information Overload on the Web 

Carlos Guestrin 
Assistant Professor 

Machine Learning and Computer Science Departments  
Carnegie Mellon University 

Abstract:  

In this talk, we tackle a fundamental problem that arises when using sensors to monitor the 
ecological condition of rivers and lakes, the network of pipes that bring water to our taps, or the 
activities of an elderly individual when sitting on a chair: Where should we place the sensors in 
order to make effective and robust predictions? 
 
Such sensing problems are typically NP-hard, and in the past, heuristics without theoretical 
guarantees about the solution quality have often been used. In this talk, we present algorithms 
which efficiently find provably near-optimal solutions to large, complex sensing problems. Our 
algorithms are based on the key insight that many important sensing problems exhibit 
submodularity, an intuitive diminishing returns property: Adding a sensor helps more the fewer 
sensors we have placed so far.  In addition to identifying most informative locations for placing 
sensors, our algorithms can handle settings, where sensor nodes need to be able to reliably 
communicate over lossy links, where mobile robots are used for collecting data or where 
solutions need to be robust against adversaries and sensor failures. 
 
We present results applying our algorithms to several real-world sensing tasks, including 
environmental monitoring using robotic sensors, activity recognition using a built sensing chair, 
and a sensor placement competition. We conclude with drawing an interesting connection 
between sensor placement for water monitoring and addressing the challenges of information 
overload on the web.  As examples of this connection, we address the problem of selecting blogs 
to read in order to learn about the biggest stories discussed on the web, and personalizing content 
to turn down the noise in the blogosphere. 
 

Bio-Sketch of the Speaker: 
Carlos Guestrin is the Finmeccanica Assistant Professor in the Machine Learning and in the 
Computer Science Departments at Carnegie Mellon University. Previously, he was a senior 
researcher at the Intel Research Lab in Berkeley. Carlos received his PhD in Computer Science 
from Stanford University. Carlos' work received awards at a number of conferences and a journal: 
KDD 2007, IPSN 2005 and 2006, VLDB 2004, NIPS 2003 and 2007, UAI 2005, ICML 2005, 
JAIR in 2007, and JWRPM in 2009. He is also a recipient of the ONR Young Investigator 
Award, NSF Career Award, Alfred P. Sloan Fellowship, and IBM Faculty Fellowship. Carlos 
was named one of the 2008 "Brilliant 10" by Popular Science Magazine and received the IJCAI 
Computers and Thought Award.  He is currently a member of the Information Sciences and 
Technology (ISAT) advisory group for DARPA. 
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Handling Outliers and Concept Drift in Online Mass Flow
Prediction in CFB Boilers

J. Bakker, M. Pechenizkiy, I. Žliobaitė
Dept. of CS, TU Eindhoven
P.O. Box 513, NL-5600MB

the Netherlands
{j.bakker,m.pechenizkiy,i.zliobaite}@tue.nl

A. Ivannikov, T. Kärkkäinen
Dept. of MIT, U. Jyväskylä

P.O. Box 35, FIN-40014
Finland

aivanni@cc.jyu.fi,tka@mit.jyu.fi

ABSTRACT
In this paper we consider an application of data mining tech-
nology to the analysis of time series data from a pilot circu-
lating fluidized bed (CFB) reactor. We focus on the problem
of the online mass prediction in CFB boilers. We present a
framework based on switching regression models depending
on perceived changes in the data. We analyze three alter-
natives for change detection. Additionally, a noise canceling
and a state determination and windowing mechanisms are
used for improving the robustness of online prediction. We
validate our ideas on real data collected from the pilot CFB
boiler.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.2.8 [Database
Management]: Database applications—Data mining

General Terms
Experimentation, Performance, Reliability

1. INTRODUCTION
Continuous and growing increase of fluctuations in electric-
ity consumption brings new challenges for the control sys-
tems of boilers. Conventional power generation will face
high demands to ensure the security of energy supply be-
cause of increasing share of renewable energy sources like
wind and solar power in power production. This can lead to
frequent load changes which call for novel control concepts
in order to minimize emissions and to sustain high efficiency
during load changes.

From combustion point of view the main challenges for the
existing boilers are caused by a wider fuel selection, increas-
ing share of low quality and bio fuels, and co-combustion.
In steady operation, combustion is affected by the distur-
bances in the feed-rate of the fuel and by the incomplete
mixing of the fuel in the bed, which may cause changes in the
burning rate, oxygen level and increase CO emissions. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SensorKDD’09, June 28, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-668-7...$5.00.

is especially important, when considering the new biomass
based fuels, which have increasingly been used to replace
coal. These new biofuels are often rather inhomogeneous,
which can cause instabilities in the feeding. These fuels are
usually also very reactive. Biomass fuels have much higher
reactivity compared to coals and the knowledge of the fac-
tors affecting the combustion dynamics is important for opti-
mum control. The knowledge of the dynamics of combustion
is also important for optimizing load changes [11].

Data-mining approaches can be used to develop better un-
derstanding of underlying processes in CFB boiler, or learn
a model for optimizing its efficiency [9]. For instance, the
selection of process variables to optimize combustion effi-
ciency has been studied in [12]. One typical problem, which
we address in this work, is an online prediction of the system
parameters. These are required for the control optimization
but cannot be measured reliably in a direct way. Mass flow
is one of such parameters. Currently, it is calculated offline
using relatively long time period averages. Recently in [5] a
method for learning regression models on mass flow predic-
tion in CFB boilers was introduced. That approach assumed
known points in time where a state transition would occur
(e.g. changing from replenishment to consume state).

In this paper we propose a framework for online mass flow
prediction that is based on learning and switching regression
models, where the switching is regulated by an online change
detection mechanism.

The paper is organized as follows. Section 2 presents a wider
context of sensor data mining for developing better under-
standing and control of CFB reactors, and particularly the
problem of obtaining mass flow signal from the CFB pilot
boiler relating this problem to learning under concept drift.
In Section 3 we focus on two major subtasks, learning a
predictor and identifying the change points, for which we
explore three alternative change detection methods. The re-
sults of the experimental study with real data collected from
the pilot CFB boiler are discussed in Section 4. We conclude
with a summary and discussion of the further work in Sec-
tion 5.

2. RESEARCH PROBLEM
In this section we will first describe the wider context of our
research and then will focus on the particular problem of
online mass flow prediction.
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Figure 1: A simplified view of a CFB boiler opera-
tion with the data mining approach.

2.1 Control of CFB processes
The supercritical CFB combustion utilizes coal, biofuels,
and multifuels in relatively clean, efficient and sustainable
way. However, it needs advanced automation and control
systems because of its physical characteristics (relatively
small steam volume and absence of a steam drum).

The requirements for control systems are tight, since fuel, air
and water mass flows are directly proportional to the power
output of the boiler. That is especially relevant in CFB
operation where huge amount of solid material exist in the
furnace [11]. For large CFB boilers understanding of the
process and the process conditions affecting heat transfer,
flow dynamics, carbon burnout, hydraulic flows is critical in
addition to the mechanical design.

A simplified schematics of a CFB boiler operation is pre-
sented in Figure 1. Fuel or a mixture of fuels, air and lime-
stone are the controlled inputs to the furnace. The fuel is
used for heat production. The air is added to enhance the
combustion process. Limestone reduces the emission of sul-
fur dioxides (SO2).

The produced heat is used to convert water into steam,
which is the final output. The systems performance is mon-
itored using the sensors SF , SA, SL, SH , SS and SE . The
measurements are collected in database repository together
with meta-data describing process conditions and used for
offline and online analysis. That is where DM techniques
come into play. Predictive and descriptive models that can
be further utilized to facilitate process monitoring, process
understanding, and process control.

2.2 Mass flow prediction
The combustion and emission performance of different types
of solid fuels and their mixtures are studied at VTT’s 50 kW
CFB pilot boiler (see Appendix for a schematic view).

Fuel can be fed into the reactor through two separate feeding
lines (Figure 2). There is a fuel screw feeder in each line at
the bottom of the silo and a mixer, which prevents arching of
the fuel in the silo. The fuel silos are mounted on top of the
scales. The scales measure a mass flow rate of the solid fuels
as a decrease in weight in time. The signal is fluctuating with
constant screw feeder rotational speed. It depends on the
quality of the fuel changes (e.g. moisture content, particle
size), the fuel grades in the silo. Particles might jam in
between the screw rotor and the stator causing a peak in
the mass signal. fuel addition causes a step change in the
mass signal. The mass flow decreases in between fillings in
line with the level of fuel in the tank.

M ixer

Feeding screw

Fuel silo

Scale

M ixer

Feeding screw

Fuel silo

Scale

Figure 2: A fuel feeding system of the CFB-reactor.

Due to the fluctuation in the signal of the scales no reliable
online data can be obtained from the mass flow of fuel to the
boiler. The measurement system cannot be easily improved
and therefore the mass flow is calculated offline using longer
time period averages. The ultimate goal of our study is to
predict the actual mass flow based on the sensor measure-
ments, that would allow to improve the control system of
the pilot CFB boiler.

2.3 Online mass flow prediction as learning
under concept drift

In case of CFB boiler, like in many other dynamic environ-
ments, the data flows continuously and the target concept,
i.e. the mass flow in this case could change over time due
to the different operational processes (like fuel reloading) or
changes in these processes themselves (like change of con-
sumption speed). Therefore, learning algorithms must rec-
ognize an abrupt change mass flow (and be able to distin-
guish it from the outliers) and adjust a model accordingly.

In data mining and machine learning this problem is gen-
erally known as concept drift, that is the changes in the
(hidden) context inducing more or less radical changes in
the target concept [13].

Roughly, adaptation methods can be divided into two cate-
gories, blind methods that adapt a learner at regular inter-
vals (e.g. with a sliding window approach) without consid-
ering whether changes have really occurred, and informed
methods, that only modify learning approach after a change
was detected [3]. The later group of methods must be used

14



in conjunction with a drift detection mechanism which could
be implemented in several ways such as estimating statisti-
cal difference between old and new sample, or observing the
deterioration of the predictor performance with more recent
data point.

In this work we employ the idea of explicit concept drift
detection (that corresponds to the context change in the
CFB operational settings) and learning of a new model each
time after a drift was detected.

There are two important types of change in the mass flow
of the boiler; (1) transitions from the process of adding fuel
to the process of fuel consumption and vice versa, and (2)
gradual changes typically caused by a changing mixture of
different fuel types and changes in the speed of fuel con-
sumption of replenishment (the latter type of change can be
detected by using the rotation speed signal from the screw).
In the context of this paper we will only focus on the sudden
changes.

We limit the scope of this study to identification of sudden
changes, leaving the discussion of handing gradual changes
as a future work.

3. OUR APPROACH
In this section we first discuss some peculiarities and domain
knowledge of the problem and explain how we learn a pre-
dictor for the case when the change points are assumed to
be known, and then discuss three approaches for the explicit
detection of change points.

3.1 Learning the predictor
The data were recorded with 1 Hz sampling rate (an example
of mass flow signal collected during a typical experimenta-
tion with the CFB boiler is presented in Figure 3). In each
test of the experiment the type of fuel and/or the rotation
speed of the feeding and mixing screws can be varied.

The three major sources of noise in the measurements are
mixing and feeding screws and the occasional jamming of
the fuel particle between the stator and rotor in the screw.
The rotation of the screws causes vibrations to the system
that are reflected by the scales as high frequency fluctua-
tions around the true mass value. In Figure 4 the evolution
of the frequency content of the measurements is shown by
means of the short-time Fourier transform [8], from which
the influence of the screws is evident. Namely, the rotating
parts induce oscillations to the measurements of the same
frequency as the rotation frequency. The frequency content
due to the screws is identified from the figure as contrasting
vertical curves.

The jamming of the fuel particle causes an abnormally large
upward peak to the measurements that can be seen from
Figure 3. The speed of the mass change in the tank at a
given time depends not only on the rotation speed of the
feeding screw and the speed of the replenishment of the fuel
in the tank, but also on the amount of the fuel in the tank.
The more fuel is in the tank the more fuel gets in the screw,
since the weight of the fuel at the higher levels of the tank
compresses (increases the density) the fuel in the lower lev-
els and in the screw. The size and grade of fuel also have

an effect on the compression rate of the fuel. Therefore,
we assume that the mass flow signal has a nonzero second
derivative.

The measured signal at time t can be modeled as the sum
of the true mass (mt) and measurement noise (Σt):

yt = mt + Σt. (1)

In a light of the discussed reasoning from the domain per-
spective, true mass at time t can be described as:

mt =
a · (t − t0)

2

2
+ v0 · (t − t0) + m0, (2)

where a is acceleration of the mass change, v0 stands for the
speed of the mass change at time t0, m0 is the initial mass
at time t0.

The noise component at time t can be described as:

Σt = A · sin(ωfeed · (t − t0) + αfeed) +

+ B · sin(ωmix · (t − t0) + αmix) + et, (3)

where A and B, ωfeed and ωmix, αfeed and αmix are am-
plitude, frequency and phase of the fluctuations caused by
feeding and mixing screws, respectively; et denotes the ran-
dom peaked high amplitude noise caused by the jamming of
the fuel particle at time t.

One solution to predict the true mass flow signal is to use
stochastic gradient descent [2] to fit the model (1) without
et term to the measured data with the high amplitude peaks
skipped from the learning process. This is closely related to
fitting the model (2) to the same data in the mean-least-
squares sense as the noise fluctuations are symmetric rela-
tively to the true mass signal. Alternatively, a linear regres-
sion approach with respect to the second order polynomial
can offer a better local stability and faster convergence. As
the accurate mass flow measurements are required on-line by
a control system the choice of the linear regression method
seems more reasonable. The chosen prediction model is as
follows:

ŷt =
a · (t − t0)

2

2
+ v0 · (t − t0) + m0 + εt, (4)

where εt summarizes all the noise components and is treated
as random.

To learn a regressor, the Vandermonde matrix [4] V, which
elements vi,j are the powers of independent variable x, can
be used. In our case the independent variable is time xi =
ti−1 − t0, i = 1, . . . , T , where T denotes the number of the
time samples. If the linear regression is done for a polyno-
mial of order n (pn(x) = pnxn + pn−1x

n−1 + . . .+ p1x+ p0),
V is computed from the observed time series of the indepen-
dent variable as follows:

vi,j = xn−j+1
i , i = 1, . . . , T, j = 1, . . . , n + 1, (5)

where i and j run over all time samples and powers, respec-
tively. Provided with V the problem of polynomial inter-
polation is solved by solving the system of linear equations
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Figure 3: Measurements of the fuel mass in the tank.

Figure 4: Spectrogram of the fuel mass measure-
ments computed with Short-Time Fourier Trans-
form. The color denotes the power spectral density.

Vp ∼= y with respect to p in the least square sense:

p̂ = argminp

T∑
i=1

(

n+1∑
j=1

Vi,jpn−j+1 − yi)
2 (6)

Here, p = [pn pn−1 . . . p1 p0]
T denotes the vector of the co-

efficients of the polynomial, and y = [y(x1) y(x2) . . . y(xT )]T =
[y1 y2 . . . yT ]T is the time series of the dependent variable
that is indication of the scales. Provided that the n + 1
columns of the matrix V are linearly independent, this min-
imization problem has a unique solution given by solving the
normal equation [6]:

(VTV)p̂ = VTy. (7)

For the modeling of the mass flow we have chosen second
order polynomial, where p̂0 = m̂0, p̂1 = v̂0, p̂2 = â. We dis-
tinguish the two types of the periods in the experiment: the
consumption (fuel is only consumed) and the consumption
with fuel replenishment.

When one period of the CFB operating changes to another
(i.e. a new portion of fuel is being added) the process of
mass flow prediction starts over again, as the model of the

mass flow changes. Thus, the most problematic unstable
regions are the transitions intervals, when the parameters of
the model change their values.

When a period of the session starts the samples of measure-
ments start to accumulate in the buffer. The data in the
buffer are used to fix the parameters of the mass flow pre-
diction model. Only the samples that do not contain high
amplitude peak (due to jamming) are placed to the buffer.
The buffer is emptied after each change point (that assumed
to be known in this setting) and starts to accumulate new
data.

The first measurement within the experiment is taken as the
prediction of the mass flow signal at that time m̂1 = y1 and
as the first point that is placed to the buffer. In contrast, the
first prediction of the mass within a following period is taken
as the last prediction of the mass from the previous period.
In addition, the last predicted point from the previous period
m̂ic is placed to the buffer as the first point for the new
period, where ic denotes the number of the sample when the
change of the periods occurs. When a new sample arrives
the parameters of the model are estimated based on the
points that are in the buffer independently of whether the
current point was placed to the buffer or not. The current
prediction is computed respectively based on the current
model. Depending on the number of data points T in the
buffer different models are used:

• if T = 1, then m̂i = m̂i−1;

• if 1 < T ≤ 4, then p̂2 = 0 and p̂0 and p̂1 of the first or-
der polynomial are estimated from the available data,
and m̂i = p̂1(xi), where p̂1(xi) is the current prediction
by the first order polynomial.

• if T > 4, then the second order polynomial model is
fitted to the data, and m̂i = p̂2(xi).

In practice the operational settings often allow a delay be-
tween the data arrival and the evaluation of the signal of
interest at this time sample. This means that the estimate
of the signal at a given time sample is obtained based on
the data that is accumulated also during the future times.
This allows the more accurate estimates of the signal to be
computed. Note that in our case this will have an effect of
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increased accuracy mainly for the beginning of a new exper-
iment, when the amount of the data in the buffer is small
yet.

3.2 Explicit change detection methods
In this section we consider three different approaches to de-
tect change points and thus facilitate modeling the transi-
tions from one state of the system to another. All three
are based on measuring statistical data in a moving win-
dow. The first approach is nonparametric and is based on
the Mann-Whitney U test. The second approach is based
on a parametric test on the performance of the local models.
The third approach is based on the statistical analysis of the
raw data.

3.2.1 Nonparametric change detection
Let’s assume that when the underlying process in the boiler
changes, the current model for the prediction of the data will
perform worse. The idea behind nonparametric change test
is to compare the prediction performances obtained on dif-
ferent subsets of the data. For the classification of whether
an observed point is outlier (peak due to a fuel particle jam-
ming) or not, the statistical nonparametric Mann-Whitney
U test [7] that compares the two distributions of MSE val-
ues can be used. Namely, if a point is to be tested for being
an outlier with respect to a window of previous points or,
in general, with respect to a set of surrounding points, the
following procedure is applied to construct the two samples
of MSE values:

• First, a leave-one-out cross validation (LOOCV) is done
on a reference set of N − 1 points, a line is fitted to
each of the possible subsets of size N − 2, and MSE of
the fit is computed for fitted N − 2 points only. Thus,
at this stage we obtained a sample of N − 1 MSE val-
ues that characterizes the set of reference points. We
call the distribution of these MSE values a reference
distribution for the tested point.

• Then, the test distribution composed of (N−1)(N−2)
MSE values is computed by replacing each point in
each subset of size N − 2 from previous stage for a
test point, computing a linear fit and MSE value for
the N − 2 points used to compute the fit. Therefore,
test distribution contains MSE values for a linear fit,
when a test point is used. This way we ensure that
the fittings and MSE computations are always done
using N − 2 points, but the sizes of reference and test
samples are different.

The above considerations are demonstrated in Figure 5 in
the second and third steps. In fact, the first step is just a
LOOCV, when each point in the initial window of size N is
made a test point, and the rest form reference set.

Note that in Figure 5 a less general case is shown compared
to a discussion. The illustration considers a set of neigh-
boring points, although in general the points in the set can
be drawn from distanced time locations depending on the
pursued goal. By changing the size and spread of the ref-
erence set, one controls how the decision made using the
Mann-Whitney U statistics is tailored/diversified over time.

Figure 5: The resampling procedure for construct-
ing two distributions to be compared by Mann-
Whitney U test.

In other words, varying the window size adjusts the context
for decision making to be more local, global, or balanced.

The Mann-Whitney U test applied to the reference and test
distributions for a given confidence level α shows whether
MSE of the fitted points including test point is systemati-
cally different from the case when the test point is excluded.
If such tendency is detected by the test, the test point is
classified as outlier.

Based on the process of identification of the outlier, we define
a criterion for state change detection as the fact of observing
several outliers in a row (o2c).

In our experiments we used α = 10−9 (confidence level of
Mann-Whitney U test); d = 10 points as delay after which
the prediction for the point appeared d points prior to the
current point must be output, r = 16 points as the maximal
size of the reference window (composed of the most recent
precedents to the currently considered point) against which
the newly arrived point is compared using outlier test, and
ra = max{d, r} is the actual reference window size; f = 150
points as the maximal size of the window that is used to
compute the model parameters to predict the current out-
put, and fa = max{d, f} is the actual size of the fit win-
dow; finally o2c = 5 is a (currently predetermined) number
of detected outliers in a row that is a sufficient condition to
assume the state change.

The method operates as follows. Until the first d + 1 points
are accumulated from the start of the new state nothing is
output. In the following all considerations are assumed to
be referenced to a start of the current state. For simplicity
we assume that we start in the fuel consumption state.

When first d points are accumulated, an outlier test is made
for each of the d accumulated points. All found outlier points
are substituted with an interpolation (by fitting a line to the
non-outlier points). After this, when a new point arrives, it
is tested for outlier with respect to ra previous points. If it is
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classified as outlier, it is replaced by an extrapolation from
the ra previous points. Then the point ‘delayed’ by d points
from the current one is predicted by the linear fit to the latest
sequence of outlier-corrected fa points. If o2c outliers in a
row are noticed, the state change (pointing o2c points back
in time) is alarmed and the detected ‘false outliers’ (that
actually belong to the change) are restored (from the backup
buffer). The process continues then from the beginning of
the newly detected phase.

3.2.2 Parametric change detection
The nonparametric approach is relatively time consuming,
thus we look for a more efficient change detectors.

When the underlying process in the boiler changes, the cur-
rent model for the prediction of the data will perform worse.
This behavior can be detected by keeping track of two sta-
tistical properties of the performance [3]. The first is the
error rate that signifies the probability of miss classifying
the actual value yt of the signal. The second is the standard
deviation of the error rate. In [3] it is assumed that the
classification task can be modeled by a binomial distribu-
tion. Since the mass flow is continuous, we have to assume
that given a large enough sample or window, the binomial
distribution is close to a normal distribution with the same
mean and standard deviation. This is used in an online test
to see whether the signal has changed.

Since this task is in continuous space, we use the Mean-
Squared-Error (MSE) as metric for change detection instead
of the error rate. For each time step the window is moved
and for point xt all local reference MSEs are calculated with
LOOCV.

We assume that the model prediction performance is stable
if the local found reference MSE (Et) satisfies

Et + St < Emin + αSmin, (8)

where Emin is the minimal found reference MSE, Smin the
minimal found reference standard deviation, and α a param-
eter that reflects the level of confidence. If there is a large
enough deviation in the signal the algorithm will report a
warning. This level is determined by the condition:

Emin + αSmin < Et + St < Emin + βSmin, (9)

where β is the upper confidence bound signifying a change.
Since it might occur that there is a local change in the signal
(an outlier) it is not possible to go the change state imme-
diately. If Et + St > Emin + βSmin the algorithm reports
a change and it will switch to the initial state of the other
process. When this happens Emin and Smin are reset to the
minimal found values in the new regime.

This procedure puts a strict lower bound on the window
size. Since we have to assume that the normal distribution
is representative for the distribution of reference MSEs, the
window size should be at least 30 consecutive points. In
principle, a small window size is preferable when trying to
detect rapid changes. But a smaller window size will result
in a higher variation in the local models. In our experiments
we used α = 2, β = 3 (lower and upper bounds for the
confidence interval), and the window size of 30 points.

For each 30 accumulated points, the LOOCV is used. For
each N − 1 local model the MSE is calculated and it’s stan-
dard deviation. The transition conditions are checked and
when an outlier is detected it is ignored by the global fit. If,
after this, the algorithm detects a change, the boundaries for
the transition criteria are reset and the global fit is relearnt
for the future points.

3.2.3 Change detection using raw data
To reduce the degrees of freedom introduced by MSE based
change detectors, we employ a change detection method
based on raw data. We choose ADWIN, which was pre-
sented in [1]. It is based on the differences between the
means of raw data. The method was originally designed for
univariate sequential data. The method works as follows:
given a sequence of signals it checks whether there are sta-
tistically significant differences between the means of each
possible split of the sequence. If statistically significant dif-
ference is found, the oldest portion of the data backwards
from the detected point is dropped and the splitting proce-
dure is repeated until there are no significant differences in
any possible split of the sequence. More formally, suppose
m1 and m2 are the means of the two subsequences as a re-
sult of a split. Then the criterion for a change detection is
|m1 − m2| > εcut, where

εcut =

√
1

2m
log

4n

δ
, (10)

m =
1

1
n1

+ 1
n2

, (11)

here n is total size of the sequence, while n1 and n2 are sizes
of the subsequences respectively. Note that n = n1+n2. δ ∈
(0, 1) is a hyperparameter of the model. In our experiments
we used δ = 0.3, n = 200.

4. EXPERIMENTAL RESULTS
In this Section we first present the performance results un-
der the assumption of known change points and then demon-
strate the accuracy of the considered change detection tech-
niques.

4.1 Predictor performance under the assump-
tion of known change points

As the main points of interest are the points, where the
change of the period occurs, for this analysis we took an in-
terval of the experiment containing both types of the tran-
sition points (see Figure 6).

The computations of mass flow were done for the delay time
varying from 0 to 20 samples/seconds with step 1.

It takes about 100− 150 seconds from the beginning of each
consumption period for the model of the mass signal sta-
bilizes. Since the replenishment period lasts during shorter
times (3 − 40 seconds), the model may exhibit instability
even at the end of the period. However, overall the pre-
diction of the mass during the replenishment period is sat-
isfactory, because changes of the mass are rather steep and
prominent against the background of the noise. For compar-
ison, the effect of increased delay time is shown in Figure 7.
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Table 1: Accuracy of detecting sudden changes in
feeding (φ) and consumption (κ) processes, and of
detecting outliers (o).

Parametric test
φ P N κ P N o P N
T 19 50898 T 4 50883 T 799 49088
F 74 5 F 89 20 F 892 217

Nonparametric test
φ P N κ P N o P N
T 24 50952 T 8 50942 T 816 49434
F 20 0 F 20 16 F 546 200

ADWIN method
φ P N κ P N o P N
T 24 50960 T 0 50972 T - -
F 12 0 F 0 24 F - -

To indicate the rate of convergence of the model with re-
spect to the delay time we computed the mean-square error
between the true mass prediction for each pair of the con-
secutive delays (see Figure 8):

MSE(τ) =
1

T

T∑
i=1

(m̂τ
i − m̂τ−1

i )2. (12)

It can be clearly seen from the figure that for the small de-
lays (1 − 4 samples) the prediction accuracy improves dra-
matically, and for the larger delays the improvement slows
down.

4.2 Performance of change detection methods
The results are summarized in Table 1. For each method we
present confusion matrixes of detecting sudden changes in
feeding (φ) and consumption (κ) processes, and of detecting
outliers (o).

The parametric test succeeds in identifying 19 out of 24
changes from feeding state to consumption state. How-
ever, it finds only 4 out of 24 transitions the other way
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Figure 6: Online mass flow prediction with the
switching regression models and zero delay time.

Figure 7: Zooming to the transition point with zero
(left) and 20 (right) samples delay.
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Figure 8: Mean-square error between the mass sig-
nal predictions for each pair of the successive delays.

around. The worst part of the results is the number of
falsely identified changes(74 for feed-to-consumption and 89
for consumption-to-feed). At these points the algorithm will
signal a change where in fact there is none. This results in a
very poor fit as demonstrated with an example in Figure 9.

The number of unidentified outliers is also important, since
it will greatly affect the performance of the model if this
number is high. For the parametric test this number is 217
out of 1016. This is roughly 20% of the total number of
outliers. This number is too high for the algorithm to be
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Figure 9: An example of impact of misclassifying an
outlier as a change (red line).
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effective. The relatively bad results might be caused by the
fact that the assumption that the local MSEs are normally
distributed is not valid.

The Mann-Whitney U-test does not assume a normal
distribution and its accuracy is noticeably better. It enables
finding all of the consumption-to-feed transitions. However,
this test also incorrectly identifies 20 (false) change points
for this transition. The other type of change is recognized
8 times out of 24 and the number of false classifications is
also high. The number of outliers detected is comparable to
that of the parametric test.

The most intolerable and harmful for prediction detection
errors are related to early (see Figure 10) and late (see Fig-
ure 11) determination of the feeding-to-consumption tran-
sition. If the early or late detection happens, not only the
predictions of the transition period itself deteriorate, but
also a large portion of the following or prior to the detection
event consumption interval lacks accurate interpolation, be-
cause points from feeding are also used to compute fit for
consumption. Short perturbations of signal during the feed-
ing state may lead to early false detection of the transition,
because the outliers may be misinterpreted as indication of
the change (see Figure 10).

At the same time the recognition of the fact that feeding
continues may be problematic, since no points of appropri-
ate number and properties are observed in the following win-
dow. The current implementation does not take into account
prior signal once state change is detected. This has an effect
of resetting the context. This way only one level of verifica-
tion if the change is true is used: observing relatively large
numbers of outliers in a row. But additional level of verifica-
tion can be advised by continuing back-tracking, while new
points arrive. In other words, we may wish to check if the
situation is really what it appears to be also with respect to
the following part of the signal, and whether the change was
real. The late determination of the feeding-to-consumption
transition may be a consequence of a too short feeding phase
that is perceived by the method as outlier (see Figure 11).
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Figure 10: An example of early detection of the
feeding-to-consumption transition.

The reasons for delayed transition detection considered above
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Figure 11: An example of late detection of the
feeding-to-consumption transition.
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Figure 12: Detecting plateau inside feeding state.

are well understood. The errors happen due to a locally
tuned criteria for outlier and change detection. However,
the more sophisticated windowing schemes can be used. For
example, an adaptive window size approach can be employed
(however, this requires further study of the data patterns ob-
served in the data). Besides, a simple back-tracking mech-
anism can be used to verify the already made decision with
respect to subsequently arrived points.

It is worth noticing that not always outlier behavior can be
unambiguously distinguished from the true behavior of the
signal. For example, in Figure 12 the plateau inside the
feeding phase was successfully identified. In this case it is
clear that feeding was stopped for a while and than contin-
ued again. However, if such plateau is small it is generally
unknown if this is a false measurement or consequence of
real process of mass flow. In our computations, the small
plateaus inside feeding phase sometimes can be ignored by a
detection procedure or lead to an early detection of the tran-
sition to consumption with or without following detection of
continuing feeding.

The ADWIN method required on average a lag of 40.7
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seconds to detect the start of the feeding stage. Given the
fact that the average length of this stage (in our data) is
26.0 seconds the detection in most cases occurred after it
was already finished. The shortage of the feed stage explains
the fact that there were no detections of the consumption
stage using this method.

From the careful visual inspection it was possible to conclude
that the method detected all the feed stages and made no
false alarms (no outliers were mistreated for the change).
The method seems to be slow in reaction but reliable and
can be of a particular use for verification of the changes,
since there are no “ground truth” available.

Note that although the change is detected with a lag, but
the actual signaled change point is quite close to the original
(on average 7.5 seconds away from the“true”change points).
The numbers in Table 1 are based on the detected change
points, not the detection time.

Computational complexity of the considered change de-
tection methods. Assuming that at time t we have a history
of t datapoints available, but we delimit the back search to
N past data points. Both parametric and nonparametric
change detection algorithms employed use LOOCV proce-
dure, which requires multiple scans to build local prediction
models to compute MSEs. The parametric model would re-
quire ∼ N2 iterations to output the detection decision at
time t, but once the records for MSE are kept, the sub-
sequent detections would require only ∼ N iterations per
time point. Nonparametric change detection involves com-
parison between the two distributions, thus it requires ∼ N3

iterations per time point. Change detection using raw data
requires N splits to test for a change at time t.

The methods were implemented in MATLAB and the per-
formance time of all the methods is reasonable for online
operation. We have a series consisting of ∼ 50000 entries,
which correspond to seconds. That gives a restriction for im-
plementation to be reasonable for online operation if all the
experiment is completed in less than 14 hours. The factual
performance in our implementation was 3 − 4 times more
quick.

5. CONCLUSIONS AND FURTHER WORK
Prediction of mass flow in CFB boilers in online settings is an
important and challenging problem having clear connections
to the problem of learning under the presence of sudden and
gradual concept drifts.

In this paper we presented a regression learning framework
for fuel mass prediction. Change and outlier detection is the
key component in this framework, it regulates switching of
the predictors. We studied three alternatives of the explicit
detectors.

Our results demonstrated that (1) when the change points
are correctly identified our predictors perform reasonably
well and a delay of less than 5 seconds allows to predict the
mass flow accurately enough to be used as a reliable indica-
tor for the CBF control system, (2) when the change points
need to be determined online without any additional input,
the nonparametric approach shows much better performance

than parametric one in terms of accuracy; however it is much
slower and therefore requires more computational power to
guarantee in time prediction, (3)The ADWIN method was
the very precise in consumption-to-replenishment change de-
tection, while the lag of detection was quite large and there-
fore this method can be used only as a reference for the
“ground truth”, but is not applicable for the operational set-
tings of the CFB boiler.

The directions of our further work in mining CFB sensor
data include (1) studying in more detail the transition pe-
riod at the end of the fuel feeding stage, (2) considering an
effect of fuel feeding speed, and the effect of using differ-
ent mixtures of fuels, (3) exploring the potential of adap-
tive context window size approach and back-tracking mech-
anisms for improved detection of state changes, and that
is not least important (4) external validation of our online
mass flow prediction approach being implemented as part
of the control system of the pilot CFB boiler in operational
settings with different conditions.

We anticipate that local reliability estimation of mass flow
prediction [10] may be helpful for the domain experts. Fur-
thermore, our experimental study also suggests that learn-
ing from multiple experiments and better utilizing additional
relevant information available from various sensors (e.g., ro-
tation speed of the feeding screw) should bring a further
improvement of the reliability of online mass flow predic-
tion.
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ADMA, volume 4093 of Lecture Notes in Computer
Science, pages 42–55. Springer, 2006.

[4] R. A. Horn and C. R. Johnson. Topics in matrix
analysis. Cambridge University Press, 1991.

[5] A. Ivannikov, M. Pechenizkiy, J. Bakker, T. Leino,
M. Jegoroff, T. Karkkainen, and S. Ayramo. Online
mass flow prediction in cbf boilers. In Proc. 9th
Industrial Conference on Data Mining (ICDMŠ09).
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Appendix. The laboratory scale CFB-reactor. The height
of the riser of the boiler is 8 m and the inner diameter 167
mm. The reactor is equipped with several separately con-
trolled electrically heated and water/air cooled zones in or-
der to control the process conditions, for example, oxygen
level, temperature and load almost independently. Several
ports for gas and solid material sampling are located in the
freeboard area.
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ABSTRACT
To discover patterns in historical data, climate scientists
have applied various clustering methods with the goal of
identifying regions that share some common climatological
behavior. However, past approaches are limited by the fact
that they either consider only a single time period (snapshot)
of multivariate data, or they consider only a single variable
by using the time series data as multi-dimensional feature
vector. In both cases, potentially useful information may be
lost. Moreover, clusters in high-dimensional data space can
be difficult to interpret, prompting the need for a more effec-
tive data representation. We address both of these issues by
employing a complex network (graph) to represent climate
data, a more intuitive model that can be used for analysis
while also having a direct mapping to the physical world
for interpretation. A cross correlation function is used to
weight network edges, thus respecting the temporal nature
of the data, and a community detection algorithm identifies
multivariate clusters. Examining networks for consecutive
periods allows us to study structural changes over time. We
show that communities have a climatological interpretation
and that disturbances in structure can be an indicator of cli-
mate events (or lack thereof). Finally, we discuss how this
model can be applied for the discovery of more complex con-
cepts such as unknown teleconnections or the development
of multivariate climate indices and predictive insights.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering; I.5.4 [Pattern
Recognition]: Applications—Climate

General Terms
Algorithms, Experimentation

Keywords
clustering, networks, community detection, spatio-temporal
data, climate, mining scientific data
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1. INTRODUCTION
Identifying and analyzing patterns in global climate is im-
portant, because it helps scientists develop a deeper under-
standing of the complex processes contributing to observed
phenomena. One interesting task is the discovery of climate
regions (areas that exhibit similar climatological behavior,
see Fig. 1), which has been addressed with various clustering
methods. While k-means [5, 7] works well with multivariate
data, it is limited to finding clusters of relatively uniform
density and largely ignores the temporal nature of the do-
main. Alternate clustering approaches have been explored
to address the space-time aspect of the data, including a
weighted k-means kernel with spatial constraints [17] and
a shared-nearest neighbor method to discover climate in-

dices [24] from sea surface temperature data [18]. However,
none of these approaches provides a means for explicitly
identifying clusters from multivariate spatio-temporal data.

In this paper, we consider a different perspective on ana-
lyzing climate data. Instead of clustering based on univari-
ate similarity or spatial proximity, we model the data as a
climate network [21]. Physical locations are represented by
nodes, and we introduce a cross correlation-based measure

of similarity to create weighted edges (connections) between
them. Edge placement is determined only by the relation-
ship among multiple climate variables and is not subject to
any spatial constraints, and a community detection algo-
rithm discovers clusters corresponding to climate regions.
This network view captures complex relationships and is
able to identify patterns that span both space and time.

The concept of complex networks has been used to derive
interesting climate insights. For example, [19] and [23] in-
dependently found that changes in network structure give
predictive insights about El Niño events. A network of dif-
ferent climate indices was used to explain the major climate
shifts of the 20th century as transitions between different
equilibria of oscillators representing the earth system [20].
While all of these studies were hypothesis-driven, we believe
that similar innovations are also possible with respect to the
discovery of climate regions using a data-driven approach.

Contributions
• Using a network to model multivariate climate data
• A correlation-based measure for edge weighting
• Community detection to identify climate regions
• An empirical evaluation of our approach on a real-

world dataset spanning 60 years
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Figure 1: Climate regions for temperature and precipitation, used with permission [12] (best viewed in color).

Organization
In section 2 we briefly introduce the dataset used in this
study. Section 3 describes the methodology in detail, and the
empirical evaluation is presented in section 4. We conclude
with a discussion placing this work in the broader context
of climate science and identifying directions for future work.

2. HISTORICAL CLIMATE DATA
The Earth science data for our analysis stems from the
NCEP/NCAR Reanalysis project [10], which is publicly ac-
cessible for download at [26]. This dataset is constructed by
fusing and assimilating measurements from heterogeneous
remote and in-situ sensors. Variable selection is an impor-
tant issue in this context, one we have not yet fully explored.
Previous research has relied on domain expertise for an ap-
propriate selection [19, 21, 23]; alternatively, an objective
feature selection approach could be used. For the purpose
of this study, we selected four variables with the guidance of
a domain expert: air temperature, pressure, relative humid-
ity, and precipitable water, available at monthly intervals
for a period of 60 years from 1948 to 2007 (720 points).

Temperature and pressure were chosen because they are two
key variables in terms of significance, for example in defin-
ing climate regions [12] or in determining indices that may
act as predictors [18, 19, 23]. Precipitation is another vari-
able of great importance, but it is known to be inaccurate
in reanalysis products due to its inherently large space-time
variability [9]. Therefore, we use relative humidity and pre-
cipitable water as surrogates because these variables are rel-
atively more stable and reliable in the reanalysis data [10].

Measurements are provided for points (grid cells) at a reso-
lution of 2.5◦ × 2.5◦ on a latitude-longitude spherical grid.
Figure 2 shows a sample time series for each variable at the
grid point closest to Paris, France (47.5◦N 2.5◦E).

3. THE NETWORK VIEW
In this section, we describe the major components of our
methodology: using cross correlation to define a measure
of similarity between locations, constructing the weighted
climate network, identifying communities of interest, and
studying their behavior over time.
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Figure 2: Climate observations near Paris, France (47.5◦N 2.5◦E) from 1948 to 2007 with trend lines

Figure 3 provides an overview of our approach; algorithm
details, including pseudocode, are provided in Section 3.5.

3.1 A Similarity Measure for Climate Data
Based on Cross Correlation

Various methods have been used for clustering climate data,
and underlying each approach is some type of measure that
defines the distance or, conversely, the similarity between
two points. Traditional measures such as Euclidean [7] and
Mahalanobis [5] distance have been employed in climate ap-
plications. But these may not be the most appropriate for
high-dimensional and noisy data, or when clusters of varying
density are known to exist within the data. To counter these
problems, [4] proposes to define similarity locally based on
the number of nearest neighbors two points share, which
was demonstrated to provide good results with univariate
climate data.

In the present application, each data point represents a phys-
ical location (grid cell) for which we have four separate time
series corresponding to the four climate variables, and none
of the aforementioned distance measures can take full ad-
vantage of the information contained therein. Therefore, we
propose to define a new feature space based on the correla-
tions between the four time series at each point, and simi-
larity between locations is then measured as distance within
this space.

Let AT , PR, RH , and PW denote the time series for air
temperature, pressure, relative humidity, and precipitable
water, respectively, and let t denote the number of data

points in each series. Then, for any two series A and B the
cross correlation function CCF at delay d is computed as

CCF (A,B, d) =

tX
i=1

[(ai − ā)(bi−d − b̄)]

vuut
tX

i=1

(ai − ā)2
tX

i=1

(bi−d − b̄)2

(1)

where ai is the ith value in series A and ā is the mean of
all values in the series. Note that the correlation coefficient
ranges from -1 to 1, where 1 indicates perfect agreement and
-1 perfect disagreement, while 0 indicates that no correlation
is present at all. Since an inverse relationship is equally rel-
evant in this application, we take the absolute value of the
cross correlation function. In addition, cognizant that some
climate phenomena may occur with some lag (i.e., at differ-
ent times in different places), we account for this possibility
by computing the cross correlation function for delays in the
range −6 < d < +6 months and take the largest (absolute)
value to be the correlation between A and B.

Given the above definition, we now compute the correla-
tion between all pairs of variables (time series) at each lo-
cation, in this case

`
4
2

´
= 6 pairs. This results in a new

6-dimensional feature space wherein each grid cell is repre-
sented as a point defined by the correlations between climate
variables at the corresponding location, as follows:

R
6 = 〈CCF (AT, PR), CCF (AT, RH), CCF (AT, PW ),

CCF (PR,RH), CCF (PR,PW ), CCF (RH,PW )〉
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Figure 3: Step-by-step overview of our workflow.

Our measure for similarity between two grid cells is then
defined as the Euclidean distance in this new R

6 space, so
that the interaction between variables at each location – as
opposed to the behavior of a single variable – defines the
strength of the relationship between locations.

3.2 From Similarity to Networks
Having defined a similarity measure that maps our four time
series corresponding to the four climate variables into Eu-
clidean space, we could apply k-means or a similar clustering
method to cluster grid cells into potential climate regions.
However, this approach would neither solve the problem of
data representation nor would it address the issues men-
tioned earlier, namely, that the data is noisy, contains clus-
ters of varying densities, and may change with time.
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Figure 4: Distribution of edge weights in the cross
correlation-based network for the period 1948-1952.

Instead, we propose to construct networks from the climate
data by dividing the time series into 5-year windows, so that
twelve separate networks are available to study changes in
structure over time. The network for each window is then
constructed as follows. Let each grid cell be a node in the
network. For each pair of nodes create an edge and assign it
a weight equal to the correlation-based similarity described
in section 3.1. This will result in a fully connected network
(i.e., one giant clique) consisting of over ten thousand nodes
and more than 55 million edges. The concept of a commu-
nity is naturally absent here, so the next step is to prune
away many of the edges in order for structure to emerge.

Of course we want to eliminate edges in a principled manner,
and the edge weights allow us to do just that. As illustrated
in Figure 4, the histogram of edge weights in the complete
network (1948-1952 shown) follows a unimodal distribution
– the exact shape is irrelevant here. What is important is
the presence of only a few edges with very high weight (in
the right tail), and it is precisely those strongest edges that
define the fundamental structure of the network. Therefore,
we prune away 99% of the edges, retaining only the top
1 percentile by weight (this may seem extreme, but it still
leaves over a half million edges intact).

After performing this procedure in each window, we obtain
twelve climate networks for analysis. In the next section,
we briefly describe the community detection process and
demonstrate why correlation-based similarity is necessary
to identify interesting clusters.

3.3 Community Detection in Climate Networks
Given a set of networks constructed from the climate data
as described above, we can now use community detection
to identify regions of interest. A variety of algorithms with
different characteristics have been proposed and applied in
a number of settings including social networks [15], protein
interaction networks [1], and food webs [2]. Two criteria
drove our selection of an appropriate algorithm: (i) due to
the relatively high network density it must be computation-
ally efficient, and (ii) it must have the ability to consider
weighted networks. Based on these requirements we chose
an algorithm called WalkTrap, which is grounded in the in-
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tuition that random walks in a network are more likely to
remain within the same community than to cross community
boundaries; for algorithm details see [16]. To our knowledge,
this is the first time community detection has been used on
networks constructed from spatio-temporal data.

We applied the WalkTrap algorithm to each of the twelve
networks using the default parameter of walk length t = 4.
A sample visualization of the communities ≥ 20 nodes for
the first period is shown in Figure 5(a). Note that they
vary widely in both shape and size, and many of them are
spatially disjoint. To illustrate the implications of different
edge weightings we also constructed a network from air tem-
perature alone, where similarity is defined as the maximum
cross correlation (±6 months) between the time series for
two locations. Figure 5(b) depicts communities ≥ 20 nodes
in this network. While these may be more pleasing to the eye
(primarily due to their spatial cohesion), they are also less
interesting because they merely show areas where temper-
atures are similar. In fact, more elementary measures such
as annual means, ranges, or the presence/absence of seasons
should be sufficient to identify these kinds of patterns. This
result is nonetheless encouraging as it demonstrates that the
network representation is capable of discerning simple pat-
terns such as univariate climate regions, but our ultimate
goal is to discover more complex patterns.

3.4 Tracking Communities over Time
Since we are interested in the behavior of communities over
time, our last task is to extract only those which can be
tracked through several consecutive windows. Community
tracking in dynamic networks can itself be a challenging
problem [8], but in this application the following method
proved sufficient. For each community Ct,i labeled i at time
step s, maximize the quantity

arg max
j

|Cs,i ∩ Cs+1,j | (2)

s.t.

|Cs,i ∩ Cs+1,j |

Cs,i
> 0.5 and

|Cs,i ∩ Cs+1,j |

Cs+1,j
> 0.5

In other words, find the corresponding community labeled j
at time s + 1 with which it shares the most nodes. If less
than 50% of the nodes in the community change between
time steps, then the community is said to persist and we
can reasonably assume that there is continuity; otherwise
we consider there to be insufficient evidence for tracking and
the community is discarded. This process is repeated for all
time steps s = 1, 2, ..., 11 until all “trackable” communities
have been identified.

3.5 Summary of Methods and Complexity
Analysis

The pseudocode for our methodology is shown in Algorithm 1,
divided into its three major stages: computation of cross
correlation-based similarities between locations (lines 1-14),
systematic pruning of edges (15-23), and community detec-
tion and tracking over multiple time periods (24-35). The
procedure takes as input a spatio-temporal climate dataset
and produces as output the progression of all communities
deemed trackable.

It is apparent from the pseudocode that the computational
complexity of the algorithm is quite high. For the first
stage, the dominant operation is the nested loop beginning
on line 4. Using a simplified notation where n = lat × lon
is the total number of grid cells, this loop has a complexity
of O(n2v2t), so that the processing requirements increase
quadratically with the number of points as well as the num-
ber of variables. Given that the complete network contains
O(n2) edges that need to be sorted, the second stage will
be O(n2log n). The third stage of the procedure is bounded
by the WalkTrap algorithm, also O(n2log n) [16]. There-
fore, the overall complexity of the end-to-end community
detection procedure is O(n2v2t) + O(n2log n).

Note that in practice, a vast majority of the total execution
time is spent in the first stage. In fact, the first stage took
approximately 1,200 CPU hours (24 hours on 50 machines)
to complete, whereas the second and third stages combined
only required 2 CPU hours (on a single machine).

Algorithm 1 Community Detection in a Climate Network.

Input: A dataset D of lat × lon locations, divided into k
time series of length t for each climate variable in V
(elements of D are accessed with subscripts D[x, y, v]).

1: {Compute Cross Correlation-Based Similarities}
2: for each time period s = 1...k do
3: initialize graph Gs = { }
4: for each location p in (x1 = 1...lon, y1 = 1...lat) do
5: for each location q in (x2 = 1...lon, y2 = 1...lat) do
6: for each v1 ∈ V do
7: for each v2 ∈ V \v1 do
8: R

6
v1,v2 = argmax

−6≤d≤6
CCF (Ds[x1, y1, v1],

Ds[x2, y2, v2], d)
9: end for

10: end for
11: calculate edge weight w = dist(p, q, R

6)
12: add edge e(p, q, w) to Gs

13: end for
14: end for
15: {Network Pruning}
16: sort edges of Gs by weight
17: set pruning threshold wmin at 99th percentile
18: for each edge e(p, q, w) ∈ Gs do
19: if w < wmin then
20: remove e(p, q, w) from Gs

21: end if
22: end for
23: end for
24: {Community Detection and Tracking}
25: for each time period s = 1...k do
26: Cs = WalkTrap(Gs)
27: end for
28: for each time period s = 1...(k − 1) do
29: for each community i ∈ Cs do
30: overlap = argmax

j
|Cs,i ∩ Cs+1,j |

31: end for
32: if (overlap/|Cs,i| > 0.5) and (overlap/|Cs+1,j | > 0.5)

then
33: output Cs,i, Cs + 1, j, overlap
34: end if
35: end for
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(a) Network weighted with cross correlation-
based similarity for the period 1948-1952

(b) Network weighted with correlation of air
temperature only for the period 1948-1952

Figure 5: Comparison of community structure for different weighting methods (best viewed in color).

4. EXPERIMENTAL RESULTS
Here we present several examples of communities identified
using the methodology described in Section 3, along with
further analysis and potential interpretations based on un-
derlying climate phenomena. For space reasons we limit
ourselves to the four communities shown in Figure 7, each
covering five consecutive windows (25 years). But before we
delve deeper into the discussion, let us first define a measure
of density that enables us to determine the relative strength
of individual communities at different time steps.

4.1 Evaluation Measure: Community Density
The structural properties of clusters, or communities, are
an important tool to better characterize them and detect
changes over time. One property that is frequently consid-
ered is cluster density, and many algorithms implicitly (or
even explicitly) measure density as part of the clustering pro-
cess. Community detection is different in that the density
of an individual cluster cannot be measured directly. There-
fore, we define an alternate measure to estimate density of
communities based on the distribution of edges instead.
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Figure 6: Density of different types of communities.

Let n and e be the total number of nodes and edges in the
network, respectively; similarly, let ni denote the number of
nodes in community Ci and ei the number of edges between
nodes in this community. The density of community Ci is
then defined as the ratio of the number of within-community
edges to the expected number of edges based on density of

the network as a whole,

Density(Ci) =
ei

e
n(n−1)/2

× ni(ni − 1)/2
(3)

We validated this method by comparing the density distri-
bution of 30 “true” communities (identified in our network)
with random communities as well as “anti-communities”,
chosen from different true communities in a round-robin
fashion. As shown in Figure 6, the anti-communities have a
density less than 1 and the random communities have a den-
sity between 1 and 2, while the density of the true commu-
nities ranges from 8 to 152. It is generally true that higher
density is an indication of more interesting communities, but
a domain expert should assist in making this determination.

4.2 Community 1: South America, Africa,
and South-East Asia

During the following discussion, please refer to Figure 1 for
information on the major global climate zones. The first
community, shown in Figure 7(a), spans the years 1963-1987
and is relatively small, ranging from approximately 25 to 50
nodes. Nonetheless, it consistently covers spatially stable
regions on three different continents and is one of the most
dense communities overall.

In terms of physical interpretation, the areas included in
community 1 belong either to the Tropical Wet-Dry (South
America, Africa) or to the Monsoon (South-East Asia) cli-
mate zones. Given the subset of variables we considered
here, it is likely that the strong inverse relationship (neg-
ative correlation) between the hydrological patterns in the
two regions – extremely dry conditions versus intense rain-
fall/monsoons during the summer months – are at least par-
tially responsible for the emergence of this community.

4.3 Community 2: South America, Africa,
India, and Australia

The second community in Figure 7(b) spans the years 1948-
1972 and, with the exception of the fourth window (1963),
consists of approximately 150 to 220 nodes. Much like the
first community, it is composed (primarily) of Tropical Wet-
Dry areas and (relatively fewer) Monsoon regions, specifi-
cally in Northern India.
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What makes this community interesting is that significant
change in structure occurs in 1963, which is visually de-
tectable but also manifests itself as a decrease in density.
A closer look at the network reveals that the community
merged with a larger community containing a number of lo-
cations in a Desert zone, only to separate again in the follow-
ing period. Since Tropical Wet-Dry differs from the Desert
mainly in precipitation, we postulate that the monsoon sea-
sons during this time were unusually weak, thereby becom-
ing more simila and causing the two to temporarily merge.
Indeed, there is some indication that the monsoon pattern
altered slightly during the 1960s [3, 6]. We cannot attribute
the change in structure to this climate phenomenon with
certainty, but [20] also linked changes in network structure
to climate shifts.

4.4 Community 3: Southern Ocean, Canada,
and Europe

The third and most recent community, depicted in Fig-
ure 7(c), spans the years 1983-2007. It is dominated by
the Continental Sub-Arctic climate zone but also contains
Mediterranean regions, and decreases in size from approxi-
mately 2,200 down to 800 nodes. Once again, the decreasing
size is accompanied with a slight increase in density. Given
that a majority of the locations in the first time step lie the
Southern Ocean, it is possible that the reduction in network
size is the result of warming trends observed in these areas.
However, a strong relationship remains between the Weddell
Sea and much of the European continent as well as parts of
North America, prompting the question whether this ocean
region might be a source for a climate index and exhibit
some predictive capabilities.

4.5 Community 4: Antarctica, Western US,
Greenland, and Central Asia

This last community, shown in Figure 7(d), also spans the
years 1963-1987. It is quite dense, indicating a strong rela-
tionship between the locations, but the underlying mecha-
nism is non-obvious in this case. A large number of areas
are either covered by ice (Greenland, Antarctica) or located
in mountain ranges (Rocky Mountains, Andes, Himalayas),
but there are also locations in South America, Central Asia,
and Australia that defy both of these categorizations. It
is possible that the strong relationship arises from an in-
verse relationship between temperature and precipitation,
but that statement is purely speculative at this point. What
we know is that teleconnections do exist and, ultimately,
such unexplained patterns can help guide the development
of new analysis methods.

5. DISCUSSION & FUTURE WORK
Here we place this exploratory study in the broader context
of climate science. We expand upon known issues relating
to data and methodology, point out current capabilities and
limitations, and discuss potential extensions.

5.1 Data and Variable Selection
The present work examines gridded reanalysis data, the best
estimate of a global historical climate record. However, it
is worth noting several factors to keep in mind when using
this type of data. For one, reanalysis data is composed from

multiple heterogeneous sources including satellite, remotely
sensed, and in-situ measurements. These raw inputs are
combined by fitting a model to the data, which inherently
results in some smoothing. In addition, values are interpo-
lated to a regular grid, further reducing variability as well
as precision. This was not a concern here as cross correla-
tion measures relatively long-term trends, but it could have
serious implications if we were comparing other indicators
such as climate extremes, for example.

Likewise, the selection of variables may significantly affect
community structure and needs to be considered when in-
terpreting the results. As discussed in Section 2, we chose
four variables that are strongly indicative of certain climate
phenomena, and we intentionally avoided variables that are
known to be problematic (e.g., precipitation) In the future,
we plan to investigate the variable selection problem more
thoroughly and answer such questions as, How does the com-
munity structure change by adding/removing a variable?
Can these changes be explained by the presence/absence
of that variable? And how to select an optimal subset of
variables for a given task?

Lastly, we note that reanalysis products are not the only
type of climate data. In some cases actual observations
(e.g., thermometer, rain gauge) or at least higher-resolution
gridded datasets are available for smaller geographic regions.
Climate models represent another viable source of data, and
comparing observations with model hindcasts may be one
valuable exercise as differences between the two may pro-
vide some insights into the model bias.

5.2 Similarity Measures
The cross correlation-based similarity between locations pro-
posed here is a rather complex measure, especially in terms
of interpreting and relating communities back to the data.
In fact, when faced with the problem of clustering climate
data there are a host of other measures one might consider
first, including averages and ranges, anomalies from long-
term means, presence of seasonality, or (auto)correlation in
space and time. But much prior work has been done using
these measures, especially for univariate data, and the re-
sults are well understood. Instead, we went beyond these
conventional boundaries to explore an innovative, multivari-
ate measure of correlation. In the future, we intend to in-
vestigate other similarity measures in this context. For in-
stance, non-linear relationships are known to exist between
climate variables [14], but most correlation measures assume
linear dependence. Using the framework presented here, we
can substitute a non-linear measure [13] and potentially find
very different communities. We envision that a combination
of simple (mean, seasonality) and more complex (cross cor-
relation, non-linear dependence) measures could eventually
be used to discover a variety of patterns in climate data.

5.3 Networks and Community Detection
We want to impress upon the reader once again the specific
benefits of our network methodology over traditional clus-
tering approaches such as k-means. First, k-means is known
to perform poorly on noisy and high-dimensional data [4].
However, even if the correlation-based similarity were used
as a distance measure, k-means would be unable to find
certain communities. For example, it may not capture tran-
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sitive relationships like “if A is similar to B and B is similar
to C, then A is also similar to C” in the same way a network
can, and community detection algorithms leverage this in-
formation to find more meaningful climate regions. While
this paper presents but a few examples, we will further ex-
plore the parameter space, different clustering algorithms
(e.g., k-means, spectral), varying window sizes and a more
extensive evaluation of robustness to changes [11].

5.4 Computational Considerations
As discussed in Section 3.5, calculating all-pairs similarity
is an expensive operation: computing cross correlation for
10,000 grid cells with twelve 5-year windows of four variables
took 1,200 CPU hours. However, each of these dimensions
could conceivably grow and drastically increase problem size.
There has been a consistent trend towards higher resolution,
both for reanalysis data and climate model outputs. The
present study used a 2.5◦ × 2.5◦ grid, but spacings of 1◦

or less are quickly becoming the norm. Second, reanalysis
and model data contain dozens of variables. For this study
we relied on a domain expert to select a subset, but using
additional variables or, worse yet, exploring a large subspace
of them may not be feasible. Finally, it should also be noted
that model outputs, and to some extent even observations,
are available for much longer time periods.

Given that the complexity of our method is O(n2v2t) +
O(n2log n), even relatively small changes in dataset size will
have noticeable consequences. For example, if the grid spac-
ing decreases by a factor of two, there will be four times as
many cells, which in turn means computational requirements
will grow by a factor of 16. Therefore, all the aforementioned
issues must be taken into consideration when designing ex-
periments, lest the execution time becomes intractable.
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ABSTRACT
It is a consensus among earth scientists that climate change will 
result in an increased frequency of extreme events (e.g., 
precipitation, snow). Streamflow forecasts and flood/drought 
analyses, given this high variability in the climatic driver 
(snowpack), are vital in the western United States. However, the 
ability to produce accurate forecasts and analyses is dependent 
upon the quality (accuracy) of these predictors (snowpack). 
Current snowpack datasets are based upon in-situ telemetry. 

Recent satellite deployments offer an alternative remote sensing 
data source of snowpack. The proposed research will investigate 
(compare) remote sensing datasets in western U.S. watersheds in 
which snowpack is the primary driver of streamflow. A 
comparison is made between snow water equivalent (SWE) data
from in-situ snowpack telemetry (SNOTEL) sites and the 
advanced microwave scanning radiometer – earth observing 
system (AMSR-E) aboard NASA’s Aqua satellite. Principal 
component techniques and Singular Value Decomposition are 

applied to determine similarities and differences between the 
datasets and investigate regional snowpack behaviors. Given the 
challenges (including costs, operation and maintenance) of 
deploying SNOTEL stations, the objective of the research is to 
determine if satellite based remote sensed SWE data provide a 
comparable option to in-situ datasets. Watersheds investigated 
include the North Platte River, the Upper Green River, and the 
Upper Colorado River. The time period analyzed is 2003-2008, 

due to the recent deployment of the NASA Aqua satellite. Two 
distinct snow regions were found to behave similarly between 
both datasets using principal component analysis. Singular Value 
Decomposition linked both data products with streamflow in the 
region and found similar behaviors among datasets. However, 
only 11 of the 84 SNOTEL sites investigated correlated at a 
significance of 90% or greater with its corresponding AMSR-E
cell. Also, when comparing SNOTEL data with the corresponding 

satellite cell, there was a consistent difference in the magnitude 
(Snow Water Equivalent) of the datasets. Finally, both datasets 
were utilized and compared in a statistically based streamflow 

forecast of several gages.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Correlation and regression 
analysis, multivariate statistics, reliability and life testing, 
statistical computing.

General Terms
Management, Measurement, Documentation, Performance, 
Reliability

Keywords
SNOTEL, AMSR-E, Snow, Water, Equivalent, SWE

1. INTRODUCTION
Snowpack in mountainous regions of the western U.S. provide 50-
80% of the water supply in the region [NRCS 2006]. However, 
the west is being affected by a changed climate more than any 
other part of the U.S., outside Alaska [NRDC 2008]. Warmer 
temperatures have major impacts on snowpack in the region. 
Increased temperatures cause more precipitation in the form of 

rain, rather than snow. The decrease in snowpack affects many 
downstream users who expect water in the demand season (April-
July). This snowpack acts as a reservoir and is a critical 
component for summer water supply in arid and semi-arid 
downstream regions. The hydrologic variability of the west makes 
it critical to accurately measure the amount of snowpack in 
headwater regions. 

Snow Water Equivalent (SWE) is the amount of water contained 
within a snowpack. It can be thought of as the depth of water that 
would result if the entire snowpack was melted instantaneously. 
Historically, SWE datasets have been collected for over a century. 

SWE data are important for an array of reasons. Streamflow 
forecasts along with flood and drought analysis are important uses 
SWE datasets provide. Accurate measurements of this snowpack 
are vital in understanding the hydrologic variability in the western 
United States. Effective management of limited water supplies is a 
critical component of the sustainability of populations throughout 
the western United States [Pagano et al. 2004].

The comparison of in-situ SWE with satellite based SWE data is a 
first step in determining the similarities and differences between 
the datasets. Three outcomes are possible: (1) the datasets are 
highly related; (2) the datasets have little similarity or; (3) the 
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datasets are inconsistent. If satellite-based SWE is highly related 
to in-situ SWE, steps can be taken to incorporate satellite data in 
streamflow, flood, and drought forecasts and analyses. 
Additionally, and if required, new land based climate stations can 
be effectively positioned, based on conclusive results from 

satellite data. However, if the datasets have little similarity 
between them, the reliability and consistency of both datasets 
comes into question, particularly satellite data. Finally, the 
datasets may be inconsistent (e.g., highly related in one region and 
unrelated in another region). This might occur because both 
datasets have instrument limitations, and the topography as well 
as the climate variability of the region makes it difficult to 
accurately measure SWE.

There are advantages and disadvantages associated with each 
dataset. Cloud and vegetative cover coupled with topography are 
primary concerns when observing the land surface with satellites. 

However, cloud and vegetative cover is not an issue with land-
based stations. Satellite data provide global coverage, while in-
situ stations only provide point coverage. Installation, operation, 
and maintenance of land-based sensors are costly, but it is also 
expensive to deploy satellites with advanced instrumentation. 
Both land-based and satellite-based data are gathered and 
published in near-real time. This assists water supply forecasters 
and managers in making timely decisions for efficient allocation 

of water. Digital land-based sensors that measure SWE were first 
installed around 1980. Instruments aboard satellites that measure 
SWE were launched in 2002.

Although the advanced microwave scanning radiometer – earth 
observing system (AMSR-E) datasets are relatively new (i.e., 
short period of record), there are numerous applications these 
datasets can be used for, and a large amount of research has 
incorporated these data into studies. The value of AMSR-E soil 
moisture data was shown in [Bindlish et al. 2009], and flood 
forecasts were improved with success. The work of [Reichle et al. 
2007] compared AMSR-E and the Scanning Multichannel 

Microwave Radiometer (SMMR) soil moisture datasets. Spatial 
and temporal resolution of sea surface temperatures using AMSR-
E data was dramatically improved in [Reynolds et al. 2007]. The 
research of [Narayan and Lakshmi 2008] fused soil moisture 
estimates from the AMSR-E instrument with backscatter data and 
produced a higher spatial resolution of soil moisture variability. 
Additional research has utilized AMSR-E sea ice data and 
moderate resolution imaging spectroradiometer (MODIS) data.

The objective and contribution of this research is to compare land 
based SWE point data and satellite based SWE spatial data within 
the western United States. This will provide comprehensive and 

valuable information about the validity of each dataset. While 
satellite products have been compared to other satellite products, 
few (or none) have been carried out between satellite observations 
and land based snow telemetry (SNOTEL) data. This is most 
likely attributed to the lack of an intense spatial coverage of 
SNOTEL sites given the typical grid size of satellite data (i.e., 
there is generally one SNOTEL gauge in a grid of 25 km2). While 
this is a challenge/limitation, there is an interest in comparing 

both the spatial and temporal variability and the magnitude of 
satellite data to in-situ data. Ultimately, one would hypothesize 
that the use of satellite generated spatial SWE data will result in 
an improved representation of basin wide hydrology compared to 
in-situ data. The incorporation of satellite data in hydrologic-
based forecasts is a natural ‘next step’ as displayed in the 
movement from snow course (manually measured snowpack data) 

to SNOTEL (snowpack data provided by remote sensors).
Research and analysis of global hydrology may be based strictly 
on satellite data in the near future. This would increase the 
efficiency as well as decrease the costs of collecting hydro 
climatic data.

2. WATERSHED DESCRIPTIONS
Three critical western U.S. watersheds that receive extensive 
snowfall are included within the scope of this research. Basins 
include the North Platte River, Upper Green River, and Upper 
Colorado River. The headwaters of the North Platte River are 

located in northern Colorado. The watershed is bound on all sides 
by mountain ranges: the Rawah and Never Summer ranges to the 
east, Rabbit Ears range to the south, and Park Range to the west 
[Daniels 2007]. From northern Colorado, the North Platte River 
continues north into Wyoming, and then flows east into Nebraska. 
Understanding the hydrology of the North Platte River headwaters 
is critically important for water resource planning in the Rocky 
Mountains and Great Plains regions [Daniels 2007]. 

The Upper Green River originates in western Wyoming and is the 
primary tributary of the Colorado River. The headwaters begin in 
the Wind River Mountains. From Wyoming, the Green River 

flows south into Utah and Colorado, where it flows into the 
Colorado River.

The Upper Colorado River Basin originates in the mountains of 

central Colorado. The Colorado River flows south into Nevada 
and Arizona. The Colorado River is the major source of water for 
the driest part of the country. Upwards of 30 million Americans 
across seven states now depend on it for agricultural, municipal, 
industrial, and hydroelectric needs – and the basin is among the 
fastest growing areas in the country [NRDC 2008].

3. DATA SOURCES

3.1 SNOTEL (NRCS)
Snow Water Equivalent (SWE) was first measured manually 
using a snow course. A snow course is a permanent site where 

manual measurements of snow depth and SWE are taken by 
trained observers. Generally, the courses were about 1,000 feet 
long and situated in small meadows protected from the wind. 
Technological advances have allowed the National Resource 
Conservation Service (NRCS) to use snowpack telemetry, or 
SNOTEL sites. The NRCS currently operates and maintains over 
750 automated SNOTEL stations in 13 western states. The data as 
well as related reports and forecasts are made available in near 

real-time. SNOTEL sites are generally located in remote, 
mountainous watersheds and provide SWE data via a pressure-
sensing snow pillow. Eighty-four SNOTEL sites across 4 states 
are used in this study. The distribution is as follows: Wyoming 
(36), Colorado (35), Idaho (7), and Utah (6). Snowpack on the 
first day of April is a good indicator of the water content in the 
maximum seasonal snowpack and for the water supply for coming 
months [Woodhouse 2003]; and is used in this study. The location 

of SNOTEL sites included in this research can be seen in Figure 
1.
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Figure 1: Location map showing all data used

3.2 AMSR-E (NASA)
The advanced microwave scanning radiometer – earth observing 
system (AMSR-E) instrument aboard NASA’s Aqua satellite was 
launched in May of 2002. The instrument measures polarized 
microwave radiation horizontally and vertically. Land, oceanic, 

and atmospheric parameters are measured for the investigation of 
global and water energy cycles. Data is mapped globally into 25 
km2 Equal-Area Scalable Earth (EASE) Grids. This study breaks 
the gridded data down further into 0.25 decimal degrees longitude 
by 0.25 decimal degrees latitude cells. Available snow water 
equivalent datasets include daily, 5-day maximum and monthly 
average.  The five-day maximum SWE value (27March –
01April) from [Kelly et al. 2004] is used in this research. The 

five-day maximum was chosen to eliminate the possibility of 
missing data that results from cloud cover. It should be noted that 
AMSR-E data experiences numerous validation stages. Datasets 
used within this work are in the transitional validation stage. The 
transitional validation stage is the period between beta and 
validated. Figure 1 shows the AMSR-E grid cells used in this 
study.

3.3 Streamflow (USGS)
Within the U.S., the United States Geological Survey (USGS) 
collects surface-water data that describe stream levels, streamflow 
(discharge), reservoir and lake levels, surface-water quality, and 
rainfall. Automatic recorders and manual measurements collect 
data. [Slack and Landwehr 1992] identified a Hydro-Climatic 
Data Network (HCDN) of stream gages as being relatively free of 

significant human influences and, therefore, appropriate for 
climate studies. Streamflow measurements from eight of these 
gages are incorporated in this study - USGS 06620000 (Q1), 
USGS 06635000 (Q2), USGS 09188500 (Q3), USGS 09196500 
(Q4), USGS 09223000 (Q5), USGS 09239500 (Q6), USGS 
09251000 (Q7), and USGS 09304500 (Q8). Q1 and Q2 are 
located in the North Platte River Basin; Q1 on the North Platte 
River and Q2 on the Medicine Bow River. Q3, Q4, and Q5 are 

located in the Upper Green River Basin. Q3 is on the Green River, 
Q4 is on Pine Creek, and Q5 is on Hams Fork. Q6, Q7, and Q8 
are within the Upper Colorado River Basin. Q6 and Q7 are on the 
Yampa River while Q8 is on the White River. The average 
streamflow in the region for the months of April-July (AMJJ) 
from 2003 to 2008 is the value of interest that water managers are 
most interested in, and is used in this study. Table 1 contains 

physical characteristics for the streamflow stations utilized in this 
study, and the locations of these stations are shown in Figure 1.

Table 1: Streamflow gage descriptions

Station ID Drainage Area (km2) Elevation (m) Symbol

06620000 3,706 2,380 Q1

06635000 6,055 1,955 Q2

09188500 1,212 2,276 Q3

09196500 196 2,270 Q4

09223000 331 2,272 Q5

09239500 1,471 2,040 Q6

09251000 8,831 1,798 Q7

09304500 1,955 1,920 Q8

4. METHODS

4.1 Principal Components Analysis
Principal Components Analysis (PCA) using a varimax rotation 
procedure is used to determine regions in which both datasets may 
behave similarly. PCA is a widely used technique in meteorology 
and climatology [Baeriswyl and Rebetez 1997]; and can be used 
to reduce the size of datasets without losing information. PCA is a 
statistical technique that restructures a set of intercorrelated 
variables into an equal number of uncorrelated variables. Each 

new variable (principal component) is a different linear 
combination of all the original variables. 

First, the eigenvalues and eigenvectors of the correlation matrix of 

the time series and loading matrix are computed. The loading 
matrix represents the correlation of the original variables (SWE) 
with the principal components. Based on the results of the loading 
matrix, the stations that are highly correlated with the particular 
principal components can be identified. Factor loadings are 
investigated after a varimax rotation is performed on each dataset. 
Use of a varimax rotation results in easier interpretation of the 
principal component factor loadings, and a similar technique was

applied in [Timilsena and Piechota 2008]. Factor loadings are on a 
scale of -1.0 to 1.0; higher values (positive or negative) signify 
factor representation. Loadings greater than +0.90 and less than -
0.90 are retained in this research. The factor loadings that are 
retained are investigated to identify regions where SNOTEL sites 
and AMSR-E grid cells may behave similarly.

4.2 Singular Value Decomposition
Singular Value Decomposition (SVD) is a powerful statistical tool 
for identifying coupled relationships between two, spatial-
temporal fields [Tootle et al. 2008]. [Bretherton et al. 1992] 
evaluated several statistical methods and concluded SVD was 

simple to perform and preferable for general use. [Wallace et al. 
1992] determined that SVD isolates the most important modes of 
variability. While [Bretherton et al. 1992] provides a detailed 
discussion of the theory of SVD, a brief description of SVD, as 
applied in the current research is provided.

Initially, a matrix of SWE and a matrix of streamflow are 
developed. The time dimension of each matrix (i.e., 6 years) must 
be equal while the spatial component (i.e., number of SNOTEL 
sites, AMSR-E grid cells, or streamflow stations) can vary in 
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dimension. Standardized anomalies of the matrices are used. A 
cross-covariance matrix X is then computed for the two spatial, 
temporal matrices by multiplying the SWE matrix with the 
inverse of the streamflow matrix, and then dividing by the number 
of years. SVD is applied to the cross-covariance matrix and 

physical information about the relationship between the two fields 
(snowpack and streamflow) is obtained.

In this study, the data are broken down into 2 geographic regions 
(northwest and southeast) and SVD between snowpack and 
streamflow is performed separately in each region. The northwest 
region contains the Upper Green River Basin, and the North Platte 
and Upper Colorado River Basins are within the southeast region. 
The northwest region contains 38 SNOTEL stations and their 
corresponding AMSR-E grid cells. Three streamflow stations (Q3, 
Q4, and Q5) are also located in the northwest region. The 
southeast contains the remaining 48 SNOTEL/AMSR-E sites 

along with Q1, Q2, Q6, Q7, and Q8. A significance level of 90% 
is used. Figure 2 shows the relationship between April 1st

snowpack and streamflow in the Upper Green Basin. A single 
SNOTEL station and corresponding AMSR-E grid cell are plotted 
against streamflow (Q3) from 2003-2008. Similar relationships 
are found in surrounding regions.

Figure 2: The relationship between April 1
st
 snowpack and 

streamflow in the Upper Green Basin

4.3 Application – Streamflow Forecasting
The objective of streamflow forecasting is to accurately predict 
the volume of water during high demand season (April-July in this 
region). Accurate forecasts of seasonal streamflow volumes assist 
a broad array of natural resource decision makers, and Water 
Supply Outlooks (WSOs) are currently issued jointly by the 

National Resource Conservation Service (NRCS), the National 
Weather Service (NWS), and local cooperating agencies [Pagano 
et al. 2004]. 

Three USGS streamflow stations are forecasted in this study: Q1 
in the North Platte River Basin, Q4 in the Upper Green River 
Basin, and Q8 in the Upper Colorado River Basin. Two predictor 
screening steps are performed to find appropriate predictors. First, 
SNOTEL stations and AMSR-E cells that are 95% significant (n = 
6, r = 0.81) with streamflow in the region are determined.  
Additionally, a search radius is applied. While [Dressler et al. 
2006] used a 200 km radius, this study applies a 100 km radius 

outwards from the streamflow station being forecasted. Therefore, 
all SNOTEL stations and AMSR-E grid cells that are at least 95% 
significant and within a 100 km radius of the streamflow station 

being forecasted are used as initial predictors in each forecast 
model. 

NRCS forecasters rely on a statistical principal component 
regression technique to predict future streamflow using 
information about current SWE, precipitation, base flow, and 
climate indices [Garen 1992]. The NWS is increasingly engaged 
in dynamic simulation of streamflow by initializing a conceptual 

hydrologic model with current soil moisture and snowpack 
conditions [Day 1985]. However, the work presented in this study 
only incorporates SWE from the two data sources being 
investigated (SNOTEL & AMSR-E) as predictors for comparison 
purposes. The most satisfactory and statistically rigorous way to 
deal with intercorrelation is the use of principal components 
regression [Garen 1992]; and it is the method used to forecast 
streamflow in this study. Garen’s 1992 method for selecting the 
principal components to include into the forecast model is 

followed and applied in this research.  The method Garen follows 
is a three step process: (1) components are added to the model one 
at a time in sequence, beginning with the one having the largest 
eigenvalue and progressing in order of decreasing eigenvalue; (2) 
when the first component with a nonsignificant regression 
coefficient is found, the components retained are the ones in 
sequence up to, but not including, the nonsignificant one and; (3) 
regression coefficients must have the same algebraic sign as their 
correlations with the dependant variable.

Forecast accuracy of each model (SNOTEL vs. AMSR-E) is 
evaluated using the R2 – predicted (R2

pred) statistic. R2
pred is 

calculated from the PRESS statistic. PRESS is based upon a 
leave-one-out cross-validation in which a single year or 
observation is removed when fitting the model. As a result, the 
prediction errors are independent of the predicted value at the 
removed observation (Garen 1992). For selecting a model when 
the primary interest is in prediction (forecasting), the model with 
the smaller PRESS (higher R2

pred) is preferable [Montgomery et 
al. 2006]. The idea is that if an area has poor spatial coverage of 

SNOTEL/weather stations, AMSR-E SWE data collected from 
satellites may help improve overall forecast accuracy. For the 
research purposes of this paper (i.e., the comparison of 2 datasets) 
regions were chosen that had intensive coverage of land-based 
stations. When an area does not have this luxury, the use of 
satellite data to forecast streamflow presents an alternative option 
to identify predictor variables.

5. RESULTS

5.1 Principal Components Analysis (PCA)
PCA applying a varimax rotation identified two regions in which 
both datasets behave similarly (see Figure 3). Region 1 is in the 
Upper Snake/Upper Green River Basins. The first principal 
component factor (Region 1) retained 17 SNOTEL sites and eight 
AMSR-E grid cells. Three of the 17 SNOTEL sites retained in 
factor one showed up outside of the region (i.e., anomalies).  
There is also one AMSR-E grid cell located outside of Region 1. 

Region 2 is in the Upper Colorado/North Platte River Basins. The 
second principal component factor (Region 2) retained seven 
SNOTEL sites and 17 AMSR-E grid cells. Anomalies were not 
present in Region 2. However, the spread of AMSR-E grid cells in 
Region 2 is greater than that of SNOTEL sites. This suggests that 
AMSR-E SWE data have more inconsistency compared to 
SNOTEL sites in the Upper Colorado/North Platte region. The 
datasets agree more in Region 1 than in Region 2 as shown by the 
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number of AMSR-E grid cells that encompass SNOTEL sites (see 
Figure 3).

Figure 3: Map showing the 2 regions PCA identified

5.2 Singular Value Decomposition (SVD)
The SVD results for both SWE datasets with streamflow in each 
region (northwest and southeast) are shown in Figures 4a 
(SNOTEL) and 4b (AMSR-E). For the northwest region, SVD 
found 14 SNOTEL sites that were significant with 2 of the 3 
streamflow stations in the region. SVD produced no significant 

SNOTEL stations with Q5. Only Q3 was found to have a 
significant relationship with AMSR-E grid cells in the northwest 
region. Four of the fourteen SNOTEL sites that were significant 
had a significant corresponding AMSRE-E grid cell with 
streamflow in the region.

In the southeast region, SNOTEL was found to be significant with 
all 5 streamflow stations (Q1, Q2, Q6, Q7, and Q8). AMSR-E was
found to be significant with all of the streamflow stations except 
Q1. There were 22 significant SNOTEL sites and 18 significant 
AMSR-E cells. Of the 18 significant SNOTEL sites, 9 of them 
had a corresponding AMSR-E grid cell that was also significant 
with streamflow in the region.

The results from SVD are encouraging and suggest there are 

similar relationships between both SWE datasets and streamflow
in both regions.  

Figure 4 (a): SVD SNOTEL results

Figure 4 (b): SVD AMSR-E results

5.3 Streamflow Forecasting
Predictor screening resulted in a comparable number of predictors 
between SNOTEL sites and AMSR-E grid cells that were 
included in each forecast model. For Q1 forecasts, there were 6 
predictors in the SNOTEL model and 5 in the AMSR-E model. 

Q4 had 3 SNOTEL predictors and 5 AMSR-E predictors. Q8 
models also included 3 SNOTEL sites and 5 AMSR-E grid cells 
after the predictor screening process. 

Table 2: Forecast statistics

Q1 - North Platte

SNOTEL AMSR-E

R2 0.83 0.90

R2
adjusted 0.79 0.88

R2
predicted 0.71 0.79

PRESS (103 km3) 15.8 11.0

Durbin-Watson 3.0 1.5

Q4 - Upper Green

SNOTEL AMSR-E

R2 0.89 0.97

R2
adjusted 0.86 0.97

R2
predicted 0.41 0.90

PRESS (103 km3) 0.6 0.1

Durbin-Watson 3.3 1.4

Q8 - Upper Colorado

SNOTEL AMSR-E

R2 0.98 0.95

R2
adjusted 0.98 0.93

R2
predicted 0.96 0.91

PRESS (103 km3) 1.1 2.6

Durbin-Watson 1.8 0.9
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After performing PCA and following Garen’s procedure, one 
principal component was significant and had the same sign as the 
streamflow station being forecasted for each model (SNOTEL & 
AMSR-E). Forecast accuracy was determined using the R2 -
predicted statistic. The forecast accuracy for Q1 and Q8 are 

comparable for each model. For Q1, the SNOTEL model 
produced an R2

pred of 0.71 while the AMSR-E model’s R2
pred is 

0.79. For Q8, the SNOTEL model’s R2
pred is 0.96, compared to 

0.91 for AMSR-E. For Q4, the AMSR-E model produced more 
accurate forecasts (R2

pred = 0.90) compared to 0.41 for the 
SNOTEL model. Statistical parameters determined for all forecast 
models are provided in Table 2. However, because forecasting is 
not the primary purpose of this paper, the discussion of all 
statistical parameters is not provided.

6. ADDITIONAL ANALYSIS

6.1 Correlation
Correlation (r) values between SNOTEL SWE recorded on the 
ground and AMSR-E SWE recorded by satellite were determined. 
This was accomplished by finding the AMSR-E grid cell that 
encompassed each SNOTEL station. A 90% significance level 

was selected. This step investigates the similarities and 
differences of each dataset. Furthermore, sites that are found to be 
significant are investigated in more depth (i.e., elevation) to 
determine possible reasons for similarities and differences 
between datasets.

Correlation resulted in only 11 of the 84 (13%) SNOTEL sites to 
be significant with its corresponding AMSR-E SWE grid cell at 
90%. The average elevation of all 84 SNOTEL sites used is 2,737 
meters. In the 11 cases that had 90% significance, the average 
elevation was 2,471 (m), while the remaining 73 SNOTEL sites 
had an average elevation of 2,777 (m). Also, there were no 

significant sites located above 3,048 meters (10,000 feet) while 18 
were present in the overall sample. These results suggest that 
elevation has an effect on satellite obtained SWE from the 
AMSR-E instrument.

6.2 Magnitude Differences
The AMSR-E SWE data have a range of 0-480 mm (0-19 inches). 

In many instances, SNOTEL sites record SWE values that exceed 
this range within the region. For the April 1st SWE data analyzed 
in this study, and for at least one year from 2003-2008, 47 of the 
84 (56%) SNOTEL sites included in this study experienced SWE 
values that exceeded the maximum AMSR-E value (>480 mm). 
However, there were no cases in which the AMSR-E recorded the 
maximum value of 480 mm. Figure 5 provides a box plot of SWE 
values for the 11 SNOTEL sites and AMSR-E grid cells that were 

found to be 90% significant from correlation. It is clear from 
Figure 4 that there is a significant magnitude difference between 
SNOTEL and AMSR-E SWE values. Additionally, there is more 
variability in the SNOTEL dataset.

Figure 5: Box plot showing the magnitude difference between 

SNOTEL and AMSR-E SWE values

Magnitude issues limit the use of AMSR-E SWE to a narrow list 
of applications. In many statistical models, the magnitude of the 
predictor variables is irrelevant (i.e., magnitude does not affect the 
results), and this dataset would be sufficient to use for analysis 
(i.e., streamflow forecasting). However, incorporating AMSR-E
into a physical model would result in an inaccurate basin-wide 

hydrologic representation, and is therefore not recommended 
without the use of correction factors. The development of 
correction factors to apply to AMSR-E SWE values is needed 
because this would provide a basis for incorporating AMSR-E
gridded satellite SWE into physically based climate models. The 
work of [Durand and Margulis 2007] has investigated the 
correction of first-order errors in SWE estimates from the AMSR-
E instrument.

7. CONCLUSION
A thorough comparison has been made between SNOTEL and 
AMSR-E snow water equivalent datasets. Statistical techniques 
applied included Principal Components Analysis, Singular Value 
Decomposition, and correlation. PCA utilizing a varimax rotation 
identified two distinct regions in which both datasets are 
consistent and compare well with one another. Both SWE datasets 

were successfully linked to streamflow in the region utilizing 
SVD. The incorporation of both SWE products was applied to 
forecast regional streamflow. Forecast results were comparable 
for 2 of the 3 streamflow stations (North Platte and Upper 
Colorado); however, the AMSR-E SWE dataset produced a more 
skillful forecast compared to SNOTEL for the Upper Green 
station. Additional analysis using correlation found that the 
AMSR-E dataset is inconsistent with land-based SNOTEL values 

in the region and there are significant magnitude differences 
between datasets. SWE from NASA’s Aqua satellite was found to 
be sufficient to use in statistically based forecast models in which 
magnitude did not affect results. Given the projections of climate 
change (e.g., increased temperatures and decreased snowpack), 
the ability of satellites to capture important hydrologic parameters 
such as snow water equivalent is vital in many applications. 
Incorporating additional satellite parameters such as soil moisture 
and vegetative cover, in addition to SWE, may be in the near 
future for next generation forecasters.
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ABSTRACT
Clustering is an established data mining technique for group-
ing objects based on similarity. For sensor networks one
aims at grouping sensor measurements in groups of similar
measurements. As sensor networks have limited resources
in terms of available memory and energy, a major task sen-
sor clustering is efficient computation on sensor nodes. As
a dominating energy consuming task, communication has to
be reduced for a better energy efficiency. Considering mem-
ory, one has to reduce the amount of stored information on
each sensor node.

For in-network clustering, k-center based approaches pro-
vide k representatives out of the collected sensor measure-
ments. We propose EDISKCO, an outlier aware incremen-
tal method for efficient detection of k-center clusters. Our
novel approach is energy aware and reduces amount of re-
quired transmissions while producing high quality cluster-
ing results. In thorough experiments on synthetic and real
world data sets, we show that our approach outperforms a
competing technique in both clustering quality and energy
efficiency. Thus, we achieve overall significantly better life
times of our sensor networks.

1. INTRODUCTION
Clustering is a data mining task for summarizing data such
that similar objects are grouped together while dissimilar
ones are separated. In the special case of sensor networks,
clustering aims at detection of similar sensor measurements.
By detection of k representative measurements in k-center
clustering one ensures good clustering quality if each repre-
sentative is assigned to only very similar measurements. In
addition to cluster quality, one aims at an efficient cluster
computation. For sensor nodes, resources are limited. Es-
pecially, available energy and memory pose restrictions on
the clustering algorithms.

The distinguishing features of clustering streaming sensors
act as future paths to research in this area, some of these are:
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(a) Concerning efficiency issues, sensors are limited in terms
of resources, minimizing the consumption of these (mainly
energy) is a major requirement to achieve a high lifetime,
(b) A compact representation of both the data and the gen-
erated model is needed to enable fast and efficient trans-
mission and access from mobile and embedded devices, (c)
The final goal is to infer a global clustering structure of all
relevant sensors; hence, approximate algorithms should be
considered to prevent global data transmission [8].

In this paper, we propose a novel energy efficient k-center
clustering approach. We propose an incremental algorithm
on each sensor node that computes the k representatives.
For compact representation of sensor measurements we ad-
dress outlier aware clustering, excluding deviating objects
from the clustering structure. Our processing enhances clus-
tering quality, specially for sensor measurements where noisy
data is gathered.

For incremental adaptation of the cluster representatives
we use a reclustering phase. However, as each recluster-
ing causes heavy communication costs, our approach aims
at reducing such reclusterings, and thus enhances energy
efficiency. In addition, we aim at ensuring high clustering
quality even with less reclustering operations.

A motivating example for having an energy-aware k -center
clustering with outliers: Let m distributed sensor nodes over
different parts in a certain area in the jungle, and the target
is to measure the existence of certain k kinds of wild animals
in this area using a combination of sound and vibration mea-
surements. Each sensor node collects readings in its sensing
range and performs k clustering over it reflecting its most
k existing kinds of animals in its range. A combination of
the results will be done in the base station to make a global
knowledge about the existence of these kinds in the whole
area. The existence of outlier animals not expected to be
in this area passing over is very normal, which highlights
the need to consider outliers. In addition, in such scenarios
sensor nodes will be unattached for a long time or even not
at all which highlights the need of having energy-aware ap-
plications running on it to prolong its battery lifetime. A
slightly different scenario to this one is used in [17].

1.1 Challenges and Contribution
Many requirements arise when designing an energy aware
in-sensor-network k -center stream clustering algorithm that
considers outliers; some of these requirements are inherited
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from different areas, the main requirements can be summa-
rized in the following five aspects:

• Single Passing, Storage awareness: Due to the
limited processing and storage resources in the sensor
node, the clustering algorithm must perform only a
single pass over the incoming data stream and storage
must be independent on n the size of input stream.

• Minimal Communication: As the energy consump-
tion of transceiving data between the nodes is usually
too big comparing to the computation cost inside the
node, the size of data being sent from the sensor nodes
to the base station must be minimized.

• Incremental Clustering: The algorithm must in-
crementally cluster the stream data points to detect
evolving clusters over the time.

• High Clustering Quality: The algorithm must show
a good approximation to the optimal clustering by re-
ducing the clustering radius as much as possible, which
is the criteria of measuring the k-center clustering qual-
ity.

• Outlier Awareness: The algorithm should not be
sensitive to outliers, nevertheless, it must be able to
detect trends in the input stream.

Apparently, not only the two parts of the last aspect are
contradicting each other. The second aspect is met when
additional in-the-node computations are done to reduce the
size of the data to be sent to other node or to the base sta-
tion, which opposes the first aspect. On the other hand the
fulfillment of the third and fourth aspects contradicts again
achieving the first one, high-quality incremental clustering
needs to store summaries of old points and needs additional
processing.

Although many attempts in the literature tried to fulfill the
last three aspects, only limited work [5, 6, 10] has consid-
ered the first and the third ones. And to the best of our
knowledge, no work has yet been done to consider all the
previous aspects together.

Our algorithm considers all above aspects. Motivated by
the Global Parallel Guessing algorithm [6], the key focus
of our algorithm is to achieve better clustering quality by
using less energy and being resource aware in addition to
the consideration of outliers in the input stream.

The remainder of this document is organized as follows. Sec-
tion 2 reviews previous work related to our clustering and
communicating problem. In Section 3 we formulate the re-
lated problems. Section 4 describes our proposed EDISKCO
algorithm in detail. Section 5 presents the experimental re-
sults. And finally we concludes the paper in Section 6 and
discuss direction for future work.

2. RELATED WORK
We will list some previous work done in two strongly related
areas: k -center clustering approaches and energy aware rout-
ing approaches for sensor networks.

2.1 K -Center Clustering Algorithms
In the k -center clustering problem of a group of points P ,
we are asked to find k points from P and the smallest radius
R such that if disks with a radius of R were placed on those
centers then every point from P is covered [10]. The quality
of the k -center clustering algorithms is measured using the
approximation to the optimal clustering. Many clustering
solutions have been presented for the k -center problem. We
will start with reviewing available offline approaches which
consider that all input data are available in the memory
when applying the algorithm, then we will highlight some
online algorithms which were developed mainly to deal with
streaming inputs, we review then solutions which basically
targeted the distribution of streaming input sources and we
end up with solutions which considered the existence of out-
liers in the input stream.

2.1.1 Offline Approaches
These algorithm suggest that all of the n input points are
stored in the memory. In an early result, Gonzalez [9] gave
the“Furthest Point Algorithm”which gives a 2-approximation
to the optimal clustering by making O(kn) distance com-
putations. Another 2-approximation approach, called the
“Parametric Pruning” was given by Hochbaum and Shmoys
[12]. The 2-approximation is the best possible solution since
it was proved that it is NP-hard to find a (2−ε)-approximation
to the optimal clustering of the k -center problem for any
ε > 0 [7].

2.1.2 Online Approaches
Many algorithms were developed to cope up with streaming
input, Charikar et. al [3] introduced the “Doubling Algo-
rithm”, a single pass streaming algorithm which guarantees
an 8-factor approximation to the optimal clustering and uses
O(k) space. The main idea is to apply the incremental clus-
tering principle by using a center-greedy algorithm which
continuously merges two cluster centers, making it possible
to maintain new points without increasing the cluster radius.
Although they have introduced the principle of incremental
clustering with this algorithm, it was not clear how to get
the approximation result by incrementally applying this al-
gorithm. Guha [10] presented a 2(1+ε) approximation single
pass streaming algorithm using only O(k

ε
log 1

ε
) space. The

algorithm directly forgets the input data and maintains the
stored summarization of the input data, this summariza-
tion is limited to the available memory space which yields
some summarization error. The algorithm is suitable for
dealing with stream data by using a memory space inde-
pendent on n, but it is not suitable for processing-limited
machines (like sensor nodes) since it does multiple passing
over the stored summarization. Cormode et. al [6] has for-
mulated the “Parallel Guessing Algorithm” resulting with a
(2 + ε)-approximation to the optimal clustering. This algo-
rithm uses the first points in the input stream to make Δ
guesses of R as (1+ ε

2
), (1+ ε

2
)2, (1+ ε

2
)3, . . . and then scans

in parallel this part of the input stream using the different
guesses. For each guess, it stops when it returns k centers of
this input stream using its radius. This will end up by stor-
ing O(k

ε
log Δ) points, where Δ is the maximum number

of guesses of the clustering radius that can be done. The
smallest guess is then first used for clustering input data.
Whenever a new point that is not covered by the recent
clustering arrives, the current guess is announced as invalid,
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and another bigger guessing must be selected. The algo-
rithm is very sensitive to the first k centers selected from
received points and some of them might even be outliers,
which reduces the clustering quality by using a big guess.
The storage is dependent on Δ which can be in reality a big
value for the limited storage of sensor nodes. In addition,
the parallel nature of the algorithm does suite the limited
processing ability of sensor nodes even for small values of Δ.

2.1.3 Distributed Approaches
The idea of having distributed sites each is maintaining a
k -center clustering algorithm on his local input stream was
originally raised by Cormode et. al [6]. The idea is to have
m remote sites applying the parallel guessing algorithm or
an online furthest point algorithm on its local data. The site
send its k -centers to a central site called coordinator which
in turn applies another k -center clustering algorithm on the
k × m centers. They proved that if the k -center clustering
algorithm on the site side gives an α-approximation and the
one on the coordinator site gives a β-approximation then
the resulting k-center clustering algorithm offers a (α + β)
approximation to the optimal clustering of the whole input
data. The suggested distributed algorithm was not mainly
targeting sensor networks in the means of energy consump-
tion.

2.1.4 K-Center Clustering with Outliers
The idea of k -center clustering with outliers was first pre-
sented by Charikar et. al [4]. They gave an offline algo-
rithm with a 3-approximation which drops z outliers. Our
algorithm in contrast drops z far and non-dense outliers on-
line by achieving (2 + ε)-approximation. McCutchen et.
al [13] presented another algorithm which gives a (4 + ε)-
approximation using O( kz

ε
) memory space. The algorithm

reads the input in batches of size (kz), stores them, drops all
non-outliers and then applies an offline k-center clustering
algorithm with outliers on them. Our algorithm in contrast
perform a single pass over the input points without storing
them or performing an offline processing.

2.2 Energy-aware Routing Approaches in Wire-
less Sensor Networks

After collecting their measurements from the physical en-
vironment and processing them, sensor nodes have to send
these data to one or more base stations. By having the base
station(s) within the radio range of each sensor node, the
naive single-hop communication between each node and the
base station is possible but not energy-efficient and not re-
liable because of possible resulting interferences. Addition-
ally, most of the applications do not allow this single-hop
deployment, which raised the need for a multi-hop routing
path that takes energy efficiency into consideration. This is
a pure network communication routing problem which was
revisited for energy efficiency concerns. Figure 1 illustrates
one solution to this problem. Choosing the right underlying
routing protocol is particularly important when applying an
energy-efficient clustering algorithm. This will guarantee a
maximum compatibility for the sake of energy saving. Low-
Energy Adaptive Clustering (LEACH) protocol [11] dynam-
ically groups sensor nodes in a small number of clusters. The
randomly chosen representatives (cluster heads) locally fuse
data from their neighboring and transmit it to the base sta-

Figure 1: An example of a routing protocol: A) All
sensor nodes use a big sending power to send their
data to the base station. B) Sensor nodes use lower
sending power to send data locally to a local node
which aggregates and sends them to the base station.

tion, which results of a factor of 8 improvement compared
to direct transmissions. In the Hybrid Energy-Efficient Dis-
tributed HEED Clustering Approach [16] the cluster head
selection is mainly based on residual energy and the neighbor
proximity of each node. We efficiently apply our algorithm
over a networking protocol that extends the lifetime of the
wireless sensor network. The protocol efficiently groups lo-
cal sensor nodes that locally send their data to a one of them
called coordinator which in turn aggregates these data and
sends it to the far base station. The coordinator is itera-
tively changed depending upon the residual energy which is
accurately estimated by our algorithm.

3. PROBLEMS FORMULATION
We will try in this section to formally define the related
problems to our algorithm.

3.1 The K -center Problem
Given a set P of n points P = {p1, . . . , pn}, a distance func-
tion d(pa, pb) ≥ 0 satisfying the triangle inequality and an
integer k < n, the k -center set is C ⊆ P such that |C| = k.
The k -center problem is to find a k -center set C that min-
imizes the maximum distance of each point p ∈ P to its
nearest center in C; i.e., the set which minimizes the quan-
tity maxp∈P minc∈Cd(p, c). The well-known k -median clus-
tering problem is the the minsum variant of this problem
where we seek to minimize

∑
p∈P minc∈Cd(p, c) [10].

3.2 The Incremental Clustering Problem
Let S = {c1, c2, . . . , ck, R} be a current solution of a k -
center clustering algorithm A applied on n input points that
are arriving to the algorithm one by one in a sequence of
updates. A is an incremental clustering algorithm if it can
always maintain a valid solution over the flow of stream. In
other words, whenever a new point arrives to the algorithm
it should either be assigned to one of the clusters indicating
the validity of current clustering, or it does not fit in any
of the current clusters then the current S must be changed
into another solution S′ such that this new point is assigned
to some cluster in the new solution S′. S′ can differ from S
by the centers, radius or by both of them.
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Figure 2: An example of a distributed k-center clus-
tering for k=3 clusters of data coming from d=4
sites, the coordinator applies another k-center clus-
tering over the k × d centers sent from the sites.

3.3 The Distributed Clustering
In distributed clustering we track each sensor node data lo-
cally, process it and then combine the results in a central
node or a coordinator. The target is to minimize the commu-
nication and share the resources. We define the distributed
clustering problem. Let 1, 2, . . . , d be distributed sites,
each site i applies a clustering algorithm Ai on his stream
input of data Xi and produces a solution Si. It is required
to perform a global clustering of all Xi; i = 1 . . . d input
streams distributed over the sites. One efficient solution to
do that is to have a central site which collects the union⋃d

i=1 Si and answers the querying or monitoring requests
of the whole input streams. It is also possible that a fur-
ther clustering algorithm B at the coordinator to be applied
on

⋃d
i=1 Si. In the distributed k -center clustering problem

we will consider in this paper, the solution of Ai at each
site i is Si = {ci1, ci2, . . . , cik, Ri}, and on the coordina-
tor side, we perform another k -center clustering algorithm
over the whole k centers coming from the whole d sites, i.e.,⋃d

i=1{ci1, ci2, . . . , cik}. When applying incremental cluster-
ing algorithms, continuous updates with the new solutions
must be sent from the sites to the coordinator. Figure 2 il-
lustrates an example where the coordinator applies another
k -center clustering over the k×d centers sent from the sites.

3.4 The Problem of K -center Clustering with
Outliers

Taking the existence of some outliers in the input stream
into account is a natural consideration. Since data is often
noisy and this can dramatically affect the quality of the so-
lution if not taken into account. This particularly applies
to the k -center objective function which is extremely sensi-
tive to the existence of points far from cluster centers [13].
This sensitivity has two effects: (a) On the clustering qual-
ity which appears in Figure 2 for example in site 3 where
the cluster on the left has a bigger clustering radius (worse
clustering quality) because of not considering one point too
far from the center as an outlier. And (b) On the energy
consumption in the distributed model since outliers causes
current solutions to be invalid and need to updated with the
coordinator. Formally in the k-center clustering prob-
lem with outliers we group m out of the n input points

into the k clusters by dropping z = n−m points, the target
is to minimize the clustering radius. The decision of labeling
those z points as outliers is done when they are farther than
R from the current k centers and the number of neighbor-
ing non-clustered points is not “enough” to establish a new
cluster.

3.5 The Energy Cost Model
Considering sensor nodes that contain sensing, processing
and radio parts. The total energy consumption E of a sensor
node can be defined as:

E = Ecomp + Etransc + Esensing + Esleep (1)

where:

• Ecomp = Eproc + Eacces: the energy consumption of
the computations, divided into Eproc the consumption
of processing done by the microprocessor and Eacces

the energy cost of accessing an external memory to
load or store the data.

• Etransc = Et + Er: the energy consumption of trans-
mitting Et and receiving Er done by the radio.

• Esensing: the energy consumption of the sensors.

• Esleep: the energy consumption when the micropro-
cessor is in the sleep mode.

The energy consumption of each part depends both on the
time and current draw of this part when it is active. By
considering both Ecomp and Etransc:

Ecomp = Eproc + Eacces = V · Ic · tc + V · Ia · ta (2)

Etransc = Et + Er = sst · V · It · tt + V · Ir · tr (3)

Where:
V : the working voltage of the sensor node
Ic: the current draw of the microprocessor in the active
mode
tc: the time in which the microprocessor is running
Ia: the current draw of accessing the external memory
ta: the time taken to access the external memory
sst: the transmitting signal strength of the radio
It: the current draw of the radio when transmitting
tt: the time when the radio is transmitting
Ir: the current draw of the radio when sending
tr: the time when the radio is sending

Let ct, cr be the size of the data to be transmitted or re-
ceived, and ftransc be the radio speed, then: tt = ftransc · ct

and similarly: tr = ftransc ·cr, this makes Equation (3) looks
like:

Etransc = Et + Er = ftransc · V (sst · It · ct + Ir · cr) (4)

Usually in sensor nodes, the current draw of the micropro-
cessor unit Ic is too small compared to Ia, It and Ir, in ad-
dition, the microprocessor speed is also too big compared to
ftransc or the external memory bus speed. All that together
makes Etransc and Eacces too big compared to Ecomp in
the sensor node. This highlights the importance of reducing
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both Etransc and Eacces in an in-sensor-node energy-aware
clustering algorithm. Eacces is reduced by limiting the need
to access the external memory as much as possible, a target
which can be achieved by making as less as possible passes
over the input data. And from the cost model in Equation
(4), it can be seen that Etransc can be reduced by reducing
ct and cr the size of the data to be sent or received, while
an energy aware routing protocol tries to reduce sst.

4. THE EDISKCO ALGORITHM
In the section we present the Energy-efficient Distributed In-
Sensor K -center Clustering algorithm with Outliers EDISKCO.
Each local sensor node receives its input stream through
its sensors and produces a k -center clustering solution to it
by considering the existence of outliers and sends this solu-
tion to the coordinator. The coordinator performs another
clustering algorithm to the solutions coming from the sites.
Therefore, the input streams are processed at each node lo-
cally, and a global clustering of all sensors data is performed
globally in the coordinator . We will describe the algorithm
on the node side, the coordinator side and on the server
side. We introduce a special heap structure for storing a
k + z members, each member cj ; j = 1 . . . (k + z) in this
heap represents a cluster, where: cj .center represents the
center of this cluster and cj .count represents the number
of members inside this cluster (density). The members in
this heap are arranged in a descending oder according to
cj .count. The member on top of the heap where (j = 1)
represents the cluster with the highest density.

We define the following functions on h:

• maintain(h): applied after each change in cj .count;
j = 1 . . . k + z such that if j > q then countq ≥ countj

for all q = 1 . . . k + z and j = 1 . . . k + z.

• size(h): returns the number of the members in h
which can be any value between 0 and k + z.

• get(h,j): returns the member j from the heap.

• delete(h,j): deletes the member j from the heap and
directly maintains the heap.

• insert(h,p): inserts an input point p from the stream
in h, (see Algorithm 1). It scans the members of h
beginning by the high dense ones. When a cluster is
found where p is not further than R from its center,
this cluster’s counter is incremented by one, and p is
forgotten. If p was further than R from all available
cluster centers and there was less than k + z members
in h, then a new cluster is established with p is its
center. Otherwise an error is returned for not having
a place to add p.

4.1 On The Node Local Side
Each node i receives an input stream X(i) and runs the
NodeSideEDISKCO algorithm (see Algorithm 2) and sends
updates to the coordinator with k center outlier-aware clus-
tering representation of X(i) in addition to the correspond-
ing radius Ri. Whenever an input point p is received, the
algorithm applies the insert(p, h) function. If p fits in one of
the available clusters then its member counter is increased,

Algorithm 1 insert(h,p)

In A heap h of current clusters and an input point
p from the stream

Out 0:if OK, j: if p is a new cluster in position j or
err:if there is no place to add new cluster p

1. for j = 1 to size(h) do
2. if d(p, cj .center) ≤ R then
3. cj .count+ = 1
4. maintain(h)
5. return 0
6. end if
7. end for
8. if size(h) < (k + z) then
9. cj .center = p

10. cj .count = 1
11. return j
12. else
13. return err
14. end if

if not then it is necessary to establish a new cluster contain-
ing p as its center. We limit the number of clusters to be
established to (k+z): k most dense clusters for representing
the solution and z lowest dense centers for representing the
outliers. The main target of our algorithm is to reduce the
communication with the coordinator by excluding outliers
from final solution, so only if this new established cluster
falls in the first k most dense clusters then an update is
sent to the coordinator containing new center signal and
the point p. If we need to establish a new cluster for p and
we already have (k + z) clusters, then the current clustering
is not longer valid and the solution needs to be maintained.
The node i does this by increasing the current radius. In
order to select the best new radius size, the node i sends
a radius increase request message to the coordinator. The
coordinator in turn replies to i with an acknowledgment mes-
sage with the biggest clustering radius it has noticed from all
nodes (Rglobal). Node i buffers its input points from X(i) till
it receives the acknowledgment from the coordinator. When
it receives it, the node i selects max{Ri(1 + ε

2
), Rglobal} as

the next radius, and starts scanning the available clusters in
h beginning with the highest density cluster by comparing
the distance between their centers with the new Ri. If a
center j +1 is less than the Ri away from the center j where
j = 1 . . . k + z, then the cluster member j + 1 is deleted and
the counter of the cluster j is increased, and j is compared
with the new member in j +1 again. If the member in j +1
is farther than Ri from j, then j + 1 is kept and the same
comparison happens between j + 1 and j + 2. Finally, we
take the most dense l < k resulting clusters available and
delete the others. The last scanning procedure guarantees
that we are keeping the effect of the most l dense clusters
which appeared in history solutions. On the other hand,
taking only l clusters will leave a space for the establishing
new clusters if there was a new trend in the input stream.
This is very essential for incremental clustering algorithm on
the one side, on the other side this will reduce the number of
radius increase requests and consequently the energy con-
sumption of the node.
In the initialization phase of the NodeSideEDISKCO algo-
rithm (not shown in Algorithm 2 for readability), the node

43



increases the radius without contacting the coordinator un-
til

∑k
j=1 cj .count ≥ n, where n is the minimum number of

points that we want to represent using the k center. Only
in this case the current solution and radius are valid and
can be sent to the coordinator. The algorithm continues
the comparison on the buffered input points from X(i) and
sends the resulting centers with the used radius to the coor-
dinator. The decision of sending a radius increase request
to the coordinator is made also if the total number of points
which considered to be in the outliers became more than o.
Having more than o outliers close to each other in z or less
clusters means that the decision of considering those points
as outliers is not longer valid and needs to be changed by a
new clustering. Because the coordinator is performing more
communication and computation tasks, our algorithm is also
aware of iteratively changing the coordinator in order not to
have one node exhausted and died. The decision of choosing
the node i as the next coordinator is made by the server (as
we will see) based on the residual energy of all nodes. In
this case, the server sends a next coordinator message to i.
The node i saves its local solution Clocal and switches to the
coordinator algorithm and a new phase begins.

Algorithm 2 NodeSideEDISKCO(Xi, k, z, o, l, ε)

In An input stream Xi, num of clusters k, outlier
clusters num z, maximum outliers num o, num
of most dense clusters l and step size ε

Out update the coordinator with the new opened
clusters centers and radii

1. Xi(t) → p, c1.center = p, c1.count = 1, R = Rmin

2. while there is input stream Xi(t) do
3. Xi(t) → p
4. fit = insert(p, h)
5. if next coordinator signal from server then
6. Save current local centers in Clocal

7. Switch to CoordinatorSideEDISKCO
8. end if
9. if fit �= err and 0 < fit ≤ k then

10. Send the new center get(h, fit) with a
new center signal to the coordinator.

11. end if

12. if fit == err or
∑size(h)

j=k+1 cj .count > o then
13. Send radius increase request to coordinator
14. while there is no reply from coordinator do
15. Buffer incoming input points from Xi

16. end while
17. R ← max{R(1 + ε

2
), Rglobal}

18. while j < size(h) do
19. if d(cj .center, cj+1.center) ≤ R then
20. cj .counter + +, delete(h, j + 1)
21. else
22. j + +
23. end if
24. end while
25. Keep only the most l dense centers in h.
26. Run this algorithm on buffered points.
27. Ci = {c1.center, c2.center, . . . , ck̂.center}
28. Send Ci, Ri as an update to the coordinator
29. end if
30. end while

4.2 On The Coordinator Side
The coordinator receives the local solutions Ci, radii Ri

and radius increase requests from the nodes and performs
the CoordinatorSideEDISKCO algorithm (see Algorithm 3).
When a new phase begins, the new coordinator receives the
global solutions Cglobal and the global radius Rglobal from
the previous coordinator. Then the new coordinator an-
nounces himself to the other nodes as the new coordinator.
The coordinator continuously performs the Furthest Point
algorithm [9] on the solutions Ci arriving from the sites. It
starts by applying it on its own local solution Clocal, and
then on Ci. The coordinator saves always the largest radius
used by a node as the Rglobal and whenever any node i wants
to increase its clustering radius, the coordinator replies an
acknowledgment with Rglobal. The coordinator also adds
the new centers cij .centers arriving from the nodes to the
current solution.
The coordinator keeps a special space for saving summary
about the energy consumption of each node i. The to-
tal number of centers that were sent from a node i and
the total number of radius increase requests sent from a
node i during this phase are saved under numCentersi and
numRequestsi respectively. These are important for the
server to calculate the total energy consumption of each
node including the coordinator during this phase. The server
sends from time to time consumption update requests to the
coordinator which in turn replies with the them. According
to the residual energy of each node and the coordinator,
the server makes a decision of changing the current coordi-
nator by sending chg coordinator message to it, with the
id of the next coordinator. In case of having a huge num-
ber of nodes, the server can group the nodes into different
groups each covered by one coordinator, this is to avoid a
possible collapse of a single coordinator due to the heavy
messages traffic or the too big data to be saved in memory.
On idea to do this is by considering the -already known by
the server- spatial information of the node in making these
groups and then considering the residual energy when decid-
ing the next coordinator of each group. On the local side of
each group, since each coordinator is transceiving data us-
ing minimal sending strength, then this will guarantee that a
node will be covered by only one coordinator. It might hap-
pen that a node receives more than one I am coordinator
signal, then it decides to be covered by the coordinator with
the strongest signal, which is basically its group coordina-
tor. Before the end of the next phase, the coordinator send
Cglobal and Rglobal to the next coordinator, and switches to
the node algorithm.

4.3 On The Server Side
The far server is responsible for selecting the coordinator
for the next phase according to the residual energy in each
node. All of the nodes start with the same level of energy.
The server starts by randomly selecting one of them as the
coordinator of this phase. And then from time to time,
the server collects the numCentersi and numRequestsi of
each node from the coordinator. The server uses these in-
formation and the Equation (1) to estimate the energy con-
sumption of each node, and also the coordinator. All nodes
are sensing samples with the same frequency, so the server
can estimate the total number of points taken in this phase
numPointsi.
The coordinator is collecting all Ci, requests from the node
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Algorithm 3 CoordinatorSideEDISKCO(Ci, Ri, cij .center)

In solutions Ci, Ri, new opened cluster centers
cluster increase requests from node i; i = 1 . . . m

Out send ack and Rglobal to nodes, maintain
Cglobal, Rglobal and send them to next coordinator

1. if this is not the first coordinator then
2. Receive Cglobal, Rglobal from last coordinator
3. end if
4. Broadcast I am coordinator signal to all nodes
5. Cglobal ← FurthestPoint(Cglobal, Clocal)
6. if radius increasei do
7. Send to node i an ack with Rglobal

8. Receive Ci, Ri from node i
9. Cglobal ← FurthestPoint(Cglobal, Ci)

10. Rglobal ← max{Rglobal, Ri}
11. end if
12. if new centeri do
13. Cglobal ← FurthestPoint(Cglobal, {cij .center})
14. end if
15. if consumption update received from server then
16. Send {numCentersi, numRequestsi} for all

i = 1 . . . m nodes during this phase to server
17. end if
18. if chg coordinator received from server then
19. Send Cglobal, Rglobal to next coordinator
20. Switch to NodeSideEDISKCO using Rglobal

21. end if

and replying with the acknowledgments and Rglobal to each
request. On the other hand it is answering the queries of
the far server using its full sending strength and performing
more complicated multipass k -center clustering algorithm
over Ci’s. Thus it is consuming much more energy compar-
ing to the normal nodes. If we keep using the same coordina-
tor, it will die after a while, and we will lose the connection
to the other still alive nodes.
The target is to change the coordinator to the node that
contains the most residual energy, such that all of the nodes
in the network will die as close as possible to each other.
This will let us make maximum use of the whole network
lifetime.
The server assumes the following worst cases: (a) All the
numCentersi points needed k comparisons until they were
placed in a new cluster and then sent, (b) All the (numPointsi−
numCentersi) points needed (k+z) comparisons until they
were saved and (c) Only l centers were sent at once to the
coordinator after sending raduis increase to it, while the
other (numCentersi − l×numRequestsi) were sent one by
one to the coordinator during this phase. Although these
conservative assumptions might be a little bit far from the
real case, the server can continue using the last coordinator
even if it was supposed to die as long as it is really still alive.

4.4 Lower Bounds of EDISKCO
EDISKCO algorithm was mainly motivated by the Global
Parallel Guessing (Global-PG) algorithm which has an al-
together (4 + ε)-approximation to the optimal clustering
quality to the global optimal solution [6]. On the coordi-
nator side, both PG and EDISKCO algorithms are using
the Furthest Point algorithm which has a 2-approximation
to the optimal clustering (see [6] for proof). After sending

Table 1: Total energy consumption of EDISKCO
and Global-PG for each dataset in Joule

Dataset Size Nodes EDISKCO Global-PG
RW 42000 19 573382.4 587015.5

i9-Sensor 40589 19 547270.2 558121.8
Physio 24000 12 205970.6 214380.8

the first solution to the coordinator, our algorithm incre-
mentally maintains a k -center solution for at least n input
points. The solution stays valid unless we have more than z
clusters of outliers or more than o input points assigned as
outliers. Following the same way used in proving the lower
bound of the parallel guessing algorithm in [6] one can proof
that the NodeSideEDISKCO finds a (2+ε)-approximation to
the optimal k -center clustering of n input points. EDISKCO
does not exclude the non-outlier points from the final solu-
tion, it simply delays the decision of increasing the radius
until one is sure that those points are not really outliers.
EDISKCO then either considers them in the final solution
if they have formed a dense cluster, or reclusters taking all
of them into consideration. By applying the Furthest point
algorithm on the solutions on coordinator side which has a 2-
approximation, the EDISKCO algorithm finds an altogether
(2+ε)+2 = (4+ε)-approximation of the optimal global clus-
tering solution, by saving only (k + z) points and making a
maximum of (k + z) comparisons for each input point. Due
to its insensitivity to the first input points and outliers in
addition to its incremental nature compared to Local-PG,
we will show in the next section that our algorithm has a
better clustering quality and energy consumption than the
Global-PG.

5. EXPERIMENTS
In order to evaluate the performance of EDISKCO, we per-
formed extensive experiments on both synthetic and real
data. For comparison, we have chosen the Global-PG as a
single-pass distributed k -center clustering algorithm on the
node sides which applies also the furthest point algorithm on
the coordinator side. In order to have fair results, we have
implemented our suggested node-coordinator-server model
on the Global-PG. We have implemented simulations of both
algorithms in Java.

We have chosen one synthetic dataset and two real world
datasets, we give here a small description of each.
Synthetic data set: RandomWalk (RW)1 A synthetic
data set based on the random walk model. The increments
between two consecutive values are independent and iden-
tically distributed. Each increment: ti+1 is produced by
randomly adding or subtracting from ti a uniformly random
value from the interval [1,10] . We generated 19 different
data sets each for one node, each containing 42,000 mea-
sures. Subsequently, to produce a natural outliers effect,
we replaced randomly selected vales (4.5% of the dataset
size) with noise values, uniformly at random in the interval
[min, max] of the dataset.

Real Dataset: I9 Sensor Dataset1 We have collected a

1dataset is available under
http://dme.rwth-aachen.de/EDISKCO
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Figure 3: Total number of requests (a)-(c), Rglobal (d)-(f) of the: RW, i9-Sensor and Physio datasets
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Figure 4: Parameter sensitivity (a)-(b) in RW, (c) in i9-Sensor

real data from a sensor network. We deployed 19 TelosB
motes in our department area. All motes were programmed
to collect temperature samples each 30 seconds and send
them directly to a sink connected to a computer. The data
was collected for more than 14 days between the 10th and
the 23rd of April 2009 and forming 40,589 measures of each
node. The minimum difference between raw measures is 1.
Nodes were not always able to communicate perfectly with
the sink due to collisions or loss of signal, this appeared in
2.9% of the total data. Instead of each measure that did
not reach the sink, we introduced a noise data. In a dif-
ferent way of adding outliers to that of RW, a uniformly at
random value from the interval [0.1 × (max − min), 0.25 ×
(max−min)] was selected and then uniformly at a random
either added to max or deducted from min, the resulting
value was inserted instead of the lost measure.

Real Dataset: Physiological Sensor Dataset This data
was presented in ICML 2004 as a challenge for information
extraction from streaming sensor data. The training data
set consists of approximately 10,000 hours of this data con-

taining: userID, gender, sessionID, sessionTime, annotation,
characteristic 1, characteristic and sensor[1..9]. We have ex-
tracted the first 24,000 readings of sensor2 by userID. We
have chosen the data of 12 different userIDs with the same
gender, each representing a node. We did not add outliers
to this dataset as they are naturally exist in such datasets.

5.1 Evaluation Criteria and Methodology
Three criteria were chosen to evaluate our algorithm, namely:
Clustering Quality: We have selected the global cluster-
ing radius as a measure to evaluate the quality of EDISKCO
with Global-PG. In k -center clustering, better clustering
uses smaller radius to cover all of the input points.
Energy Consumption: Two measures were selected to
evaluate the energy efficiency of EDISKCO: (a) Total num-
ber of reclustering events, which tells about the total number
of costly requests sent from all the nodes to the coordina-
tor for increasing the current clustering radius. (b) Total
energy consumption of the whole network in Joule based on
the detailed cost model suggested in Equation (1) and the
datasheets of TelosB mote, TI MSP430 microcontroller and
the CC2420 radio chip in addition to the TinyOS 2.0.2 op-
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erating system installed on the motes.
Parameter Sensitivity: We wanted to see the effect of
varying ε, k and z parameters on the previous measures of
our algorithm.

5.2 Experimental Setup and Results
For performing the clustering quality and the energy
consumption evaluations, we have selected for our algo-
rithm for all datasets: k = 200, z = k

4
, ε = 0.5, the number

of the most dense clusters to be sent to the coordinator after
each cluster increase: l = k

4
, the maximum allowed number

of input points after which the node can send a solution to
the coordinator: n = 400, the maximum allowed number of
outliers in total: o = 10%n. For the Global-PG we have
selected the number of points collected at the beginning to
perform the parallel guessing equals to our n = 400 and also
ε = 0.5. We performed the evaluations on a 3.00 Ghz core
Duo, 4 GB RAM machine.
For both algorithms we need to set the initial radius Rmin(P ) =
minp,q∈P,p�=qd(p, q) for each dataset. This is usually possible
since sensor nodes are dedicated for certain measurements
and that we have experts in the field who can decide this
value. Mostly this value is already determined by the pre-
cision of the sensors. For the i9 sensor dataset Rmin equals
to 1, but for the physiological and RW datasets this was too
small comparing to Rmax. The direct selection of the Rmin

in those two datasets was extremely affecting running time
of the Global-PG algorithm due to the enormous number of
guesses to be done in this case. Even the desktop machine
we used for evaluation was hanging. This is one of the main
drawbacks of Global-PG when applied on resource limited
sensor nodes. In contrast, we have not observed that effect
with our algorithm. For the experiments we have selected
Rmin equals to 1 for the RW and equals to 0.0001 in the
physiological dataset.
For performing the parameter sensitivity evaluations, we
selected k = 100 other parameters are same as above. For
both algorithm we applied our suggested routing protocol for
changing the coordinator, the server was lazily querying the
current coordinator for numCenteri, numRequestsi. For
the three datasets and the two algorithms, Table 1 repre-
sents the total energy consumption in Joules, while Figure 3
depicts the accumulated total number of reclustering events
and the current global radius with respect to the flow of
input stream.

Figure 3(a) shows that EDISKCO sends 85% less updates to
the coordinator than Global-PG, and Figure 3(d) shows that
EDISKCO achieves 55% better clustering quality of the RW
data. Because all of the guesses are done on first received
input stream, Global-PG needs to update the coordinator
whenever it receives a new point which does not fit in the
current clustering. This results in a heavy node-coordinator
communication from one side, and a bigger clustering radius
to include the new points on the other side. This effect ap-
pears even in the dataset which does not contain introduced
outliers like Physio dataset (Figures 3(c) and 3(f)), where
EDISKCO achieves 93% less number of updates and 14%
to 58% better clustering quality. Another reason of this
low updates number of EDISKCO is its scanning method
when inserting a new point, which starts by scanning dens
clusters that are more likely to contain additional points.
In consequence, EDISKCO consumes less total energy than

Global-PG.
Table 1 shows that EDISKCO saves 2.32% comparing to
Global-PG when applied on RW dataset and 2%, 3.9% when
applied on Sensor-i9, Physio datasets respectively. The sav-
ing is considerable for extending the lifetime of the whole
network. In most of the updates, Local-PG sends only the
one new center.
Our cost model suggests a direct relation between Etransc

and the size of data to be sent. This explains the differences
between improvement percentages of Table 1 and Figure 3.
In reality, heavy communication consumes more energy due
the higher possibility of collisions and signal loss.
In Table 1, Global-PG consumes additional energy in the
Physio dataset due to the huge number of guesses done at
first when considering Rmin = 0.0001. Figures 4(a) and 4(b)
present the effect of changing k parameter in the interval [0,
250] and the z parameter in the interval [0, k] on Rglobal in
the RW dataset.
Figure 4(c) depicts the effect of changing the accuracy pa-
rameter ε on the single node usage in the i9-Sensor dataset.
It shows that the less the clustering accuracy, the less the
energy consumption, a natural relation which highlights the
significance of our approach by achieving better clustering
quality in combination with a longer lifetimes.

6. CONCLUSIONS AND FUTURE WORK
In this work we present our novel energy efficient k-center
clustering solution. As a single-pass algorithm we develop an
incremental processing which is aware of outliers in the data.
We enhance the clustering quality by excluding these outly-
ing objects from the clustering. Furthermore, we reduce the
cost of intensive reclustering operations and achieve lower
energy consumption. For the limited energy resources of sen-
sor networks our energy efficient computation induces longer
lifetimes of the network. In thorough experiments we present
the high clustering accuracy and low energy consumption of
our approach. Furthermore, our algorithm is also aware of
limited memory resources in todays sensor nodes.

In future work, we aim in finding a way for predicting the
best values of k and z for the next phase based on the data
received in the last phase, such a work can be done on the
server side using the prediction strength method developed
by Tabshirani et al. [18].
We see further requirements for efficient clustering on sen-
sor networks for high dimensional data. In recent applica-
tions, sensor nodes include many attributes as measuring
and storing of data has become very cheap. Without think-
ing about the relevance of attributes during data collection,
mining tasks have to cope with high dimensional data. In
such data, distances grow more and more alike due to an
effect termed the “curse of dimensionality” [2]. The full data
space is thus sparse and all objects seem to be outliers as
no global clusters can be observed. In future work we aim
at tackling curse of dimensionality by clustering in subspace
projections. We will extend our subspace clustering [1, 14]
and outlier mining [15] approaches to sensor networks. Con-
sidering only relevant measurements in projection may lead
to further reduction of transmission costs as irrelevant sensor
measurement are not transmitted any more.
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ABSTRACT
Monitoring biomass over large geographic regions for sea-
sonal changes in vegetation and crop phenology is important
for many applications. In this paper we a present a novel
clustering based change detection method using MODIS NDVI
time series data. We used well known EM technique to find
GMM parameters and Bayesian Information Criteria (BIC)
for determining the number of clusters. KL Divergence mea-
sure is then used to establish the cluster correspondence
across two years (2001 and 2006) to determine changes be-
tween these two years. The changes identified were further
analyzed for understanding phenological events. This pre-
liminary study shows interesting relationships between key
phenological events such as onset, length, end of growing
seasons.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning; I.5 [Pattern Recog-
nition]: Clustering

Keywords
Clustering, EM, GMM, Remote Sensing, MODIS, NDVI

1. INTRODUCTION
The launch of NASA’s Terra satellite in December of 1999,
with the MODIS instrument aboard, introduced a new op-
portunity for terrestrial remote sensing. MODIS data sets
represent a new and improved capability for terrestrial satel-
lite remote sensing aimed at meeting the needs of global
change research. With thirty-six spectral bands, seven de-
signed for use in terrestrial application, MODIS provides
daily coverage, of moderate spatial resolution, of most areas
on the earth. Land cover products are available in 250m,
500m, or 1000m resolutions [4]. MODIS land products are
generally available within weeks or even days of acquisition
and distributed through the EROS Data Center (EDC) and
are currently available free of charge.

(c) 2009 Association for Computing Machinery. ACM acknowledges that
this contribution was authored by an employee, contractor or affiliate of the
U.S. Government. As such, the Government retains a nonexclusive, royalty-
free right to publish or reproduce this article, or to allow others to do so, for
Government purposes only. SensorKDD-09, June 28, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-668-7...$5.00

The availability of multi-temporal MODIS imagery has made
it possible to study plant phenology, quantitatively describe
NPP patterns in time and space, and monitor and map nat-
ural resources at regional and global scales. MODIS allows
users to identify vegetation changes over time across a region
and estimate quantitative biophysical parameters which can
be incorporated into global climate models. Even though
several cumulative vegetation indices can be found in the
literature, in this study we used MODIS NDVI temporal
profiles.

NDVI Profiles: A temporal profile is a graphical plot of
sequential NDVI observations against time. These profiles
quantify the remotely sensed vegetation’s seasonality and
dynamics. These profiles can be described with simple pa-
rameters, like the amplitude, mean, and standard deviation.
We can understand the onset and peak of greenness and the
length of growing season from analyzing these profiles.

MODIS data has been extensively used to study vegetation
and crop phenological characteristics [5, 7], monitoring [11].
In this study, we tried to find the changes using automated
unsupervised learning technique and relationships between
key phenological events with respect to the changes. Rest
of the paper is organized as following. In Section 2, we
present the preprocessing techniques applied to automate
the change detection and knowledge discovery processes.
Clustering technique is presented in Section 3 followed by
change detection process in Section 4. Summary of results
were presented in Section 5.

2. DATA PRE-PROCESSING
Although remotely sensed imagery data are a common base
for the development of GIS implementations, the use of
MODIS data, and much of the data from NASA’s Earth
Observing System, has been limited in part by technical dif-
ficulties. A MODIS users survey at the Fall 2000 meeting
of the American Geophysical Union revealed that the major
limitations to access to this data included difficulty transfer-
ring and subsetting the large data files and not having soft-
ware to handle the HDF-EOS file format in which MODIS
files are delivered [3]. In addition, the data are delivered in
an Integerized Sinusoidal Grid, which is a new projection,
not well supported by most GIS software packages [10].
Though most of these problems have been solved, MODIS
data requires preprocessing before data mining techniques
can be applied. We have streamlined the data are prepro-
cessed to reduce complexity and duplication of efforts. Pre-
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processing tasks included 1) converting the data to a format
recognizable by GIS software and reprojecting data into a
UTM projection, 2) mosaicking scenes, 3) subsetting the
data to the area of interest, 4) rescaling 16-bit data to 8-bit,
5) sampling mechanisms to extract random samples for clus-
tering and classification, 6) atmospheric corrections, and 6)
exporting the data to generic formats accessible by Matlab,
R, and Weka systems. We now describe few common pre-
processing techniques applied before performing clustering
and change characterization.

MODIS Land Products: The MODIS land products are
derived from the data available through the EROS Data
Center (http://edcdaac.usgs.gov) and are delivered in HDF-
EOS format projected onto an integerized sinusoidal grid.
The first step in preprocessing these data for the MODIS
download tool is to reproject them into a UTM zone 15
North projection using the MODIS reprojection tool [10],
which outputs reprojected data in geoTiff files. First, image
scenes covering the Iowa state are mosaicked into one scene.
Next, the images are subset to the region of interest (state
boundaries). Finally, the data are rescaled from 16-bit into
8-bit and output in generic binary format. The scaling pro-
cedure depends upon the valid data range for the product
being processed and are given in Table1.

Producing 250m NDVI: Though 250m NDVI 16-day com-
posite images are readily available (e.g., EROS Data Cen-
ter), several applications, such as, biomass monitoring and
change characterization requires analyzing images at a finer
temporal resolutions. The 250m NDVI data are derived from
250m Level 1B radiances downloaded from the Goddard
DAAC (http://ladsweb.nascom.nasa.gov/) or the MODIS
Direct Broadcast at the University of Wisconsin-Madison
Space Science and Engineering Center (http://eosweb.ssec.
wisc.edu/cgi-bin/eosdb.cgi). The 250m Radiance and Ge-
olocation product is delivered as unprojected 5-minute swath
segments. The normalized difference vegetation index (NDVI)
is calculated as

NDV I =
NIR−Red
NIR+Red

(1)

where NIR are near infrared d and red band reflectance val-
ues [6]. Finally, any x number of days maximum value com-
posite is produced by selecting the highest NDVI value for
each pixel over the compositing period.

2.1 Atmospheric Correction
The continental United States biweekly MODIS dataset ac-
quired from the USGS EROS Data Center (EDC) is, in a
sense, atmospherically corrected by means of the Maximum
Value Compositing (MVC) algorithm used in its production.
This approach effectively eliminates most of the contamina-
tion. However, it also creates a bias toward higher NDVI
values at both the beginning and end of the crop growing
season. To solve this problem, we have adopted a simple
but effective method developed by [12], which is based on
a Fourier transformation [8].

Year-wise biweekly NDVI images were adjusted by using a
weighted least-squares fitting of a Fourier series as shown in

Figure 1. An example cloud-contaminated image is shown
in Figure 2, with the corresponding Fourier-adjusted image
shown in Figure 3.

Figure 1: Weighted least squares fit (smooth curves)
of Fourier series

3. GMM CLUSTERING
In this section we present a Gaussian Mixture Model (GMM)
based clustering algorithm. First, we generated 1000 ran-
dom point locations. From each of these locations, we ex-
tracted time series data from 2001 and 2006 MODIS NDVI
images. We assume that these samples were drawn from a
GMM. Now our objective is find the model parameters using
the time series data. As we do not know the number of clus-
ters, our second objective is to find the number of clusters
as well. We now present solution to these two problems.

3.1 Estimating the GMM Parameters
First we solve the model parameter estimation problem by
assuming that the training dataset Dj is generated by a fi-
nite Gaussian mixture model consisting of M components.
If the labels for each of these components were known, then
problem simply reduces to usual parameter estimation prob-
lem and we could have used MLE. We now describe a param-
eter estimation technique that is based on the well-known ex-
pectation maximization algorithm. Let us assume that each
sample xj comes from a super-population D, which is a mix-
ture of a finite number (M) of clusters, D1, . . . , DM , in some

proportions α1, . . . , αM , respectively, where
∑M
i=1 αi = 1

and αi ≥ 0(i = 1, . . . ,M). Now we can model the data
D = {xi}ni=1 as being generated independently from the fol-
lowing mixture density.
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Data Set Scaled from Scaled to
MODIS 500m, 8-day Surface 0.0 to 0.15 (bands 1,3,4) 1 to 255 (0 = fill value)
Reflectance (MOD09A1) 0.0 to 0.5 (bands 2, 5, 6)

0.0 to 0.3 (band 7)
MODIS 500m, 16-day Surface -0.2 to 1.0 1 to 255 (0 = fill value)
Vegetation Index (MOD13A1)
MODIS 100m, 8-dat LAI/fPAR 0 to 100 1 to 100 (255 = fill value)
Product (MOD15A2)
MODIS 250m, 15-day NDVI -0.2 to 1.0 1 to 255 (0 = fill value)
(derived from MOD02QKM)

Table 1: Scaling factors for MODIS data sets

Figure 2: Raw NDVI image contaminated by cloud
cover

p(xi|Θ) =

M∑
j=1

αjpj(xi|θj) (2)

L(Θ) =

n∑
i=1

ln

[
M∑
j=1

αjpj(xi|θj)

]
. (3)

Here pj(xi|θj) is the pdf corresponding to the mixture j
and parameterized by θj , and Θ = (α1, . . . , αM , θ1, . . . , θM )
denotes all unknown parameters associated with the M -
component mixture density. The log-likelihood function for
this mixture density is given in 3. In general, Equation 3 is
difficult to optimize because it contains the ln of a sum term.
However, this equation greatly simplifies in the presence of
unobserved (or incomplete) samples. We now simply pro-
ceed to the expectation maximization algorithm, interested
reader can find detailed derivation of parameters for GMM
in [1]. The expectation maximization (EM) algorithm at
the first step maximizes the expectation of the log-likelihood
function, using the current estimate of the parameters and
conditioned upon the observed samples. In the second step

Figure 3: Fourier-adjusted image

of the EM algorithm, called maximization, the new esti-
mates of the parameters are computed. The EM algorithm
iterates over these two steps until the convergence is reached.
For multivariate normal distribution, the expectation E[.],
which is denoted by pij , is the probability that Gaussian
mixture j generated the data point i, and is given by:

pij =

∣∣∣Σ̂j∣∣∣−1/2

e{−
1
2 (xi−µ̂j)tΣ̂−1

j (xi−µ̂j)}

∑M
l=1

∣∣∣Σ̂l∣∣∣−1/2

e{−
1
2 (xi−µ̂l)

tΣ̂−1
l

(xi−µ̂l)}
(4)

The new estimates (at the kth iteration) of parameters in
terms of the old parameters at the M-step are given by the
following equations:

α̂kj =
1

n

n∑
i=1

pij (5) µ̂kj =

∑n
i=1 xipij∑n
i=1 pij

(6)
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Σ̂kj =

∑n
i=1 pij(xi − µ̂

k
j )(xi − µ̂kj )t∑n

i=1 pij
(7)

We can now put together these individual pieces into the fol-
lowing algorithm (Table 2) which computes the parameters
for each component in the finite Gaussian mixture model
that generated our training dataset D.

Inputs: Dj , training dataset; M, the number of
clusters

Initial Estimates: Do clustering by K-Means, and
estimate initial parameter using MLE, to find θ̂

Loop: While the complete data log-likelihood im-
proves:

E-step: Use current classifier to estimate the
cluster membership of each data sample, i.e., the
probability that each Gaussian mixture component
generated the given sample point, pij (see Equation
4).

M-step: Re-estimate the parameter, θ̂, given
the estimated Gaussian mixture component member-
ship of each data sample (see Equations 5, 6, 7)

Output: Parameter vector Θ.

Table 2: Algorithm for Computing Parameter of Fi-
nite Gaussian Mixture Model Over Unlabeled Train-
ing Data

3.2 Estimating the Number of Clusters
In the previous section, we described a general technique
to estimate GMM parameters for any arbitrary number of
M -components (clusters) as long as there are sufficient num-
ber of samples available for each component and the covari-
ance matrix does not become singular. Then the question
remains, which M -component model is better? This ques-
tion is addressed in the area of model selection literature,
where the objective is to chose a model that maximizes a
cost function. There are several cost functions available in
the literature, most commonly used measures are Akaike’s
information criterion (AIC), Bayesian information criteria
(BIC), and minimum description length (MDL). A review
of these methods can be found in [9]. The common criteria
behind these models is to penalize the models with addi-
tional parameters, so BIC and AIC based model selection
criteria follows the principal of parsimony. In this study we
considered BIC as a model selection criteria, which is also
takes the same form as MDL. We also chose BIC, as it is
defined in terms of maximized log-likelihood which any way
we are computing in our parameter estimation procedure
defined in the previous section. BIC can be defined as

BIC = MDL = −2 logL(Θ) +m log(N) (8)

where N is the number of samples and m is the number of
parameters. For finding the number of clusters, we applied
the GMM clustering algorithm (Table 2) for different values
of M. The best model for which BIC is maximum gives us
the number of clusters.

3.3 Clustering
. Once the GMM is fitted to the training data, we can use
the model to predict labels for each cluster. The assignment
of label is carried out using the maximum likelihood (ML)
procedure. The discriminant function g(.) given by ML
principle is as following:

gi(x) = − ln |Σi| − (x− µi)t|Σi|−1(x− µi) (9)

For each pixel (feature vector), we assign a cluster label i, if
gi(x) is maximum over all cluster labels.

4. CHANGE ANALYSIS
In this section we present simple techniques to analyze the
changes between 2001 and 2006 MODIS NDVI images. First,
we applied the GMM clustering algorithm presented in the
previous section on 1000 samples extracted from each of
these time-series images. Both 2001 and 2006 NDVI sam-
ple data have yielded a GMM with 10 components each.
We then applied clustering technique (Section 3.3) to assign
cluster labels each pixel in the Iowa MODIS time series im-
age. Figure 4 shows the clustering results on 2001 image,
(a) shows the raw image, (b) shows the BIC values, (c) shows
the bivariate density plot of the GMM model for which BIC
is maximum (10 components), and (d) shows the clustered
image. Figure 5 shows the corresponding results for 2006
MODIS NDVI time series image data.

In order to identify changes, we need to establish the cor-
respondence between clusters found in image 2001 to the
clusters found in 2006. We now describe a novel technique
to establish the correspondence between the Gaussian mix-
ture models learned using the sample training data. We
used KL divergence measure to compute the distance be-
tween component Gaussians in both models. Table 3 shows
the pair-wise KL divergence across GMM components found
in 2001 and 2006 models.

We have chosen the shortest distance as the cluster match.
Table 4 shows the cluster matching based on shortest dis-
tance metric. Figure 6 shows the time series plots (cluster
means) between two clusters matched.

1 2 3
1 1 3 288.33
2 2 5 87.32
3 3 3 734.09
4 4 4 340.51
5 5 7 943.44
6 6 7 1585.55
7 7 7 1054.03
8 8 8 1233.87
9 9 9 1163.46

10 10 10 52869.90

Table 4: Matched Clusters Based on Shortest KLD

We selected a threshold of 1000 on KL divergence and treated
cluster pairs above this threshold as possible changes. The
cluster pairs starting with number 6 in the Table 4 were
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1 2 3 4 5 6 7 8 9 10
1 295.28 361.69 288.33 564.45 473.89 570.04 712.52 476.13 863.47 642.34
2 0.00 370.34 106.00 360.65 87.32 217.35 419.58 200.69 583.69 288.38
3 0.00 0.00 734.09 753.69 1101.01 950.31 867.11 883.32 982.57 1250.18
4 0.00 0.00 0.00 340.51 638.52 629.34 592.87 524.58 760.54 781.54
5 0.00 0.00 0.00 0.00 1507.34 1151.43 943.44 1051.31 993.30 1525.18
6 0.00 0.00 0.00 0.00 0.00 1996.87 1585.55 1849.75 1643.70 2770.96
7 0.00 0.00 0.00 0.00 0.00 0.00 1054.03 1151.13 1149.99 1680.90
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1233.87 1345.55 1811.13
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1163.46 1377.39

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 52869.90

Table 3: KL divergence between 2001 and 2006 GMMs

identified as possible changes. We used a simple technique to
identify these cluster pairs in the images. These pairs were
accounted for about 32% of the total pixels in the image.
The time series pair at each pixel location is then further
analyzed based on the following three phenological events:
green-up onset, peak/maturity, and dormancy onset. We
found key points in the time series based on the notion of ma-
jor inclines concept used in time series data compression [2].
These points were then used to compare to compare the dif-
ference in two dates. Our analysis shows that at 35% of lo-
cations, the green-up points between 2006 happened earlier
than the 2001. 50% of locations differed in the peak NDVI
(maturity) of which more than 60% 2006 occurred before
2001. We also observed slight increase in growing season at
18% of locations. We believe these changes are important
in understand changes in phenology. However, further re-
search is required to find the robustness of these techniques.
Especially there is a need to establish the onset periods with
ground truth data which is sparse and aggregated at best.
If there is strong correlation between ground observations
and NDVI based phenological events, then it may be possi-
ble to scale the algorithms presented in this paper to large
geographic regions and provide fine-grained and accurate in-
formation on crop growing patterns and changes across the
globe.

5. CONCLUSIONS
In this study we presented an unsupervised change detec-
tion technique. We used well known EM technique to find
GMM parameters and Bayesian Information Criteria (BIC)
for determining the number of clusters. The correspondence
between the GMM components across two different years is
established through the KL Divergence measure. Shortest
KL divergence is used to establish the cluster correspon-
dence. A threshold is used to identify the cluster which are
different between the two years. The changes identified were
further analyzed for understanding phenological events. Our
study shows interesting relationships between key phenolog-
ical events such as onset, length, end of growing seasons.
Further research is needed to extend the approach across
large geographic regions and to correlate the changes iden-
tified with the ground truth.
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(a) MODIS NDVI 2006
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ABSTRACT
Distributed PRocessing in Mobile Environments (DPRiME)
is a framework for processing large data sets across an ad-hoc
network. Developed to address the shortcomings of Google’s
MapReduce outside of a fully-connected network, DPRiME
separates nodes on the network into a master and workers;
the master distributes sections of the data to available one-
hop workers to process in parallel. Upon returning results to
its master, a worker is assigned an unfinished task. Five data
mining classifiers were implemented to process the data: de-
cision trees, k-means, k-nearest neighbor, Näıve Bayes, and
artificial neural networks. Ensembles were used so the clas-
sification tasks could be performed in parallel. This frame-
work is well-suited for many tasks because it handles com-
munications, node movement, node failure, packet loss, data
partitioning, and result collection automatically. Therefore,
DPRiME allows users with little knowledge of networking
or distributed systems to harness the processing power of
an entire network of single- and multi-hop nodes.

Keywords
Ad-hoc network, classifier, data mining, MapReduce, en-
semble.

1. INTRODUCTION
Technology is exhibiting a trend toward wireless. For

many, standards such as Bluetooth and Wi-Fi are replacing
their wired counterparts, and powerful mobile devices are
more popular than ever [1]. In other areas, there is a des-
perate need for real-time data analysis and extraction [2].
A government agency may need to quickly evaluate camera
data from an airport to determine if it is indicative of ter-
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not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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SensorKDD’09 June 28, 2009, Paris, France
Copyright 2009 ACM 978-1-60558-668-7 ...$5.00.

rorist activity. In another scenario, a financial institution
may need to check a customer’s credit card transaction for
evidence of fraud. These data mining applications demand
an immediate response. Processing large amounts of data on
the mobile devices that are present in these areas, however,
is taxing on their processors, memory, and batteries.

MapReduce is Google‘s solution to processing vast amounts
of data on many commodity machines. It does so by dividing
the machines into a master and many workers; the master
splits the work into many small pieces and is responsible
for coordinating the processing of each piece. MapReduce
is an example of distributed processing; by employing the
resources of the entire network, several less-powerful devices
can outperform a single device with greater processing ca-
pability and resources. Unfortunately, MapReduce possesses
several attributes that prevent it from being deployed in mo-
bile environments. For this reason, we developed DPRiME,
which utilizes this approach by partitioning the data into
manageable pieces and distributing them among available
wireless devices.

Much like Google’s MapReduce framework, DPRiME rep-
resents an abstract framework and associated implementa-
tion for processing large data sets in a distributed environ-
ment. The nature of mobile environments precludes several
important features of MapReduce, such as a fully-connected
network and shared storage space, from being implemented
on wireless devices. This served as the impetus for devel-
oping DPRiME as a framework for addressing the same
problem with a mechanism suited for wireless ad-hoc net-
works. DPRiME retains the relevant features of MapRe-
duce, with several necessary additions. Because DPRiME
automates data partitioning, task management, and com-
munications, it only requires the user to define the process-
ing task, data, and processing parameters during run-time.
Thus, no knowledge of the underlying workings of the sys-
tem is required.

1.1 MapReduce

1.1.1 Framework
Google developed MapReduce to simplify distributed com-

puting by separating data processing functions from the un-
derlying distribution and parallelization tools. With MapRe-
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duce, users simply specify a Map and Reduce function, and
the framework handles data partitioning, task assignment,
fault tolerance, and other aspects of the distributed com-
puting process. In this way, a user with no knowledge of
distributed systems could still harness the capabilities of a
large computing cluster [3].

The MapReduce process consists of two main parts: the
Map task, which takes a set of input key/value pairs and
produces an intermediate set of key/value pairs; and the
Reduce task, which merges all of the values for each distinct
intermediate key. An example of an input pair could be a
word to count and a string in which to search for it; in this
case, the intermediate pair would consist of this word and
its count. The reduce task would then produce a count for
all map tasks that searched for this word.

After the user specifies Map and Reduce functions, the
framework designates one machine as the master and the
rest as workers. MapReduce begins by partitioning the data
into manageable pieces. The master, which coordinates the
map and reduce tasks, assigns pieces of the data, as well
as the Map task, to idle workers. The Map workers parse
the data and pass them to the Map function, which produces
intermediate key/value pairs that are periodically written to
memory; pointers to the intermediate pairs are then passed
back to the master. When the master receives a pointer,
it relays it to a Reduce worker; the Reduce worker reads
the remotely stored key/value pairs into memory, sorts it
by intermediate key, and passes the intermediate values for
corresponding keys to the reduce function, which produces
an output for each intermediate key.

Several features within this process distinguish MapRe-
duce as a robust and efficient model: fault tolerance, task
granularity, and back-up. To address worker failure, the
master periodically pings its workers. If it does not receive
a response, it labels the worker as failed, cancels any task
the worker is processing, and resets the worker to an idle
state; the task the worker was processing is then reassigned.
Task granularity encompasses the idea of splitting the data
into many fine pieces. Doing so improves dynamic load bal-
ancing and also reduces the costs of worker failure. Back-up
is implemented when MapReduce nears completion. It con-
sists of the master assigning all currently running tasks to
idle workers; a task is completed when either the primary or
back-up worker finish. Back-up helps to mitigate the effects
of stragglers, machines that take an especially long time to
complete one of the final Map or Reduce tasks [3].

1.1.2 Limitations
MapReduce was designed and optimized to operate on

large clusters of commodity machines that are fully con-
nected over Ethernet. It reduces bandwidth usage by re-
laying data locations from Map workers to Reduce work-
ers through the master; the Reduce workers then read the
remotely stored data into memory. In doing so, MapRe-
duce relies on shared memory and fully-connected machines.
These features are not possible in mobile environments, in
which data can only be shared by physically passing data
over the network. In addition, every node in the network
is not connected to every other node, requiring data to be
transmitted to several nodes before reaching its intended
destination. For these reasons, we found it unproductive to
implement MapReduce for wireless environments.

2. DPRIME
To address the shortcomings of MapReduce in mobile en-

vironments, we found it necessary to develop a distributed
framework that retained MapReduce‘s key features while
incorporating communication and storage optimized for a
mobile environment. DPRiME uses a similar approach to
MapReduce—a master assigns portions of a data set to avail-
able workers, which process them using an assigned function.
Several important features, however, distinguish DPRiME
and make it ideal for deployment in mobile environments.

For this paper, DPRiME was used to distribute a classi-
fication task across a network, but it could easily be used
to distribute many other types of jobs. It has the bene-
fit of being able to process data stored on a single node or
distributed on nodes throughout the network.

2.1 Master Functionality & Worker Discov-
ery

A mobile device is designated as the master when the
user specifies an input data set and processing parameters.
Unlike the fully-connected computers that compose a clus-
ter, the ad-hoc network used in a mobile environment pre-
vents the master from knowing how many workers, if any,
are available at a specific time. To initiate the process, the
master broadcasts a PING message and listens for responses
from workers. After an interval where the master waits for
responses, it partitions the data according to the number of
available workers and assigns a section to each for process-
ing.

Much like in MapReduce, the master maintains data struc-
tures which track workers and assigned tasks. Each worker
is tagged with a WorkerTag instance that contains informa-
tion about the worker id, worker address, worker state, task
assigned, and elapsed time from the workerÕs last commu-
nication . These allow the master to track workers and tasks
throughout the DPRiME process, noting failed workers and
unfinished tasks for fault tolerance and backup.

2.2 Worker Functionality
Worker nodes, if available, respond to a master PING with

an AVAI response. The master then issues the worker a com-
mand packet (CMND) containing data and processing pa-
rameters. The master controls data processing by passing a
task identification number, from a group of pre-programmed
tasks, along with any required parameters for that task. In
addition, the master can specify whether the worker should
process locally stored data by passing the name of the file
where the data would be stored.

2.3 Execution Overview
When the user specifies a data set, processing task, and

processing parameters, DPRiME proceeds through the fol-
lowing sequence:

1. The master, begins by attempting to open the file con-
taining the data and reading them into memory. If the
data are smaller than a threshold value, the master
processes them itself.

2. Otherwise, the master pings its one-hop neighbors,
waits for responses, partitions the data according to
the number of responses, and sends a piece of the data
to each available one- hop neighbor.
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3. If no neighbors respond to the ping, the master pro-
cesses the data itself.

4. If there are no data to read into memory, the master
sends the name of the file that would contain data to
each one-hop neighbor.

5. If there are no data to read into memory and no one-
hop neighbors, the task terminates.

When a worker receives a task from its master, it proceeds
through the following sequence:

1. If any data were received, the worker begins by exam-
ining them. If the data are smaller than a threshold
value, it processes them itself.

2. Otherwise, it distributes the task like its master. If
there are no one-hop neighbors, the worker processes
the data itself.

3. After completing the processing task, the worker pro-
cesses local data in the same manner as its master.

4. Finally, it returns the results to its master.

Like MapReduce, DPRiME incorporates a back-up func-
tionality; it maintains a list of tasks, through which it iter-
ates. The master continually loops through the list and as-
signs any unfinished task to idle workers until every task is
completed; a task is completed when the first worker replies
with its result.

3. IMPLEMENTATION

3.1 DPRiME Protocol
Communication between devices was implemented in User

Datagram Protocol (UDP), with several key acknowledge-
ment and retransmission features built in for reliability. The
combination of UDP‘s unreliable packet delivery and the
mobility of workers in an ad-hoc environment necessitated
a robust system for efficiently handling node failures and
dropped packets.

Throughout the process, various scenarios were addressed
which could cause long delays or, in some cases, failure of
the process. For instance, a master‘s failure to notice an
available worker at the beginning of the DPRiME process
is costly, since data partitioning depends on the number of
known idle neighbors. The initial PING is thus sent out sev-
eral times to ensure the first master-worker communication
is established. Once the process has begun, the master pe-
riodically broadcasts a ping to check for any new available
workers.

Because the command packets (CMND) could be very
large in some cases, they are sliced at roughly 8KB intervals
and sent as a series to the worker. The worker records each
received piece and sends a “command complete” (CMPL)
packet to the master upon receiving the entire CMND. If a
short timeout elapses before the complete command is re-
ceived, the worker notifies the master with a receipt packet
(RECV) enumerating the missing pieces; the master then
resends these fragments.

Just as workers can come into the master’s range in the
middle of the process, they can just as easily leave. Worker
mobility was thus addressed in several ways. When the

Figure 1: Execution Overview.
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master sends a command, it defines a maximum silence pe-
riod within which it requires a response from the worker.
Workers begin working on a task and send “progress re-
ports” (PROG) according to the maximum silence defined
by the master. If a master does not hear from a worker
within the maximum silence period, it issues a“hello”packet
(HELO) and waits one more timeout period before marking
the worker as missing.

Broken connections are expensive in time and processing
power if a worker is unable to send the results of a tedious
task back to the master. Thus, Dynamic Source Routing
was implemented to address this challenge.

3.2 Dynamic Source Routing (DSR)
Especially in an ad-hoc environment, workers may fre-

quently move away from their master while working on a
task. It is infeasible, however, to simply reassign lost tasks.
Besides costing precious time, there is no guarantee that the
next worker will finish the same task within range. There-
fore, DSR was implemented as a simple means for workers
to find a route back to their master, to send both progress
reports and results.

After sending a progress report or a results packet, work-
ers expect an acknowledgement from the master (RECV).
After three unacknowledged packets, the worker assumes it
has lost connection to the master and begins building a new
route using DSR. After a new route has been established, all
communication from the worker to the master and vice versa
includes a “DSR-data”(DSRD) header and is sent along this
route. If the worker eventually determines it has lost the
master again, it will simply restart the route-building pro-
cess. In this way, the framework relies on multi-hop routing
to ensure delivery of results and to avoid reassigning com-
pleted tasks.

4. MINING
To simulate data mining in the field, we implemented five

classifiers: Iterative Dichotomiser 3 (ID3) decision trees, k-
means, k-nearest neighbor, Näıve Bayes, and artificial neural
networks. On their own, these classifiers have been studied
and are well-understood [4], [5]; implementing them in par-
allel, however, is the subject of ongoing research [6], [7], [8].

Initially, we considered developing a parallel implementa-
tion of each classifier. For decision trees, each branch would
be parallelized as in [8]. Developing a parallelization for
each classifier is non-trivial though, and would also limit
DPRiME ’ s capacity to accommodate new classifiers. For
these reason, we chose to split the data, train a classifier on
each split, and treat the classifiers as an ensemble.

Ensembles were selected for their ability to generate highly
accurate classification results [9]. In our framework, after
a classifier had been trained, it would classify each of the
testing examples it had received; this took place on the
worker nodes. Because only two-class data-sets were used
(the framework is capable of processing data sets with any
number of classes), the classification results were stored in
a 2 x n array, where each row represented a class and each
column (0, ..., n) represented a testing example. This ar-
ray was then transmitted to the worker’s master, where the
arrays representing the classifications from different workers
were added together. If this master was a sub-master, it
would transmit the sum array to its master, which would
do the same. When the results reached the master where

Figure 2: Classifier completion times.

the task originated, it would compare the number of votes
for each of the two classes and assign each test example the
class with the majority vote; ties were decided by randomly
assigning a class.

5. RESULTS
For our experiment, DPRiME was implemented in C#

using the .NET Compact Framework. It was deployed on
Motorola MC35 Windows Mobile devices. Figure 2 and Fig-
ure 3 display the time taken to perform classification tasks
for three different scenarios. Both figures display the same
information, but Figure 3 does not include the k-nearest
neighbor classifier results. Experiments were conducted us-
ing three different configurations: one master, one master
with two workers, and one master with two workers and two
workers for each of the master’s workers.

5.1 Discussion
Different parameters were used for the mining algorithms.

The minimum leaf size for decision trees was two. K-means
used five centroids for classification. K-nearest neighbor
used three neighbors. Neural networks used 3 layers with
10 iterations and the learning rate was 0.1.

The same imbalanced data set was used for each classi-
fier. It consisted of thirteen thousand examples with sixteen
continuous features and two classes. One thousand testing
examples were classified.

Not surprisingly, k-nearest neighbor exhibited the greatest
improvement when distributed across this framework. This
is because, unlike the other classifiers, no model was created
for classification. Instead, classification required the entire
data set split to be processed for each testing example mak-
ing it the longest-running classifier so the communication
overheads were only a small fraction of total time. K-means,
which took the least amount of time, performed worse when
distributed across our framework. This is because the addi-
tional communication costs outweighed the benefits of using
multiple devices to process a task. We conclude that the
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Figure 3: Classifier completion times (without k-
nearest neighbor).

more computationally intensive a task, the more it benefits
from using this framework.

5.2 Future Work
There is a great deal of work to be done in evaluating

the effectiveness of this framework as well as determining
parameters for the most effective deployment of DPRiME.
Thresholds need to be established for the maximum file size
that a worker will process and the size of splits made by a
master. In addition, extensive testing will need to be per-
formed to evaluate the time requirements versus accuracy of
the different classifiers used in this framework. Finally, the
performance gains made by using different combinations of
single-hop and multi-hop neighbors need to be compared.

6. CONCLUSION
With the advent of ubiquitous wireless sensor networks

and improvements in wireless technology, there will be an
increasing demand for processing large amounts of data at
their source. DPRiME simplifies this process by provid-
ing an abstraction that separates the more complicated dis-
tribution and communications tasks from the user-defined
function that processes the data. By incorporating the im-
portant features of MapReduce into a robust framework ca-
pable of handling the shortcomings of MapReduce outside
of a fully-connected network, we believe DPRiME will be-
come a valuable tool for simplifying the data-intensive tasks
in mobile environments.
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ABSTRACT
Intra-seasonal changes in the Indian summer monsoon are
generally characterized by its active and break (A&B) states.
Existing methods for identifying the A&B states using rain-
fall data rely on subjective thresholds, ignore temporal de-
pendence in the data, and disregard inherent uncertainty in
their identification. This paper develops a method to iden-
tify intra-seasonal changes in the monsoon using a hidden
Markov model (HMM) that allows objective classification
of the monsoon states. The method facilitates probabilistic
interpretation which is especially useful during the transi-
tion period between the two monsoon states. The developed
method can also be used to - (i) identify monsoon states
in real time, (ii) forecast rainfall values, and (iii) generate
synthetic data. Comparisons of the results from the pro-
posed model with those from existing methods suggest that
the new method is a promising for detecting intra-seasonal
changes in the Indian summer monsoon.

Categories and Subject Descriptors
G.3 [Probability and statistics]: Markov processes, prob-
abilistic algorithms; J.2 [Physical sciences and engineer-
ing]: Earth and atmospheric sciences

General Terms
Algorithms

Keywords
Indian summer monsoon, active and break states, hidden
Markov models, variational Bayes

1. INTRODUCTION
Recent studies on the Indian summer monsoon have evinced

that a substantial portion of spatio-temporal variability in
rainfall arises from monsoon intra-seasonal oscillations (MI-
SOs). MISOs are manifested in the form of prolonged pe-
riods of wet and dry states of monsoon, known as active

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SensorKDD‘09, June 28, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-668-7 ...$5.00.

and break (A&B) states. The timings and durations of the
A&B states have a direct impact on the demand and supply
of irrigation water, and hence their timely forecast can fa-
cilitate agricultural planning and water management in the
monsoon region. Such forecasts also assist in reducing the
number and magnitude of artificial floods that are created
by sub-optimal operation of reservoirs.

The first step in building a forecast model for the A&B
states is the identification of these states. Identification is
also essential for understanding the mechanisms of genesis
and propagation of MISOs. More than 50 years of research
on the identification of A&B states has resulted in numer-
ous definitions using different variables (rainfall, winds, pres-
sure, outgoing long-wave radiations), involving different re-
gions (all India, central India, core monsoon region), during
different periods (July-August, June-September), and ap-
plying different thresholds. Over the last few years, a con-
sensus is emerging on identifying the A&B states using rain-
fall data because of its direct bearing on the socio-economic
fabric of the society. Many identification methods based on
rainfall data have been recently proposed [7, 22, 20, 17, 13,
21]. However, there are a few common deficiencies in most
of these methods:

(a) Choice of arbitrary thresholds and regions. This draw-
back can be attributed to the lack of a quantifiable ob-
jective function in them.

(b) Negligence of spatio-temporal dependence in the rainfall
data.

(c) Avoidance of accounting inherent uncertainty in identify-
ing the A&B states.

This study develops a method to identify the A&B states
from the rainfall data using a hidden Markov model (HMM;
Rabiner [19]) with an intent to overcome these limitations.
The developed method performs real-time predictive analy-
sis of geographically distributed rainfall data. The method
is developed in a Bayesian framework that provides a prob-
abilistic approach to address the problem, and offers a basis
to develop methods for:

(a) identifying A&B states in real-time;

(b) generating synthetic rainfall data that can be used in de-
signing water management policies; and

(c) forecasting A&B states.

To evaluate the performance of the developed model, it
is compared with a recently proposed A&B state identifica-
tion method by Rajeevan et al. [21] from National Climate
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Center (NCC) of the India meteorological department (the
model will be referred to as the NCC model in this paper).
The remainder of the paper is structured as follows - (i) the
data used in the study are described first, (ii) the mathemat-
ical formulation of the HMM is then outlined, (iii) the steps
involved in developing the model are described, (iv) the re-
sults obtained are discussed, and finally (iv) conclusions are
presented.

2. DATA USED IN THE STUDY
Rajeevan et al. [20] developed a daily gridded rainfall data

set for India with 1◦ × 1◦ spatial resolution, and extends
from 1951 to 2003 (later extended to 2004). The gridded
data set was obtained by interpolating data from 1803 rain-
gages spread over India that have at least 90% availability
during the analysis period.

The data set prepared by Rajeevan et al. [20] is now con-
sidered to be a standard data set and has been widely used
in monsoon related studies [8, 24, 11]. The India meteo-
rological department is currently working on increasing the
number of rain gage stations in the analysis, and also plan-
ning on providing this data set in real-time [21]. The latter
development will allow the use of the model developed in
this study for practical applications requiring on-line iden-
tification and forecasting of the A&B states.

3. HIDDEN MARKOV MODEL
The HMM is a statistical model in which observations

from a system are assumed to be conditioned on the state
of the system which is hidden and follows Markov property.
The HMM was developed in late 1960s and early 1970s for
speech recognition, since then it has been successfully used
in many applications including hydrology [10, 26]. In the
following sub-section, the mathematical formulation of the
HMM and its adaption for identifying the monsoon states
are briefly presented. Readers are referred to [19] and [4] for
additional details on the HMM.

3.1 HMM for identifying monsoon states
Let the rainfall at time t be denoted by xt, t = 1, . . . , N

{xt ∈ � and x = [x1, . . . , xN ]T}. In a standard HMM, the
rainfall xt is assumed to depend only on the state variable
zt {Z = [z1, . . . , zN ]T} that denotes state of the monsoon,
is hidden (not observed) and follows the first order Markov
property. The state variable zt is a K-dimensional binary
random variable in which only one element ztk is equal to
unity and all other variables are equal to zero, i.e. ztk =
{0, 1} and

∑
k ztk = 1. If the number of states, K, are

known a priori, the standard HMM can be parameterized
using the following three distributions:

(a) The conditional distribution of the rainfall given the
monsoon state, p(xt|zt), referred to as the emission

distribution.

(b) The conditional distribution of the present monsoon
state given the previous state i.e. p(zt|zt−1). Because
zt is a K dimensional binary variable, the conditional
distribution is given by a K × K transition matrix A
whose element Ajk = p(ztk = 1|zt−1,j = 1).

(c) The marginal distribution of the monsoon state at the
first time step, p(z1), given by a K dimensional vector
π whose element πk = p(z1k = 1).
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Figure 1: Distribution of the duration of the active
and the break states identified by the NCC model
in the core monsoon region.

For modeling daily rainfall data, the emission distribution
is commonly chosen to be a Gamma distribution or a mix-
ture of Exponential distributions [3, 9]. The parameters of
the HMM which are essentially the parameters of the distri-
butions p(xt|zt), p(zt|zt−1), and p(z1) can be estimated by
using the maximum likelihood (ML) method [4].

A major limitation of the standard HMM in modeling
daily monsoon rainfall is that the state duration is a Geo-
metric distribution given by

pk(ΔT ) = (Akk)ΔT (1 − Akk) ∝ exp(ΔT ln(Akk)) (1)

where ΔT is the number of time steps (or duration) for
which the system remains in state K. This exponentially
decaying distribution may not be a realistic model for the
duration of the A&B states in the Indian summer monsoon
rainfall. Figure 1 shows the distribution of durations of the
A&B states as defined by the NCC model [21]. Clearly,
these distributions are significantly different from the Ge-
ometric distribution. Hence, the standard HMM should
be modified to provide more flexibility in modeling state-
duration. This flexibility can be achieved by either using
Hidden semi-Markov model (HSSM; [15]) or expanded state
HMM (ESHMM; [23, 12]).

In this study, both HSSM and ESHMM were considered,
and a preliminary investigation of the models on the mon-
soon data suggested that both yield qualitatively similar re-
sults. The ESHMM was selected for detailed study because
of its simplicity [5]. In the ESHMM, a state is associated
with sub-states each having the same emission probability.
The sub-states can be arranged in different ways and are
characterized by their topology. The type A topology, as
defined by [23] and shown in Fig. 2, was used here. In this
topology, the self-transition probabilities within a sub-state
are constrained to be equal. The distribution of the state
duration for an ESHMM with a type A topology is given by
a convolution of the Geometric distribution also known as
negative Binomial distribution, and it offers the desired flex-
ibility in modeling state duration with minimal increase in
number of parameters [5]. The only additional parameter,
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p p p p

Figure 2: Type A topology for an expanded state
HMM. Circles denote sub-states within a monsoon
state, and p is the self-transition probability shared
by all the sub-states.
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Figure 3: Autocorrelation in the observed rainfall
time series of the core monsoon region. The Cir-
cles denote the mean of the autocorrelation in the
July and August rainfall during 1951 to 2004. The
horizontal line in the middle of the box represents
median, and the top and bottom of the box ranges
from 25 to 75 percentile while the whiskers extend
to 10 and 90 percentile. The dashed lines denote
95% confidence interval.

compared to the standard HMM, is the number of sub-states
(SK).

Another limitation of the standard HMM is that it is poor
in capturing long range dependence in the observed rainfall.
Figure 3 shows the auto-correlation of the rainfall time-series
over the core monsoon region used in the NCC model. Evi-
dently, correlations up to four days lag are significant. These
longer lag correlations cannot be captured by the standard
HMM because they are mediated by the first-order Markov
chain of hidden sates [4]. An alternative is a generalized
HMM referred to as autoregressive hidden Markov model

(ARHMM; [6]). This study employs an ARHMM with Gaus-
sian emission density in which the rainfall at time t, xt, de-
pends not only on the monsoon state zt, but also on the the
previous rainfall values x̆t = [xt−1, . . . , xt−L]T where L is
the number of lags. The emission distribution is given by

p(xt|zt, x̆t) =

K∏
k=1

N (xt|w
T
k x̆t , β

−1
k )ztk (2)

where wk = [w1, . . . , wL]T is the weight vector and βk is the
precision term, both associated to the monsoon state k.

The ML method commonly used to estimate parameters
of a HMM is not particularly suitable in the present con-

text because the modeling effort aspires to - (i) account for
the inherent uncertainty in identifying the A&B states, (ii)
identify the A&B states in an online mode which will re-
quire updating the model parameters in real time, and (iii)
incorporate prior knowledge of MISOs into the HMM model.
These requirements can be met by estimating parameters in
the Bayesian framework, which is briefly described in the
following subsection.

3.2 Bayesian parameter estimation for auto-
regressive HMM

The joint distribution of the observed rainfall and the hid-
den monsoon states according to an ARHMM model is

p(x, Z |Θ) =p(z1|π)
N∏

t=2

p(zt|zt−1, A)

N∏
t=1

K∏
k=1

p(xt|ztk, x̆t , wk, βk)

(3)

where Θ = {A, π, wk, βk} is the set of model parameters.
The likelihood function can be estimated by summing over
the hidden states as

p(x|Θ) =
∑
Z

p(x, Z |Θ) (4)

In Bayesian inference, the hidden states and the model pa-
rameters are estimated by first assigning a prior distribu-
tion to the model parameters, p(Θ), and then calculating
the posterior distribution using Bayes rule as

p(Z , Θ|x) =
p(x, Z |Θ)p(Θ)∫
p(x|Θ)p(Θ)dΘ

. (5)

For ARHMM, the posterior distributions do not have a closed
form because the integration in the denominator of Eq. 5 is
not tractable, and therefore the posterior distribution is ap-
proximated using variational methods [4]. The method aims
to approximate p(Z , Θ|x) by Q(Z , Θ|x) such that Q(Z , Θ|x)
is similar to p(Z , Θ|x) and has a closed form. The varia-
tional method used in this study has its origin in mean field

theory [18] where it was developed to approximate lowest-
energy state in quantum mechanical calculations. Similar
methods were used by MacKay [16] and Shihao Ji et al. [25]
for estimating parameters of the standard HMM; this paper
extends the methodology to ARHMM.

The method assumes that the approximating distribution,
Q(Z , Θ|x), factorizes as

Q(Z , Θ) = q(Z)q(A)q(π)
K∏

k=1

q(wk)q(βk). (6)

In Eq. 6, to make the notation uncluttered, explicit depen-
dence of approximating distribution on the data has been
dropped i.e. Q(Z , Θ|x) ≡ Q(Z , Θ). To estimate Q(Z , Θ),
the Kullback-Leibler (KL) divergence [14] between Q(Z , Θ)
and p(Z , Θ|x) (Eq. 7), which is a measure of distance be-
tween the two distributions, is minimized.

KL(Q‖p) = −

∫ ∑
Z

Q(Z , Θ) ln

[
p(Z , Θ|x)

Q(Z , Θ)

]
dΘ. (7)

Since KL-divergence is a convex function for each factor
(taken independently) in the right hand side of Eq. 6, so an
iterative algorithm is guaranteed to converge to the global
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minimum. The optimal value of the approximating distri-
butions is represented by

Q
�(Z , Θ) = q

�(Z)q�(A)q�(π)
K∏

k=1

q
�(wk)q�(βk). (8)

An additional benefit of variational methods is that they can
be used for model selection, i.e. selecting the best model
from a set of candidate models. For an ARHMM, it will
correspond to selecting the number of monsoon states (K),
sub-states (SK), and lags (L). The model evidence can be
decomposed as:

ln p(x) = L(Q) + KL(Q‖p) (9)

where L(Q) =
∫ ∑

Z Q(Z , Θ) ln[p(x, Z , Θ)/Q(Z , Θ)]dΘ is
known as lower bound or negative free energy and can be
easily estimated for a given Q(Z , Θ). The best candidate
model is the one that maximizes the lower bound [4]. A
secondary advantage of calculating L(Q) is realized in moni-
toring the convergence of the iterative estimation procedure
and checking the software implementation by noting that
each iteration should always increase the value of L(Q).

4. MODEL DEVELOPMENT
Following are the steps involved in training an ARHMM:

(1) Initialization step - Initialize the ARHMM model by pro-
viding a guess value for the monsoon states q(Z). Vari-
ous methods - random initialization, initialization based
on the definitions of existing methods, and initialization
from the output of a Gamma mixture model fitted to data
(treating data as i.i.d) - were tested. All the methods, ex-
cept random initialization, yielded qualitatively similar
results. The random initialization often resulted in slow
convergence. Initialize iteration counter ‘iter’ to zero.

(2) Prior distribution Use the following conjugate priors for
the model parameters

p(Θ) = p(A)p(π)
K∏

k=1

p(wk|αk)p(αk)p(βk) (10)

where αk = [αk1, . . . , αkL]T is a hyper-parameter and

p(A) =
K∏

k=1

Dir(Ak1, . . . , AkK |uA
k1, . . . , u

A
kK),

p(π) = Dir(π1, . . . , πK |uπ
1 , . . . , u

π
K),

p(wk|αk) =
L∏

l=1

N (wkl|μ
w
l , α

−1
kl ),

p(αk) =

L∏
l=1

Gamma(αkl|a0, b0),

p(βk) = Gamma(βk|c0, d0).

The functional form of the Dirichlet distribution is given
in the Appendix. In this study, to make the prior dis-
tributions noninformative (broad) the hyperparameters
were selected as:

u
A
kl = u

π
k = a0 = b0 = c0 = d0 = 0.01

μ
w
l = 0

}
∀k, l

and define μ0 = [μw
1 , . . . , μ

w
L ]T.

(3) Maximization step - Increment ‘iter’ to ‘iter+1’ and esti-
mate the posterior distribution of the model parameters
Q

�(Θ) by using variational Bayes method described in
section 3.2. The expression for the posterior distribution
obtained by minimizing KL divergence (Eq. 7) is given in
the Appendix.

(4) Expectation step - Estimate the posterior distribution of
the monsoon states q

�(Z) by using the standard forward-

backward algorithm, also known as Baum-Welch algo-
rithm [2].

(5) Convergence check - Estimate the lower bound, L(Q)
(Eq. 9), using the posterior distribution of the model pa-
rameters and the monsoon states estimated in the fore-
going steps. If ‘iter’ is less than maximum number of
iterations ‘itermax’ (50 in this study) and the increase in
L(Q) from the previous iteration is greater than a speci-
fied threshold (‘tol’ = 10−3), continue with step (3)

(6) Model selection - Repeat all the previous steps for differ-
ent number of monsoon states (K = 2 to 8), sub-states
(SK = 1 to 7), and lags (L = 1 to 7). The best model
is the one for which the value of L(Q) at convergence is
maximum. For most of the cases studied, L(Q) can dis-
tinctively select the optimal model. However, in case of
ambiguity, preference was given to the more parsimonious
model.

The steps outlined are for off-line training of an ARHMM
using rainfall series of a single monsoon season. For training
the ARHMM on rainfall data of multiple monsoon seasons,
the variational Bayes algorithm requires a straightforward
modification. The posterior distribution q

�(Z), at conver-
gence, provides a probabilistic classification of the monsoon
states in a rainfall time series.

The ARHMM training algorithm presented here can be
used for real-time identification of the monsoon states, for
which the model parameters should be updated on-line by
treating their posterior distribution at the current time step
as the prior distribution for the next time step. In addition,
the on-line algorithm can provide predictive distribution for
the next time step, xN+1, based on the observed data, x =
[x1, . . . , N ]T, as

p(xN+1|x) =
∑

zN+1

p(xN+1|zN+1)

∑
zN

p(zN+1|zN )q�(zN ).
(11)

Longer lead prediction can also be made by using predic-
tive distributions at the previous time steps. However, with
increase in lead time, the uncertainty in the prediction will
accumulate.

5. RESULTS AND DISCUSSION
The results of ARHMM based A&B state identification

me-thod are first compared with the NCC model [21]. To
identify the A&B states, the NCC model uses July and Au-
gust rainfall over a region in central India, referred to as the
core monsoon region (CMR; Fig. 4). For comparison, an
ARHMM was trained in offline mode on the spatially aver-
aged rainfall in the CMR for July and August months. The
training period was from 1951 to 2004.
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Figure 4: The core monsoon region used in the NCC
model to identify A&B states.

Developing ARHMM requires selection of - (i) the number
of monsoon states (K), (ii) the number of lags (L), and (iii)
the number of sub-states (SK). Herein, these parameters
were selected using variational lower bound, i.e. the candi-
date model that maximized the lower bound was selected
as the best model. The search for the best model was per-
formed in the three dimensional space of K, L, and SK . The
results are given in Fig. 5. To facilitate interpretation, the
lower bound is shown separately for each variable by setting
the other two variables to their optimal values. The optimal
values selected were K = 4, L = 3, and SK = 1.

To check the derivation of variational ARHMM equations
and its software implementation, the variational lower bound
was monitored during the training phase. Figure 6 shows the
evolution of the lower bound against the iteration steps. As
desired, the lower bound increases with every iteration and
asymptotically reaches a constant value.

Figure 7 presents the monsoon states identified by the
AR-HMM for three years - an extreme dry year (2002), an
extreme wet year (1994), and a normal year (1981). The
A&B states identified by the NCC model are also shown.
The ARHMM classifies a monsoon day into four states la-
beled - break, weak, normal, and active states, with certain
probability, whereas the NCC model discretely classifies a
day as an active, break or normal day.

For 2002, both the methods classify most of the days in
July as break state. The NCC model classifies the period
between 18th and 20th July as normal period, whereas the
ARHMM classifies it as a weak period. Thus the higher
resolution of the ARHMM (four states compared to three
states in the NCC model) provides finer details that are
lost in the NCC model. According to the ARHMM there
is a high probability that the monsoon was active during
24th and 25th August. In contrast, the NCC model classifies
the monsoon state during those days to be normal because,
according to the model, the rainfall should exceed a speci-
fied threshold for at least three days for that period to be
classified as an active period. This example highlights that
specifying arbitrary thresholds may lead to misleading con-
clusions about the characteristics (duration and frequency)
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Figure 5: Selection of (a) the number of monsoon
states (K), (b) the number of lags (L), and (c) the
number of sub-states (SK) using variational lower
bound. The parameters selected were K = 4, L = 3,
and SK = 1.
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Figure 6: Variational lower bond vs iteration num-
ber plotted to monitor the convergence of ARHMM.

Table 1: Transition probability of the monsoon
states in the core monsoon region estimated by the
offline ARHMM.

State Break Weak Normal Active
Break 0.78 0.22 0.00 0.00
Weak 0.04 0.75 0.21 0.00
Normal 0.01 0.12 0.64 0.23
Active 0.00 0.00 0.72 0.28

of the A&B states. Similar situations exist in the other two
years shown in Fig. 7(b and c). For instance, in 1981 the
magnitude of rainfall during 9th and 10th August is consid-
erably greater than rainfall between 7th and 10th July. The
ARHMM (correctly) gives more probability for the former
event to be in the active state than the latter. On contrary,
the NCC model classifies 7th and 10th July as an active pe-
riod but 9th and 10th August as a normal period because it
was only a two day event.

Table 1 presents the transition matrix, A, of the mon-
soon states in the CMR. Among all the states, the active
state has the smallest probability of self-transition (0.28) in-
dicating that this state has relatively shorter duration. The
self-transition probability of the break states is largest (0.78)
suggesting that the these states tend to have a longer life-
span, which is consistent with the results reported by Ra-
jeevan et al. [21]. It was observed that unlike active states,
the break states often lasted for a week or longer. Further,
Table 1 indicates that the weak state has a higher probabil-
ity to go into a normal state than into a break state, while
the normal state is more likely to move into an active spell
than into a weak spell. The information in the transition
matrix could be exploited for forecasting rainfall which will
be discussed shortly.

Figure 8 shows the online identification of the monsoon
states by an ARHMM for 2002. The prior distributions of
the model parameters for the online method were set equal
to the posterior distributions of the model parameters of an
ARHMM trained in an offline mode on rainfall data from
1951 to 2001. For comparison, the NCC model results are
reproduced in the top panel of the figure. The break spell
identified by the online ARHMM overlaps with the break
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Figure 7: Monsoon states identified by the NCC
model (top panels) and an offline ARHMM (bottom
panels). The legends used in the figure are shown in
the top-most panel. The years 2002, 1994, and 1981
represents an extremely dry, an extremely wet, and
a normal year.
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Figure 8: Monsoon states identified by the NCC
model (top panel) and an online ARHMM (bottom
panel) for 2002. The legends used in the figure are
same as those used in Fig. 7.
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Figure 9: One day ahead forecast of the rainfall in
the core monsoon region for 2002 using an online
ARHMM. The correlation between the observed
and the forecasted values is 0.81.
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Figure 10: (a) Correlation between the observed and
the forecasted rainfall in the core monsoon region
for 2002 at different lead times using ARHMM, and
(b) mean of the standard deviation of the forecasted
values.

spell identified by the NCC model. Comparison of the online
and the offline ARHMM (Fig. 7) indicates that the probabil-
ities associated to a state are slightly tempered in the online
model. For example, the probability of break spell during
23rd to 26th July by the offline model is close to unity, but
the probability by the online model is around 0.95.

The online ARHMM can be used to forecast rainfall. Fig-
ure 9 presents one day ahead forecast for 2002 monsoon rain-
fall in the CMR. The shaded region in the figure represents
one standard deviation in the forecasted values. The cor-
relation coefficient between the observed and the forecasted
values is 0.81. With increase in the forecast lead time, the
correlation drops almost exponentially, while the standard
deviation of the forecasted value rises linearly (Fig. 10). The
correlation remains significant at 1% level up to four days
lead time. It should be noted that the forecast is solely based
on the temporal structure in the historical record of the rain-
fall data learned by an ARHMM. The forecast is likely to
improve if potential predictors like sea surface temperature
are included in the model [11, 27].

The ARHMM is a generative model, i.e. it can simu-
late observed rainfall time series. To test this feature of
the ARHMM, 500 simulations were obtained from an offline
ARHMM model trained on rainfall time series of the CMR
for period 1951 to 2004. Figure 11(a) shows the mean of the
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Figure 11: Statistics of the observed and the simu-
lated rainfall in the core monsoon region during 1951
to 2004. The horizontal line in the middle of the box
represents median of the simulated value. The circle
denotes the mean value of the statistics in the ob-
served rainfall and the darkened square represents
the mean value of the same in the simulated rainfall.
The top and bottom of the box ranges from 25 to
75 percentile while the whiskers extend to 10 and
90 percentile. The dashed-lines in the first plot rep-
resent 95% confidence interval, and the terms ‘std’
and ‘skew’ in the second plot refer to standard de-
viation and skewness, respectively.

autocorrelations in the observed data and in the simulated
data. The autocorrelation in the simulated data closely re-
sembles those in the observed data up to three days lag. For
longer lags, the simulated rainfall has comparatively lower
values of autocorrelation than in the observed data. How-
ever, the simulated time series could replicate the first three
moments in the observed data Fig. 11(b).

6. CONCLUDING REMARKS
A hidden Markov model (HMM) for the identification of

the A&B states in the Indian summer monsoon was pro-
posed. To achieve the required flexibility in modeling mon-
soon rainfall, an auto-regressive HMM (ARHMM) with ex-
panded states was used. The parameters of the model were
estimated using variational Bayes method. The proposed
model does not require specification of thresholds that makes
existing models for identifying the A&B states subjective.
Further, the proposed method exploits temporal dependence
in the rainfall data which is vastly ignored in existing meth-
ods. Comparison of the proposed model with the NCC
model [21] shows that both the models give similar results
when the A&B states are conspicuous, but in case of ambigu-
ity the proposed model has advantages due to its probabilis-
tic setting. In addition, the proposed model can be used for
- (i) identifying monsoon states in real time, (ii) forecasting
rainfall, and (ii) generating synthetic rainfall data.

The model developed in the study provides a promising
framework to develop models for forecasting monsoon intra-
seasonal oscillations. However, several avenues should be
explored to further refine this attempt. The proposed ap-
proach can be readily extended to incorporate predictors like
sea surface temperature and geopotential height to improve
forecast of the monsoon intra-seasonal oscillations at longer
lead times. To bring out the advantages of the proposed
method, its predictive and data generating abilities should
be compared with conventional time-series techniques. Ex-
tended research work in this direction is underway.

68



7. REFERENCES
[1] M. Abramowitz and I. A. Stegun. Handbook of

mathematical functions. Dover, 1965.

[2] L. E. Baum. An inequality and associated
maximization technique in statistical estimation of
probalistic functions of Markov processes. Inequalities,
3:1–8, 1972.

[3] E. Bellone, J. P. Hughes, and P. Guttorp. A hidden
Markov model for downscaling synoptic atmospheric
patterns to precipitation amounts. Climate Research,
15(1):1–12, 2000.

[4] C. M. Bishop. Pattern Recognition and Machine

Learning. Information Science and Statistics. Springer,
New York, USA, first edition, Aug 2006.

[5] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison.
Biological sequence analysis: Probabilistic models of

proteins and nucleic Acids. Cambridge University
Press, Cambridge, U.K., 1998.

[6] Y. Ephraim, D. Malah, and B. H. Juang. On the
application of hidden Markov models for enhancing
noisy speech. In IEEE International Conference on

Acoustics, Speech and Signal Processing, pages
533–536, 1988.

[7] S. Gadgil and P. V. Joseph. On breaks of the Indian
monsoon. Proceedings of the Indian Academy of

Sciences, Earth and Planetary Sciences,
112(4):529–558, 2003.

[8] B. N. Goswami, V. Venugopal, D. Sengupta, M. S.
Madhusoodanan, and P. K. Xavier. Increasing trend of
extreme rain events over India in a warming
environment. Science, 314(5804):1442–1445, 2006.

[9] A. M. Greene, A. W. Robertson, and S. Kirshner.
Analysis of Indian monsoon daily rainfall on
subseasonal to multidecadal time-scales using a hidden
Markov model. Quarterly Journal of the Royal

Meteorological Society, 134(633):875–887, 2008.

[10] B. B. Jackson. Markov mixture models for drought
lengths. Water Resources Research, 11(1):64–74, 1975.

[11] J. Jian, P. J. Webster, and C. D. Hoyos. Large-scale
controls on Ganges and Brahmaputra river discharge
on intraseasonal and seasonal time-scales. Quarterly

Journal of the Royal Meteorological Society,
135(639):353–370, 2009.

[12] M. T. Johnson. Capacity and complexity of HMM
duration modeling techniques. IEEE Signal Processing

Letters, 12(5):407–410, 2005.

[13] V. Krishnamurthy and J. Shukla. Seasonal persistence
and propagation of intraseasonal patterns over the
Indian monsoon region. Climate Dynamics,
30(4):353–369, 2008.

[14] S. Kullback and R. A. Leibler. On information and
sufficiency. The Annals of Mathematical Statistics,
22(1):79–86, 1951.

[15] S. E. Levinson. Continuously variable duration hidden
Markov models for automatic speech recognition.
Computer Speech and Language, 1(1):29–45, 1986.

[16] D. J. C. MacKay. Ensemble learning for hidden
Markov models. Unpublished paper,
http://www.inference.phy.cam.ac.uk/mackay/

abstracts/ensemblePaper.html, 1997.

[17] S. K. Mandke, A. K. Sahai, M. A. Shinde, S. Joseph,
and R. Chattopadhyay. Simulated changes in

active\break spells during the Indian summer
monsoon due to enhanced CO2 concentrations:
assessment from selected coupled atmosphere-ocean
global climate models. International Journal of

Climatology, 27(7):837–859, 2007.

[18] G. Parisi. Statistical Field Theory. Addison-Wesley,
New York, 1988.

[19] L. R. Rabiner. A tutorial on hidden Markov models
and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

[20] M. Rajeevan, J. Bhate, J. D. Kale, and B. Lal. High
resolution daily gridded rainfall data for the Indian
region: analysis of break and active monsoon spells.
Current Science, 91(3):296–306, 2006.

[21] M. Rajeevan, S. Gadgil, and J. Bhate. Active and

break spells of the Indian summer monsoon. National
Climate Center research report, India Meteorological
Department, Poona, India, 2008.

[22] M. R. Ramesh Kumar and U. R. Prabhu Dessai. A
new criterion for identifying breaks in monsoon
conditions over the Indian subcontinent. Geophysical

Research Letters, 31(18):L18201, 2004.

[23] M. Russell and A. Cook. Experimental evaluation of
duration modelling techniques for automatic speech
recognition. In IEEE International Conference on

Acoustics, Speech, and Signal Processing,ICASSP ’87,
volume 12, pages 2376–2379, 1987.

[24] P. Satyanarayana and V. V. Srinivas. Regional
frequency analysis of precipitation using large-scale
atmospheric variables. Journal of Geophysical

Research (Atmospheres), 113, 2008.

[25] Shihao Ji, B. Krishnapuram, and L. Carin. Variational
Bayes for continuous hidden Markov models and its
application to active learning. IEEE Transactions on

Pattern Analysis and Machine Intelligence,,
28(4):522–532, 2006.

[26] M. Thyer and G. Kuczera. A hidden Markov model for
modelling long-term persistence in multi-site rainfall
time series 1. model calibration using a Bayesian
approach. Journal of Hydrology, 275(1–2):12–26, 2003.

[27] P. J. Webster and C. Hoyos. Prediction of monsoon
rainfall and river discharge on 15-30-day time scales.
Bulletin of the American Meteorological Society,
85(11):1745–1765, 2004.

APPENDIX

A. DIRICHLET DISTRIBUTION
For a K-dimensional random variable x = [x1, . . . , xK ]T,

such that 0 ≤ xk ≤ 1, and
∑K

k=1 xk = 1, the Dirichlet

distribution with parameters u = [u1, . . . , uk]T was defined
as

Dir(x|u) =
Γ(u1 + . . . + uK)

Γ(u1) · · ·Γ(uK)

K∏
k=1

x
uk−1
k (12)

where Γ(·) is the gamma function.

B. POSTERIOR DISTRIBUTIONS
The posterior distribution of the ARHMM parameters (Θ)

and the monsoon states (Z) was estimated as
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Q
�(Z , Θ) = q

�(Z)q�(A)q�(π)
K∏

k=1

q
�(wk)q�(αk)q�(βk).

(13)
The component distributions were derived to be:

q
�(A) =

K∏
k=1

Dir(Ak1, . . . , AkK |UA
k1, . . . , U

A
kK),

q
�(π) = Dir(π1, . . . , πK |Uπ

1 , . . . , U
π
K),

q
�(wk) = N (wk|mk, P −1

k ),

q
�(αk) =

L∏
l=1

Gamma(αkl|akl, bkl),

q
�(βk) = Gamma(βk|ck, dk),

q
�(Z) =

1

Υ
π

�
s1

N−1∏
t=1

A
�
st,st+1

N∏
t=1

f
�(xt|st)

where st = k if ztk = 1, Υ is a normalizing constant, and
after defining

γtk = q
�(Z)δ(ztk = 1), and

ξkj =

N−1∑
t=1

q
�(Z)δ(ztk = 1, zt+1,j = 1),

the other terms were estimated as

U
A
kj = u

A
kj + ξkj ,

U
π
j = u

π
j + γ1j ,

Pk = 〈βk〉

N∑
t=1

γtkx̆tx̆
T
t + diag(〈αk〉),

mk = P −1
k

[
〈βk〉

N∑
t=1

γtkx̆txt + diag(〈αk〉)μ0

]
,

akl = a0 +
1

2
,

bkl = b0 +
1

2

[
〈wkl〉

2 + (μw
l )2 − 2 〈wkl〉μ

w
l

]
,

ck = c0 +
N∑

t=1

γtk,

dk = d0 +
N∑

t=1

[γtk(x2
t + trace

(〈
wkwT

k

〉
x̆tx̆

T
t

)
− 2xt 〈wk〉

T x̆t)],

π
�
s1 = exp

[
ψ(Uπ

s1) − ψ

(
K∑

j=1

U
π
j

)]
,

A
�
st,st+1 = exp

[
ψ(UA

st,st+1) − ψ

(
K∑

j=1

U
A
st,j

)]
, and

f
�(xt|st) = exp{

1

2
[〈ln(βst)〉 − ln(2π) − 〈βst〉(

x
2
t + trace

(〈
wstw

T
st

〉
x̆tx̆

T
t

)
− 2xt 〈wst〉

T x̆t

)
]}.

The function ψ(·) is the digamma function [1], and the sym-
bol 〈·〉 denotes expected value which was estimated using the
following properties. For a Gaussian distribution, p(x) ∼

N (x|μ, P −1),

〈x〉 = μ,〈
xxT

〉
= μμT + P −1

,〈
xTx

〉
= μTμ + trace(P −1);

and for a Gamma distribution, p(x) ∼ Gamma(x|a, b),

〈x〉 =
a

b
,〈

x
2〉 − 〈x〉2 =

a

b2
,

〈ln(x)〉 = ψ(a) − ln(b).
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ABSTRACT
In many remote sensing applications it is important to use 
multiple sensors to be able to understand the major spatio-
temporal distribution patterns of an observed phenomenon. A 
particular remote sensing application addressed in this study is 
estimation of an important property of atmosphere, called Aerosol 
Optical Depth (AOD). Remote sensing data for AOD estimation 
are collected from ground and satellite-based sensors. Satellite-
based measurements can be used as attributes for estimation of 
AOD and in this way could lead to better understanding of spatio-
temporal aerosol patterns on a global scale. Ground-based AOD 
estimation is more accurate and is traditionally used as ground-
truth information in validation of satellite-based AOD 
estimations. In contrast to this traditional role of ground-based 
sensors, a data mining approach allows more active use of 
ground-based measurements as labels in supervised learning of a 
regression model for AOD estimation from satellite 
measurements. Considering the high operational costs of ground-
based sensors, we are studying a budget-cut scenario that requires 
a reduction in a number of ground-based sensors. To minimize 
loss of information, the objective is to retain sensors that are the 
most useful as a source of labeled data. The proposed goodness 
criterion for the selection is how close the accuracy of a 
regression model built on data from a reduced sensor set is to the 
accuracy of a model built of the entire set of sensors. We 
developed an iterative method that removes sensors one by one 
from locations where AOD can be predicted most accurately using 
training data from the remaining sites. Extensive experiments on 
two years of globally distributed AERONET ground-based sensor 
data provide strong evidence that sensors selected using the 
proposed algorithm are more informative than the competing 
approaches that select sensors at random or that select sensors 
based on spatial diversity.  

Categories and Subject Descriptors
J.3 [Computer Applications]: Physical Sciences and Engineering 
– Earth and atmospheric sciences. 

General Terms
Algorithms, Measurement, Experimentation. 

Keywords
Remote Sensing, Data mining, Regression, Active Learning 

1. INTRODUCTION 
Aerosols, minute particles suspended in the atmosphere 
originating from natural and man-made sources, have become one 
of the main topics in climate research studies [8]. They have 
significant effect on health [14], vegetation, precipitation [17] and 
global climate [4]. Aerosols were identified as a central 
component missing from general circulation models (GCMs) that 
simulate climate changes [10]. After accounting for the aerosol 
effects, model-simulated climate changes have become more 
realistic [11] and an agreement between GCMs and real 
observations has been significantly improved.  

The main optical property of aerosols is Aerosol Optical Depth 
(AOD) [13]. AOD is a measure of the visual or optical thickness 
of an aerosol layer. The process of predicting AOD using ground 
[5] or satellite [9] based observations is known as AOD retrieval. 
Ground based observations are mostly obtained by AErosol 
RObotic NETwork (AERONET) [5] which is a global remote 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee.  
SensorKDD’09, June 28, 2009, Paris, France.  
Copyright 2009 ACM 978-1-60558-668-7...$5.00. 
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Figure 1. Global distribution of AERONET sites. 
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sensing network of radiometers that measure AOD several times 
per hour from specific geographic locations. AERONET 
instruments provide accurate estimation of local aerosol 
abundance, but they have low spatial coverage which limits their 
applicability in understanding global aerosol properties. On the 
other hand, satellite observations provide global coverage on a 
daily basis, but are less accurate because the signal that a satellite 
instrument receives is a mixture of reflected radiation by both the 
Earth’s surface and the aerosol layer [7]. Accuracy of satellite-
based AOD retrieval is one of the major limiting factors 
influencing simulation-based climate change studies [13]. 

The operational AOD retrieval algorithms are typically manually 
tuned by domain scientists [16]. While this guarantees that the 
retrievals are based on sound physical principles, it also creates 
problems when there is an opportunity to use ground truth data to 
improve the algorithm. In contrast to domain-driven methods for 
AOD retrieval that use a network of sensors installed on ground 
for validation purposes only, a data-driven approach is using them 
directly to train an algorithm for AOD retrieval from satellite 
observations. This approach is possible when a data set is 
available that consists of satellite observations and collocated 
ground-truth measurements from AERONET radiometers. Given 
such data, a regression model can be constructed that predicts the 
ground-truth labels from the satellite observations. In our previous 
studies to retrieve AOD from satellite observations, a predictor 
was trained on satellite observations spatially and temporally 
collocated with AERONET retrievals [18]. It has been shown that 
such a statistical approach could improve the accuracy of 
retrievals significantly as compared to the operational domain-
based methods. Clearly, this improvement comes from the 
utilization of highly accurate ground-based measurements directly 
in the prediction model.  

However, ground based stations are often located without a 
rigorous statistical design. Decisions are typically based on 
practical circumstances (e.g. overrepresentation in urban regions 
and industrialized nations) and according to domain experts’ 
assumptions about the importance of specific sites. Furthermore, 
the total number of sensor sites depends on financial constraints. 
Costs related to equipment, location, and the availability of 
trained staff often dictate the number of sites and their global 
distribution. As shown in Figure 1, AERONET sites are not 
uniformly distributed over the globe. The highest density is within 
the U.S. and Europe. On the other hand, continental Asia, Africa, 
and Australia are poorly covered. Given these circumstances, the 
aims of our study are to evaluate performance of the current 
design of AERONET sensor network and to apply data mining 
techniques to assist in future modifications of the sensor network.  

In a tribute to the ongoing economic crisis, a specific scenario 
considered in this paper assumes that there is a pending budget 
cut for maintenance of the existing AERONET sites. The 
objective is to shut down a fraction of the AERONET sites while 
making sure that the utility of the remaining sites is as high as 
possible. In this paper, we make a simplifying assumption that 
operational costs for each AERONET site around the globe are 
equal.  

Common to most selection techniques originating from the spatial 
statistics is a tendency to overlook the time dimension of data 
collected by the sensor network. In this paper, for the problem of 
selecting a subset of data collection sites, we consider series of 

observations and propose to optimize AERONET sensor selection 
based on the concept of retrieval accuracy. The intuition behind 
our proposal is straightforward. Each AERONET site provides a 
time series which can be used in training a regression model to 
retrieve future AOD. Sites that can be removed are those whose 
observations are best predicted by the model built on data from 
the remaining sites. The performance of the proposed approach is 
compared with the random site selection and with the classical 
selection principle of selecting spatially dispersed sites.  

2. METHODOLOGY  
2.1 Data Fusion 
Given a data set that consists of satellite observations and 
AERONET AOD measurements, a regression model can be 
trained to use satellite observations as attributes and predict the 
labels which are AERONET AODs. For that reason, satellite 
observations need to be collocated and merged with AERONET 
measurements. 

In this study we consider data from MODerate resolution Imaging 
Spectrometer (MODIS), an instrument aboard NASA’s Terra and 
Aqua satellites. Instruments mounted on Terra observe the Earth 
during morning whereas those mounted on Aqua observe the 
Earth during afternoon. In this study, we use data only from Terra 
satellite. 

MODIS has high spatial resolution (pixel is as small as 
250x250m2) and achieves global coverage daily. On the other 
hand, AERONET sites, situated at fixed geographical locations, 
acquire data at intervals of 15 min on average. This gives rise to 
the need for both spatial and temporal data fusion (Figure 2). The 
fusion method involves aggregating MODIS pixels into blocks of 
size 50x50 km2 and spatially collocating them with an AERONET 
site. The MODIS observations are said to be temporally 
collocated with the corresponding AERONET AOD retrievals if 
there is a valid AERONET AOD retrieval within 30 minutes of 
the satellite overpass. The data collocated in this way can be 
obtained from the official MODIS website of NASA [6].  

Figure 2. Spatio-temporal collocation of MODIS and 
AERONET data. A is an AERONET site with AOD retrieved 

within a short time before and after the satellite overpass 
(circle dots). The square regions are MODIS observations in a 

proximity of site A at the satellite overpass time.  
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2.2 Regression Model 
Let us assume we have access to data from a set of N AERONET 
sites S = {Si, i = 1, 2, …N}. At site Si there is a sequence {(Xit, 
yit)} of multivariate radiance observations Xit collected from a 
satellite instrument spatio-temporally collocated with the 
corresponding ground-based AERONET AOD values yit. To be 
able to accurately retrieve AOD from MODIS measurements we 
are using all labeled data from sensor set S to train a regression 
model f aimed to estimate target AOD values. Typically, the 
following data-generating model is assumed 

),0(~,)( 2σεε Ν+= XfY , (1) 

where ε is Gaussian additive noise with constant variance σ2.

Neural networks are often a regression model of choice in data-
driven retrieval of atmospheric properties [1, 12]. In our previous 
work, neural networks have been trained to predict AERONET 
AOD over continental US [3] and whole globe [15] using 
attributes derived from satellite data. Comparing to the domain-
based AOD retrievals, neural network AOD predictions were 
significantly more accurate. 

The assumption of constant variance is a basic requirement in 
constructing a model. In many cases there is no reason to suspect 
that the error variance is not constant. However, our inspection of 
residual plot f(X) – Y as a function of f(X) provides evidence that 
this assumption is violated at a certain AERONET sites. At Figure 
3 we notice that in our application variance σ2 is not constant, but 
is proportional to f(X).  

Variance stabilizing transformations of target variable are often 
useful in these cases [2]. The strength of transformation depends 
on its curvature. Square root and logarithmic transformations are 
popular in practice. In square root transformation, a regression 
model that predicts Z = √Y is trained and the prediction is 
provided as ,ˆˆ 2ZY =  while in logarithmic transformation Z = 
log(Y) and ).ˆexp(ˆ ZY =  Square transformation is considered as a 
relatively mild [2] comparing to the logarithmic and is often 
applied when variance of residuals increases linearly with 
predicted variable.  In the experimental section we compared both 
of them with the standard approach that does not transform the 
target variable. 

2.3 Selection of Informative AERONET Sites 
Let us assume that a mission objective is to close down a fraction 
(33% or 66% in our experiments) of AERONET sites as to reduce 
ground-based data collection costs. Given such a budget cut 
situation, question of our interest is how to select M (<N) of the 
currently available N AERONET sites such that this subset 
captures as much information as possible compared to the entire 
set S. The goodness criterion for a selection is accuracy of a 
regression model built on labeled data from the retained sites.  

Intuitively, it appears that the selection of sites that are spatially 
dispersed would be a better choice than a random elimination. 
Such a spatial selection might be aided by domain experts — they 
would prefer to keep representative sites around the globe that 
cover a variety of meteorological and environmental conditions. 
However, regardless of the experts’ effort, spatial representatives 

selected this way may not be optimal with respect to the quality of 
the resulting regression model f.  

The sites selected by a domain expert are likely to be spatially 
diverse. To approximate the decision-making process of domain 
experts, for benchmarking purposes we use the spatial selection 
strategy based on spatial distance among sites. In the first step two 
sites that are closest to each other are determined. One of them 
whose removal better preserves global coverage is excluded from 
the set S. To decide which one is going to be removed, we are 
consulting the nearest neighbors of those two sites. The site which 
has the closer second nearest neighbor is removed. This procedure 
is iteratively repeated until the desired number of M sites is 
reached.  

Our proposed strategy for selection of M sites out of N is 
accuracy-based. At the first step, the regression model f is trained 
on the data from the entire set of AERONET sites. At successive 
steps, every location is taken out and a model is built on data from 
the remaining sites. By Ŷ we denote AOD retrieval obtained by a 
model trained on whole dataset and by Ŷ(i) AOD retrieval obtained 
by a model trained on S\Si sites that exclude examples from site Si.  
The intuition is that if AODs from site Si can be estimated with a 
model which has not seen that site, then site Si can be considered 
as redundant and therefore can be removed. To quantitatively 
define redundancy, we measure the difference in AOD retrieval 
accuracy between the model trained on the whole dataset and 
model trained on a dataset without examples from site Si. The 
difference in retrieval accuracy is measured at data from site Si as 
a sum of squared differences in retrieved AODs computed over all 
points from site Si

∑ −=
t

i
tii yySSE 2)( )ˆˆ(  (2) 

A site that is removed is the one with the smallest SSE as its AOD 
is the easiest to estimate given data from the remaining sites.  
Once a site is removed the proposed procedure is repeated. It 
continues by comparing the reduced models to the model built on 
the entire data, where data from the most recently excluded site 
are used for calculating SSE based loss. 

3. EXPERIMENTAL RESULTS  
3.1 Dataset 
There are several levels of AERONET AOD measurements [5]. 
To avoid potential problems with outliers in ground truth data, 
AERONET Level 2.0 observations were considered since they 
were cloud screened and manually verified.  

Table 1. List of attributes collected from the collocated 
satellite observations  

Attribute 
index 

Description 

1-4 
Mean radiation in 50 x 50 km2 blocks at seven 
wavelengths 

5-9 
Std. deviation of radiation in 50 x 50 km2

blocks at seven wavelengths 

10-13 Ancillary attributes (view angles, elevation)  
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For our study we collected MODIS Terra observations collocated 
with AERONET Level 2.0 points. We extracted satellite-based 
attributes that are used as inputs to knowledge based retrieval 
algorithms. The radiances at four wavelengths were taken from 
the MODIS range 440nm – 2100nm, as these are sufficient to 
describe aerosol properties [16]. An average and standard 
deviation of radiances of pixels in 50x50 km2 blocks were then 
estimated. Attributes are listed in Table 1. Along with radiances 
we also extracted ancillary attributes. Information about geometry 
is characterized by solar and sensor angles. As surface elevation 
affects estimated AOD, it was also included in the set of attributes 
and has been extracted from AERONET data. 

By convention, AOD is reported at the 550nm wavelength. Since 
AERONET sites do not provide AOD value at that particular 
wavelength, we performed a standard linear interpolation in the 
log scale of AERONET AOD measurements at 440nm and 670nm 
to estimate AOD at 550nm [16]. 

Data we collected are distributed over entire globe at 217 
AERONET sites (Figure 1) during years 2005 and 2006. To 
assess efficiency of the proposed methods, we performed training 
on 2005 data and used 2006 data for testing. However, during that 
time period measurements from AERONET sites were not 
uniformly distributed, neither temporally or spatially. There were 
many more points from June to August than from January to May. 
Also, at some cloudy locations it was not possible to measure 
AOD and those locations contained a small number of data points. 
To maintain uniformity of the training dataset, in each training 
session we randomly selected 30 sites in year 2005 as the initial 

set S. Only 70 randomly chosen observations from each of those 
AERONET site were retained and remaining ones were removed. 
Finally, the training set consisted of 2,100 data points distributed 
over 30 AERONET sites each containing 70 collocated 
observations. As the test set, we randomly sampled 50 points from 
each site in 2006. Sites with less than 50 valid observations were 
excluded. The constructed test set contained 3,500 data points 
distributed over 70 AERONET sites each having 50 collocated 
observations. It is worth mentioning that among 70 test sites, 30 
were the same as in the training set, while 40 sites were not seen 
during training. To evaluate the proposed approach, we report R2

accuracy on the test set.  

3.2 Determining an Appropriate AOD 
Transformation 
To validate the assumption that error variance is not constant and 
that empirically selected square root transformation is the most 
appropriate one, we performed the following experiment. Thirty 
sites in 2005 were chosen randomly. Three regression models, one 
with data preprocessed by the square root transformation (NNSQ), 
one with data preprocessed by the log transformation (NNLG) and 
the other without the transformation (NN), were trained on the 
selected dataset and compared on the test set. As a regression 
model we used a neural network with ten hidden neurons trained 
to optimize standard Mean Square Error (MSE) function.   

This procedure was repeated ten times for different sets of 30 
randomly selected sites. We report R2 accuracy achieved on the 
fixed test set covering the 70 sites during 2006. To estimate 
sensitivity of constructed models to distribution of the initial 30 
sites, we report mean, standard deviation, median and minimum 
and maximum of R2 in those ten iterations. The results are 
presented in Table 2. These results provide strong evidence that 
the neural networks trained to predict AOD squared root (NNSQ) 
are more accurate than those trained to predict raw AOD (NN) or 
log-AOD (NNLG). Additionally, the presented results reveal that 
retrieval accuracy is sensitive to the choice of the initial set of S
sites. Although each time the selected 30 sites were globally 
distributed covering all parts of the world, in some cases accuracy 
dropped significantly. A possible explanation could be that some 
of those sites have noisy data that negatively influence model 
performance. 

Table 2. R2 statistics on 2006 data for neural network models 
without (NN) and with log (NNLG) or square root (NNSQ) 

transformed output each built on ten different sets of 30 
randomly selected sites using 2005 data. 

R2

Model 
Mean Std Median Min Max 

NN 0.659 0.086 0.671 0.459 0.742 

NNLG 0.664 0.091 0.703 0.444 0.721 

NNSQ 0.746 0.042 0.754 0.644 0.789 
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Figure 3. Variance stabilizing effect of square root transformation. Error variance as a function of a) predictions without 
transformation b) predictions with log transformation c) predictions with square root transformation
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To better illustrate the effect of the square root transformation, at 
Figure 3 we show variance of prediction errors as a function of 
predictions. As can be seen, if the transformation is not used, the 
error variance is large when large AODs are predicted. On the 
other hand, when the strong log-transformation is used, the error 
variance is large when small AODs are predicted. Finally, when 
square root transformation is used, error variance is practically 
constant and does not depend on the value of predicted AOD. 
Thus, minimizing MSE assuming constant variance (as in (1)) is 
justified for the square-root transformed AOD.  

To get better insight how transformations influence prediction 
accuracy, we analyzed a series of AOD retrievals at AERONET 
site ‘BSRN_BAO_Boulder’ (40ºN, -105ºW). Sensor platform is 
on the rooftop of the building which is located on the high plains 
about 15 miles east of Boulder, CO, USA. Surrounding farmers’ 
fields make satellite AOD retrieval easier in some yearly seasons. 
Satellite retrievals are more accurate over green regions which are 
often considered as dark [16] and therefore do not have an 
influence on observed radiation. AOD data from this AERONET 
site along with AOD retrievals of NN, NNLG and NNSQ are 
presented in Figure 4a, 4b and 4c respectively. By visual 
inspection of those plots we can see that if AERONET instrument 
from this site measures small AOD then model NN retrieves large 

AOD whereas both NNLG and NNSQ manage to retrieve small 
AOD. Although it looks that NNLG and NNSQ achieve similar 
accuracy comparing to AERONET AOD, by inspecting R2 which 
is 0.72 for NNSQ, 0.54 for NNLG and -0.1 for NN we conclude 
that NNSQ is more accurate than NNLG and NN.   

To explore how the proposed square root transformation 
influences prediction accuracy at some extreme situations we 
analyzed AOD predictions of the least accurate NN, NNLG and 
NNSQ neural networks. We observed that the largest retrieval 
errors were made on the site ‘Izana’ (28.3ºN, -16.5ºW) which is 
located on the island of Tenerife, Spain, at elevation of 2360m 
above sea level. The sensor platform is placed on the top of a 
mountain plateau. The sky is usually free of clouds and as a result 
is extremely clean and suitable for radiation measurements and 
calibrations. AOD data from this AERONET site along with AOD 
retrievals of NN, NNLG and NNSQ are presented in Figure 5a, 5b 
and 5c respectively. We can see that AERONET instrument from 
this site most of the time measures small AOD while all three 
models NN, NNLG and NNSQ predict large AOD. However, 
models NNLG and NNSQ trained on transformed data manage to 
make smaller predictions than NN.  
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Figure 4. AERONET AOD at site ‘BSRN_BAO_Boulder’, along with AOD retrievals by a) NN, b) NNLG and c) NNSQ models built 
on data from 30 sites  
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Figure 5. AERONET AOD at site ‘Izana’, along with AOD retrievals by a) NN, b) NNLG and c) NNSQ models built on data from 
30 sites  
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Based on these results, we used NNSQ predictor in the following 
experiments. 

3.3 Selection of Informative Sites 
We are considering a scenario when current operational 
AERONET sites have to be reduced by 33% or 66%. In all 
experiments, we started from a set of 30 AERONET sites and 
applied the proposed method and the two alternatives (spatial and 
random selection) to identify a subset of 20 or 10 AERONET sites 
to be retained. The NNSQ models were trained on labeled data 
from 2005. To test the goodness of the identified subset we tested 
the NNSQ models on 70 sites from 2006 (as described in Section 
3.1).  

The R2 results averaged over 10 repetitions are presented in Figure 
6. We noticed that in some cases R2 drops significantly when 
spatial and random selection strategies are used. Therefore, we 
also report median values of R2 after 10 repetitions (Figure 7). In 
our experiments, the proposed accuracy-based selection achieved 
consistently better results than the alternatives. Also, accuracy of 
the proposed site reduction method did not change much even 
after removing 20 of the 30 AERONET sites. Interestingly, on 
average, the spatial selection strategy performed slightly worse 
than the random selection strategy. 

Let us now consider the effect of the proposed sites reduction 
method on predictions at the site ‘BSRN_BAO_Boulder’ 
analyzed previously (Figure 4). Time series of AOD retrievals at 
this site for a single placement of 30 training sites are presented in 
Figure 8. NNSQ model trained on a reduced dataset was able to 
retrieve ground-truth AOD slightly less accurately than the model 
trained on data from all 30 sites. In terms of R2 accuracy, NNSQ
trained on a reduced dataset achieved R2 = 0.64 while NNSQ
trained on non-reduced dataset achieved R2 = 0.72 at the site 
‘BSRN_BAO_Boulder’. The conclusion is that accuracy-based 
reduction retains most of the accuracy of the model built on non-
reduced dataset.  

In Figure 9 we illustrate site reduction for one initial placement of 
30 AERONET sites. Spatial-based selection of AERONET sites 
nicely covers whole globe but it is not necessarily optimal for 
data-driven AOD retrieval problem as we already noticed (Figure 
6). On the other hand, some regions of the world were 
underrepresented when an accuracy-based principle was applied 
(Figure 9e). The accuracy was retained to a certain extent 
although no site from East US or from middle Asia was selected.  

4. DISCUSSION  
In this work we presented a method for the reduction of a number 
of AERONET sites such that the remaining sites are as 
informative as possible. The goodness criterion for a site selection 
is the accuracy of a regression model built on the labeled data 
from the selected sites. We analyzed three different approaches for 
site selection. A common-sense approach used as a benchmark 
was a random selection of sites. An approach based on spatial 
distance among the sites was also considered. Sites were selected 
such that their spatial coverage was maximized. As an alternative 
that takes into account the actual measurements from ground-
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Figure 6. Mean R2 values in ten iterations for different 
initial sets of 30 AERONET sites. 
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Figure 7. Median R2 values in ten iterations for different 
initial sets of 30 AERONET sites.  
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based AERONET sensors and satellite-based MODIS 
instruments, we proposed an accuracy-based selection approach. 
For this, a regression model was first trained on the labeled data 
from an entire set of sensors. After that, at successive steps, every 
location is excluded to check if AOD from that location can be 

predicted accurately by the model trained on labeled data from the 
remaining sites. The intuition was that if AODs from that site can 
be retrieved fairly well with a model which has not seen that site, 
then the ground-based measurements at that site can be considered 
as redundant. 
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Figure 9. a) Initial set of 30 AERONET sites b) spatial-based reduction to 20 sites c) accuracy-based reduction to 20 sites d) spatial-
based reduction to 10 sites e) accuracy-based reduction to 10 sites. 
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According to presented results we conclude that the proposed 
accuracy-based sites reduction method is superior to spatially-
based and random selection alternatives. In this report we did not 
address the question of determining the optimal number of sites to 
reduce the entire set in order to maintain a desired accuracy. This 
problem is addressed in our work in progress.  
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ABSTRACT
Current research on data stream classification mainly fo-
cuses on supervised learning, in which a fully labeled data
stream is needed for training. However, fully labeled data
streams are expensive to obtain, which make the supervised
learning approach difficult to be applied to real-life applica-
tions. In this paper, we model applications, such as credit
fraud detection and intrusion detection, as a one-class data
stream classification problem. The cost of fully labeling the
data stream is reduced as users only need to provide some
positive samples together with the unlabeled samples to the
learner. Based on VFDT and POSC4.5, we propose our
OcVFDT (One-class Very Fast Decision Tree) algorithm.
Experimental study on both synthetic and real-life datasets
shows that the OcVFDT has excellent classification perfor-
mance. Even 80% of the samples in data stream are un-
labeled, the classification performance of OcVFDT is still
very close to that of VFDT, which is trained on fully la-
beled stream.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining ; I.2.6 [Artificial Intelligence]: Learning—
concept learning ; I.5.2 [Pattern Recognition]: Design Me-
thodology—classifier design and evaluation
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General Terms
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1. INTRODUCTION
In real world applications, such as credit fraud detec-

tion, network intrusion detection, and so on, huge volume
of data arrives continuously with high speed. These ap-
plications could be modeled as a data stream classification
problem. Currently, the research community of data stream
classification analysis mainly focus on supervised learning
[4][8][11][18][19], which requires fully labeled data streams
for training. However, under the data stream scenarios, it is
too expensive to label the full stream manually, and there-
fore the supervised data stream learning algorithms are not
applicable to real-life applications.

In the case of credit fraud detection, the user behaviors
that cause bad economic effect could be looked as positive
samples. For those behaviors which have not caused any
bad effect yet, only after thorough investigation could we
decide whether they are fraud or not. As it is expensive, and
sometimes impossible to investigate their true class labels,
it is better to use them as unlabeled samples. The same
scenario could be observed in network intrusion detection.
In this paper, we model these applications as a problem of
one-class classification of data streams.

In one class classification problems, classifiers are trained
to distinguish a class of objects (called the target class) from
all other objects [23]. In this paper, we identify the following
characters of one-class data stream classification:

1. No negative training samples: only positive sam-
ples and unlabeled samples could be observed from the
training data stream.

2. High speed input data: the classifier should have
the ability to process huge volumes of data which arrive
at high speed.

3. Limited memory space: only limited memory space
is available to the classifier, which means that the clas-
sifier has to scan the input samples for only once.

In this paper, based on VFDT [4] and POSC4.5 [2], we
present our OcVFDT (One-class Very Fast Decision Tree)
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algorithm for one-class classification of data streams. The
experimental results on both synthetic and real-life dataset
show that even with a high percentage of samples in the
stream kept unlabeled, the classification performance of Oc-
VFDT is very close to VFDT, which is trained on fully la-
beled data stream. It still has excellent classification per-
formance even when 80% of the samples in the stream is
unlabeled.

This paper is organized as follows. Section 2 reviews the
related work. The proposed OcVFDT algorithm is presented
in section 3. The detailed experiment setup and results are
shown in section 4. Section 5 concludes this paper and gives
our future work.

2. RELATED WORK
One-class classification. Current research on one-class

classification can be divided into two categories: (1) Meth-
ods that focus on the construction of basic classifiers: Schölk-
opf et al. proposed to apply SVM to one-class classification
problem [17]. Denis et al. proposed one-class decision tree
in [2]. Calvo et al. gave two methods to enhance the positive
näıve bayes (PNB) classifier [1]. Elkan et al. assumed that
the labeled examples are selected randomly from the posi-
tive examples, and gave two approaches for one-class learn-
ing [5]. (2) Methods that convert the one-class classifica-
tion problem into a traditional supervised learning problem
or semi-supervised learning problem: In [7][15][21], for text
classification, negative text documents are extracted from
the unlabeled documents, and supervised leaner is trained
with help of these negative documents. In [13], Lee et al.
transformed all the unlabeled samples into negative samples,
and used a linear function to learn from the noisy examples.
In [20], Yu proposed MC (Mapping Convergence) method to
incrementally label negative data from unlabeled data using
the margin maximization property of SVM.

Data Stream Classification. There are two main ap-
proaches for classifying data streams: single classifier based
approach and ensemble based approach. For single classifier
based approach, the most well-known classifiers are VFDT
[4][10] and CVFDT [11]. The CVFDT improves the VFDT
so that it can deal with concept drift. After that, many de-
cision tree based algorithms were proposed for data stream
classification [9][12]. For ensemble based approaches, the
initial papers use static majority voting [18][19], while the
current trend is to use dynamic classifier ensembles [22][24].
Besides, Gama et al. presented UFFT algorithm which gen-
erated a forest of trees from data streams [8].

One-class classification of Data Streams. In [23],
Zhang et al. proposed the problem of one-class classifica-
tion of data streams. To the best of our knowledge, this
is the only work devoted to one-class classification of data
streams. However, the algorithm proposed in [23] could only
tackle text streams, while the algorithm proposed in this
paper could cope with general data streams, including text
streams. The algorithm in [23] follows the ensemble based
approach to cope with concept drift in the stream, while the
algorithm in this paper follows the single classifier approach.
However, in this paper, concept drift is not considered, and
is left for our future research.

3. BUILDING OCVFDT
In this paper, we only consider data streams with dis-

crete attribute values. For data streams with continuous at-
tribute values, the continuous attributes could be discretized
to discrete attributes [6], so as to transform the original data
stream into a data stream with discrete attributes only.

Given a stream data S = (s1, s2, . . . , si, . . .), where si is
a sample in S, si =< Xi, yi, li >. Here, Xi is an attribute
vector with n discrete attributes; yi ∈ {−1, +1}, represents
the class label of Xi; li ∈ {0, 1}, represents whether yi is
available or not to the learner. Under the one-class clas-
sification scenario, only positive samples are labeled. So if
li = 1, we are sure that yi = +1; and if li = 0, the true class
label of Xi is unknown.

For simplicity, in this paper, concept drift is not consid-
ered. And we assume that the positive training samples
and unlabeled samples are distributed uniformly in the data
stream. If the positive training samples and/or unlabeled
samples distribute unevenly in the stream, then concept
drifting is presented in this stream. We will study this kind
of stream in our future work.

3.1 One-class Information Gain
The information gain algorithm is widely used in decision

tree algorithms to decide which attribute being selected as
the next splitting attribute [4][16]. Denis et al. proposed
POSC4.5 algorithm and demonstrated how to measure one-
class information gain for static datasets [2]. Here, based
on POSC4.5, for the input sample si in data stream S, and
attribute set A = {A1, A2, . . . , Aj , . . . , A|A|}, formula (1) is
used to measure one-class information gain for the current
tree node, denoted by node:

OcIG(Aj) = Entropy(si) −
∑

a∈Aj

|si,a|
i

Entropy(si,a) (1)

Here, Entropy(si) and Entropy(si,a) represent the en-
tropy of the set {s1, s2, . . . , si}, and set si,a = {s|s ∈ {s1, s2,
. . . , si}, si(Aj) = a}, respectively, which is computed by the
following formulas:

p1,set = min{ |POSnode,set|
POSi,set

×PosLevel× |UNLi,set|
|UNLnode,set| , 1}

p0,set = 1 − p1,set (2)

Entropy(set) = −p1,set log2 p1,set − p0,set log2 p0,set (3)

Here, we write |POSnode,set| and |POSi,set| for counting the
positive samples in set observed at the node, and the first i
samples in S respectively; |UNLnode,set| and |UNLi,set| for
counting the unlabeled samples in set observed at the node,
and the first i samples in S respectively. Please note that in
order to collect these statistical data, we only need to update
some counters whenever a new sample arrives. For the sake
of efficiency and limited memory available, we do not save
all the samples observed from the stream for multiple scans.

The PosLevel in formula (2) is to estimate the probability
of the observed positive samples from the data stream S. For
a given classification task, PosLevel is always unknown to
the learner. The next subsection will give more discussions
on this parameter.

3.2 Building OcVFDT
In [4], Domingos et al. proposed to choose the best split

attribute when constructing decision tree for data streams
based on Hoeffding bound. Here, based on Hoeffding bound,
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we use the one-class information gain as the split evaluation
function to choose the best splitting attribute. As the true
value of PosLevel in formula (2) is unknown, we enumerate
nine possible values of PosLevel, from 0.1 to 0.9. Then, we
get a forest, T , with nine different OcVFDTs.

The best tree in T is then chosen by estimating the classi-
fication performance of the trees with a chunk of validating
samples. The validating chunk is filled with validating sam-
ples which are selected randomly with probability pvalidate

from S. Note that due to the limited memory available, we
cannot save all the validating samples that have been se-
lected. Once the validating chunk is full, the samples inside
it will be used to evaluate the trees in T , and then the val-
idating chunk is cleared. Finally, these evaluation data will
be used to choose the best tree as the final output classifier.
Our algorithm for building one-class very fast decision tree
is illustrated in Algorithm 1.

Algorithm 1 Building one-class very fast decision tree

Input:
a stream of samples, S;
the size of validating chunk, nvalidate;
the probability for a sample to be selected as validat-

ing sample, pvalidate;
the feature space of stream S, A;
one minus the desired probability of choosing the cor-

rect attribute at any given node, δ;
user-supplied tie threshold, τ ;
the number of samples between checks for growth,

nmin.
Output:

a one-class very fast decision tree.
1: V alidateChunk = φ, T = φ;
2: for each i ∈ [1, 9] do
3: initialize a tree Ti with only a leaf (the root);
4: T = T

⋃
Ti;

5: end for
6: for each sample s ∈ S do
7: for each i ∈ [1, 9] do
8: PosLevel = i

10
;

9: Grow(Ti, PosLevel, s, A, δ, τ, nmin);
10: end for
11: if Random() ≤ pvalidate then
12: V alidateChunk = V alidateChunk

⋃{s};
13: if |V alidateChunk| == nvalidate then
14: Estimate(T, V alidateChunk);
15: V alidateChunk = φ;
16: end if
17: end if
18: end for
19: if V alidateChunk! = φ then
20: Estimate(T, V alidateChunk);
21: end if
22: return GetBestTree(T );

In this algorithm, the system is initialized in steps 1 to
step 5; a forest of 9 trees is trained on S in steps 7 to
step 10; the validating chunk is maintained and the trees
are evaluated on it in step 11 to steps 21. The function
Grow(Ti, PosLevel, s, A, δ, τ, nmin) is used to grow a single
one-class decision tree, please refer to section 3.3 for details.
The function Random() returns a random value in [0, 1].
The function Estimate(T, V alidateChunk) is used to eval-

uate the classification performance of trees in T on the val-
idating chunk. And the function GetBestTree(T ) returns
the best tree selected from forest T . These two functions
are demonstrated in section 3.4.

3.3 Growth of Single OcVFDT
Based on the growth algorithm of VFDT [4], the process

of growing single OcVFDT is listed in Algorithm 2.

Algorithm 2 Grow(Ti, PosLevel, s, A, δ, τ, nmin)

// Refer to Algorithm 1 for the details of input parame-
ters;

1: node = Ti.sort(s);
2: nnode = getNumOfSamplesAtNode(node);
3: Set the class label of node to the majority class at node

according to p1 and p0 following formula (2);
4: if numOfClassesAtNode(node) > 1 and

nnode%nmin == 0 then
5: for each Ai ∈ node.A do
6: Compute Gnode(Ai) = OcIG(Ai) following formula

(1);
7: end for
8: Choose attribute Aa and Ab with the highest and

second-highest Gnode;
9: ΔGnode = Gnode(Aa) − Gnode(Ab);

10: Compute ε following the Hoeffding bound [4];
11: if ΔGnode > ε or ΔGnode ≤ ε < τ then
12: for each ai ∈ Aa do
13: nodei = addChildLeaf();
14: Set the class label of nodei to the majority class

at nodei according to p1 and p0 following formula
(2);

15: end for
16: end if
17: end if

Algorithm 2 could be summarized into two main pro-
cesses. Firstly, from steps 1 to 3, the sample s is traversed
along the tree Ti to reach leaf node, and the class label of
node is set to the majority class at node. Secondly, from
steps 4 to 17, new leaves are grown at node. For each avail-
able attributes at node, the one-class information gain is
derived using formula (1). If the condition at step 11 is sat-
isfied, then node should be split by attribute Aa, and new
leaves should be generated. Here, note that when comput-
ing the majority class at new leaves, the count of positive
and unlabeled samples comes from the parent node.

Let’s write v for the maximum number of values per at-
tribute, c for the number of classes, l for the maximum
depth of the tree l < |A|, and |S| for the number of sam-
ples in data stream S, the time complexity of Algorithm 1
is O(|S||A|vcl) + O(|S||A|vclpvalidate) = O(|S|).

3.4 Tree Selection
A forest T with nine trees is trained in Algorithm 1. Based

on the POSC4.5 [2] algorithm, we design our algorithm for
choosing the best tree as the final output classifier.

We collect the following statistical data with the help of
the validating chunk of each tree Tk ∈ T .

1. |POS|: the count of positive samples in the validating
chunk;
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2. |UNL|: the count of unlabeled samples in the validat-
ing chunk;

3. |PToUk|: the count of positive samples that are clas-
sified as unlabeled samples by Tk;

4. |UToPk|: the count of unlabeled samples that are clas-
sified as positive samples by Tk.

Once the validating chunk is full, the function Estimate(T,
V alidateChunk) will be invoked to collect the statistical
data. And the counting data among different runs should
be accumulated together.

The following formula is used to evaluate the performance
of each Tk ∈ T :

e(Tk) =
|PToUk|
|POS| +

|UToPk|
|UNL| (4)

And the best tree is chosen by:

Tj = argmin
k

(e(Tk)) 1 ≤ k ≤ 9 (5)

4. EMPIRICAL STUDY
In order to measure the classification performance of our

OcVFDT algorithm, we perform experiments on both syn-
thetic dataset and real-life dataset. We compare the clas-
sification of OcVFDT with VFDT, as both OcVFDT and
VFDT are the single-classifier based approaches. Further-
more, as VFDT is a supervised learner, this comparison can
also help reveal the strong ability of OcVFDT to learn from
unlabeled samples.

Our algorithms are implemented in Java language based
on the WEKA1 software packages, and the experiments are
conducted on a PC with Core 2 CPU, 1G memory and Win-
dows XP OS.

We measure the classification performance of the proposed
classifier by accuracy and F1, which are commonly used in
the research community for measuring the performance of
one-class classifiers [2][5].

4.1 Synthetic Data
For each of the experiments settings here, twenty trails

of experiments on synthetic data are conducted, and the
averaged classification performance is reported.

In the rest of this paper, we write PosLevel for the per-
centage of positive samples in the stream.

Similar to the experiment setting in [4], we set τ = 0.05,
and δ = 0.0000001 for OcVFDT in all experiments.

4.1.1 Generating Synthetic Data Stream
We modify the software in VFML2 package, which is used

to generate synthetic data stream for VFDT [4], by adding a
new parameter, UnLevel. UnLevel represents the percent-
age of unlabeled samples in the stream. For each sample in
the stream S, there are 100 discriminative attributes with
binary attribute value, and 1 category attribute. The test-
ing data stream is set to have the same data distribution
and the same size as the training data stream.

1http://www.cs.waikato.ac.nz/ml/weka/
2http://www.cs.washington.edu/dm/vfml/

4.1.2 Analysis of Parameters in OcVFDT
Parameter nvalidate and pvalidate. Two groups of exper-

iments are conducted here, with nvalidate ranging from 200
to 500 in one group, and pvalidate ranging from 0.3 to 0.6
in the other. We set |S| = 105 and UnLevel = 80%. The
experiment result shows that, for both F1 and accuracy,
the difference of classification performance among different
experiment settings is non-significant on t-Test [3]. The de-
tailed experiment result is omitted here for lacking of space.
We set nvalidate = 200, and pvalidate=0.3 in all experiments
for the sake of limited memory space.

Parameter nmin. We experimented with |S| = 104,
|S| = 105 and |S| = 106, respectively, with UnLevel = 80%,
and PosLevel = 50%. Please refer to Fig.1 for the ex-
periment results. In Fig.1, the horizontal axis represents
nmin, the vertical axis represents classification performance.
Fig.1(A), Fig.1(B), and Fig.1(C) gives the experiment result
for |S| = 104, |S| = 105, and |S| = 106, respectively.

It can be observed from Fig.1 that with increasing of nmin,
the classification performance is decreasing. Hence, for the
rest of this paper, we set nmin = 200.

4.1.3 OcVFDT vs. VFDT
Comparison of Classification Performance. In this

group of experiments, we compare the classification perfor-
mance of VFDT and OcVFDT. For VFDT, we set τ = 0.05,
δ = 0.0000001, and nmin = 200.

We experimented with |S| = 104, 105, 106 and 107; PosL-
evel = 40%, 50%, and 60%; UnLevel = 55%, 60%, 65%,
70%, 75%, and 80%. The experiment results are shown in
Fig.2 and Fig.3. In Fig.2 and Fig.3, the horizontal axis rep-
resents |S|, the vertical axis represents accuracy, and F1,
respectively. The different lines in these figures represent
the classification result of VFDT, and OcVFDT with vari-
ous UnLevel parameter.

It could be observed from Fig.2 and Fig.3 that for a certain
|S| value, the classification performance of OcVFDT with
different UnLevel is very close to each other. It could also be
observed that OcVFDT performs a little worse than VFDT,
and for some |S| value, it even performs better than VFDT.
When |S| = 107, UnLevel = 80%, the averaged accuracy
of VFDT is 0.961, while the averaged accuracy of OcVFDT
is 0.953. Compared with VFDT, the decrease in accuracy
of OcVFDT by 0.008 is compensated by freeing the human
power to label 8×106 samples. This is a great achievement of
saving human power, and makes OcVFDT more applicable
to real-life applications.

Experiment on Unlabeled Samples. In this group of
experiments, we test the ability of OcVFDT to cope with
unlabeled data. We set PosLevel = 50% for generating
data stream S. When experimenting with VFDT, we sample
|POS| positive samples and |POS| negative samples from
S to form the training data stream. When experimenting
with OcVFDT, we use |POS| positive samples from S as
labeled sample, and |POS|+ |S|(i−1)/10 samples from S as
unlabeled samples to form the training data stream. Here,
when we are generating training data streams S for both
VFDT and OcVFDT, we make sure that PosLevel = 50%
in the generated stream, and keep the order among samples
in S to the generated data stream. By using this method,
the assumption of even distribution of original data is broken
which leads the performance of OcVFDT not so well.

Tab.1 shows the experiment results. In Tab.1, column
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Figure 2: Comparison of VFDT and OcVFDT Measured by Accuracy.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10000  100000  1e+006  1e+007

F
1

|S|

(A) Experiment result for PosLevel=40%

VFDT
OcVFDT UnLevel=65
OcVFDT UnLevel=70
OcVFDT UnLevel=75
OcVFDT UnLevel=80

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10000  100000  1e+006  1e+007

F
1

|S|

(B) Experiment result for PosLevel=50%

VFDT
OcVFDT UnLevel=60
OcVFDT UnLevel=65
OcVFDT UnLevel=70
OcVFDT UnLevel=75
OcVFDT UnLevel=80

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10000  100000  1e+006  1e+007

F
1

|S|

(C) Experiment result for PosLevel=60%

VFDT
OcVFDT UnLevel=55
OcVFDT UnLevel=60
OcVFDT UnLevel=65
OcVFDT UnLevel=70
OcVFDT UnLevel=75
OcVFDT UnLevel=80

Figure 3: Comparison of VFDT and OcVFDT Measured by F1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

PosLevel

(A) Experiment result for |S|=105

OcVFDT F1
OcVFDT Accuracy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

PosLevel

(B) Experiment result for |S|=106

OcVFDT F1
OcVFDT Accuracy

Figure 4: Experiment with Tree Selections.

83



Table 1: Results of Different Sizes of Unlabeled Samples.

VFDT OcVFDT
|S| |POS| i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

2000 0.606 0.614 0.668 0.501 0.668 0.501 0.668 0.501 0.667 0.607 0.689 0.625 0.721 0.670 0.729 0.715
2500 0.603 0.618 0.667 0.501 0.667 0.501 0.665 0.557 0.667 0.586 0.708 0.664 0.709 0.706 - -

104 3000 0.572 0.621 0.666 0.500 0.660 0.552 0.667 0.579 0.713 0.651 0.733 0.710 - - - -
3500 0.522 0.631 0.660 0.512 0.673 0.573 0.690 0.630 0.711 0.696 - - - - - -
4000 0.507 0.636 0.694 0.605 0.719 0.669 0.742 0.734 - - - - - - - -

20000 0.786 0.788 0.706 0.597 0.733 0.660 0.749 0.683 0.779 0.746 0.789 0.759 0.801 0.779 0.824 0.818
25000 0.807 0.798 0.732 0.661 0.741 0.665 0.773 0.730 0.791 0.765 0.804 0.791 0.822 0.825 - -

105 30000 0.811 0.812 0.697 0.572 0.787 0.757 0.799 0.780 0.801 0.781 0.825 0.824 - - - -
35000 0.817 0.824 0.774 0.731 0.792 0.769 0.793 0.765 0.824 0.822 - - - - - -
40000 0.824 0.832 0.785 0.758 0.788 0.766 0.824 0.824 - - - - - - - -

200000 0.891 0.894 0.845 0.831 0.827 0.795 0.865 0.852 0.868 0.858 0.884 0.877 0.902 0.902 0.906 0.917
250000 0.893 0.896 0.800 0.752 0.867 0.856 0.870 0.861 0.873 0.862 0.896 0.895 0.901 0.905 - -

106 300000 0.897 0.899 0.862 0.849 0.879 0.875 0.859 0.848 0.895 0.896 0.897 0.902 - - - -
350000 0.901 0.903 0.876 0.871 0.850 0.834 0.894 0.895 0.897 0.904 - - - - - -
400000 0.910 0.913 0.835 0.812 0.885 0.883 0.885 0.890 - - - - - - - -

Table 2: Running Time and Size of the Tree.

|S| VFDT OcVFDT
Time(ms) #Leaves #Node Time(ms) #Leaves #Node

20000 91.00 8.6 7.6 680.84 11.2 10.2

200000 691.92 64.4 63.4 8004.48 65.8 64.8

2000000 7335.68 313.0 312.0 106935.90 441.8 440.8

20000000 78450.00 1529.0 1528.0 1459911.00 3775.0 3774.0

1 lists the size of data stream S; column 2 gives the size
of (labeled) positive sample set, |POS|; columns 3 and 4
give the experiment results of VFDT, measured in F1 and
accuracy respectively; columns 5 to 18 give the experiment
results of OcVFDT with different i values. It is shown in
Tab.1 that from i = 1 to 7, the classification performance of
OcVFDT is improving, because the total number of training
samples is increasing and the distribution of the training set
is becoming more and more uniform.

4.1.4 Experimentation of Tree Selections
In this group of experiments, we examine the ability of our

tree selection algorithm for choosing the best trees. When
generating data streams, we set PosLevel = 50%, and UnL-
evel = 80%. Experiment results of |S| = 105 and |S| = 106

are reported in Fig.4(A) and Fig.4(B) respectively. In Fig.4,
the horizonal axis represents nine OcVFDTs trained with
nine different PosLevel values, and the vertical axis repre-
sents the classification performance. In Fig.4, “Ti F1”, “Ti

Accuracy”, “OcVFDT F1”, and “OcVFDT Accuracy” repre-
sents the F1 index of tree Ti, the accuracy index of Ti, the
F1 index of the selected tree, and the accuracy index of the
selected tree respectively.

It is shown in Fig.4 that our tree selection algorithm is
very effective in choosing the best tree from the forest T and
in the 20 trails experiments both in |S| = 105 and |S| = 106.
For |S| = 105, there are 7 trails which select the top tree,
10 trails select the second tree and 3 trails choose the third
tree. For |S| = 106, all the trails select the top tree. For lack
of space in this paper, we can’t report the results of other
UnLevel values.

4.1.5 Running Time and Size of the Tree

Here, we report the running time, the count of inner nodes,
and the count of leaves of VFDT and OcVFDT with dif-
ferent |S| parameters. When generating data streams, we
set PosLevel = 50%, UnLevel = 80%. The running time
reported here is the time for the leaner to learn from the
samples. The time for input/output is not considered.

The experiment results are listed in Tab.2. In Tab.2, col-
umn 1 lists the size of the data stream, |S|; columns 2, 3, and
4 list the running time, the count of leaf nodes, the count of
inner nodes for VFDT respectively; and columns 5,6, and 7
give these information for OcVFDT.

4.2 Real-life Data
We perform experiments on one real-life dataset, namely

Reuters Corpus Volume 1 (RCV1) [14].

4.2.1 Datasets and Preprocessing
RCV1. Reuters Corpus Volume 1 (RCV1) consists of

English language stories produced by Reuters journalists
between August 20, 1996 and August 19, 1997. To make
it easier to use, Lewis et al. provided RCV1-V2 3 after pre-
processing on RCV1, which becomes a benchmark dataset
[14] for text mining researchers.

There are four main categories in RCV1-V2, i.e., ECAT,
GCAT, CCAT, and MCAT. We select CCAT as a positive
category in our experiment, and the rest of the documents
are taken as negative samples, so as to generate a balanced
data stream.

Usually, there are thousands of features in a corpus. We
performed feature selection by using WEKA in the experi-

3http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
lyrl2004 rcv1v2 README.htm
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ment. As RCV1-V2 is too large for WEKA to process, for
CCAT category, 3% of the training samples and 3% of the
testing samples are selected randomly to form dataset D,
and 100 top expressive features are selected by performing
Information Gain (IG) [16] algorithm on D. The original
text corpus is represented by these features.

The details of the dataset after the preprocessing are fol-
lows.

Table 3: Description of the Real Dataset.

Dataset #Att
Training Set Testing Set

#Pos #Neg #Pos #Neg

RCV1-V2 101 370541 410724 10786 12363

4.2.2 Experiment Result
We simulate data stream on this real-life dataset. For

RCV1-V2 dataset, UnLevel ranges from 65% to 80%. For
each experiment setting, we generate fifty trails of data strea-
ms, and the averaged experiment results of the fifty trails are
reported in Tab.4.

In Tab.4, column 1 lists the name of the dataset; columns
2 to 6 give the F1 index, accuracy index, running time, count
of leaves, and count of inner nodes of VFDT respectively;
column 7 gives the UnLevel parameter; and columns 8 to
12 give the experiment results for OcVFDT.

It is obvious from Tab.4 that even with high percentage
of unlabeled samples, the performance of OcVFDT is very
competitive to that of VFDT, which is trained on fully la-
beled data stream. Furthermore, with different UnLevel
values, the performance of OcVFDT is stable.

5. CONCLUSION AND FUTURE WORK
In this paper, based on VFDT and POSC4.5, we pro-

pose OcVFDT algorithm for one-class classification of data
streams. Our experiments on both synthetic data and real-
life data show that even 80% of the samples in the stream
are unlabeled, the classification performance of OcVFDT is
still very close to that of VFDT which is trained on fully la-
beled data stream. For example, in synthetic datasets with
80% unlabeled samples, the decrease accuracy of OcVFDT
of |S| = 105, 106 and 107 with PosLevel = 50% is 0.022,
0.008 and 0.009 respectively.

OcVFDT requires less labeled training samples, which
makes it more applicable to real-life applications.

Data streams are characterized by concept drift. However,
concept drift is not considered in this paper for simplicity.
Based on our OcVFDT algorithm, we plan to study one-class
data stream classification algorithm to cope with concept
drift as our next effort.
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ABSTRACT 
In this paper, we presented a frequent pattern based framework for 
event detection in stream data, it consists of frequent pattern 
discovery, frequent pattern selection and modeling three phases: 
In the first phase, a MNOE (Mining Non-Overlapping Episode) 
algorithm is proposed to find the non-overlapping frequent pattern 
in time series. In the frequent pattern selection phase, we proposed 
an EGMAMC (Episode Generated Memory Aggregation Markov 
Chain) model to help us selecting episodes which can describe 
stream data significantly. Then we defined feature flows to 
represent the instances of discovered frequent patterns and 
categorized the distribution of frequent pattern instances into three 
categories according to the spectrum of their feature flows. At last, 
we proposed a clustering algorithm EDPA (Event Detection by 
Pattern Aggregation) to aggregate strongly correlated frequent 
patterns together. We argue that strongly correlated frequent 
patterns form events and frequent patterns in different categories 
can be aggregated to form different kinds of events.  Experiments 
on real-world sensor network datasets demonstrate that the 
proposed MNOE algorithm is more efficient than the existing 
non-overlapping episode mining algorithm and EDPA performs 
better when the input frequent patterns are maximal, significant 
and non-overlapping.  

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Management-Data 
mining

General Terms
Algorithms  

Keywords
Frequent pattern, temporal data mining, event detection, sensor 
network

1. INTRODUCTION 
Stream data refers to object sequences annotated with ordered 
time stamps. In this paper, “stream data”, “temporal data” and 

“time series” represent the same concept. Frequent patterns are 

subsequences of objects that appear in a time series with 
frequency no less than a user-specified threshold (i.e. minimum 
support).  Each occurrence of a frequent pattern is an instance of 
this frequent pattern in the given time series.  

Abundant literature has been dedicated to find frequent patterns in 
temporal data [1,2,3,4,5,6,7]. Frequent patterns are usually 
extracted from time series as the features of the time series for 
different data mining tasks, such as clustering, classification and 
mining associate rules [8,9,10,11,12,13]. But the methods 
developed for mining closed frequent patterns often generate a 
huge number of patterns. People usually need interesting patterns 
only [14]. In time series, frequent patterns can be categorized into 
different categories, patterns in different category can represent 
different features of stream data which might be interesting 
patterns in different tasks. As shown in Fig.1, different categories 
of frequent patterns represent different relationships among 
frequent pattern instances (y, z axis) and their different 
distributions in time series (x axis). The concepts mentioned in 
Fig.1 are defined in section 2.  

There are different kinds of events, such as burst event, regular 
event and routine event. For example “burst event” are some 
events may frequently occur in a special short period of time but 
not or almost not occur in any other period of time. As events 
consist of frequent patterns, the features of events can be 
described by the frequent patterns associated with them. Take the 
time series in Fig.2 as an example, if we set minimum support as 
3 and constraint the length of episode no more than 5, let A, B, C, 
D denote four episodes consist of 5 objects respectively (see Def. 
5). It’s obverse that episode A, B, C, D are all frequent, namely 
appear more than 3 times respectively. But it’s clear that episode A 
and D don’t occur frequently in all the scope of the time series. If 
we split the time series into three pieces, we could say that event 
A and D burst in the second time frame. Episode A and D are both 
burst episodes and they form a burst event, namely “AD”.  We can 
consider frequent patterns as elements form events in time series. 
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Different category of frequent patterns form different category of 
events. 

   

Fig.1 Frequent patterns are categorized by the three 

dimensions. i.e. the inclusion relationship (maximal or non-

maximal), the occurrences in time series (episode or sequential 

pattern) and the positions of instances in the time series 

(overlapping or non-overlapping). 

Fig.2 Episode “A” and “D” burst in the second piece of time, 

and they form a burst event “AD”.  

In this paper, we focus on discovering non-overlapping episode 
and selecting frequent pattern in different categories for detecting 
different kinds of events in temporal data. The contributions of 
this paper are as follows:  

We categorize frequent patterns in time series by the 
relationship among their instances and the instance 
distribution. We defined feature flows to represent frequent 
patterns and we can get the feature of frequent pattern 
instance distribution by analyzing the spectral gram of 
corresponding feature flow. 
We presented MNOE algorithm to discover non-overlapping 
episode and defined significant non-overlapping episode. 
Based on the presented EGMAMC model, we induced the 
minimum support for discovering the defined significant 
non-overlapping episode (see section 3.2.2).  
We defined different categories of frequent patterns and 
events in a time series. We connect them by instance 
distribution of frequent patterns. We presented EDPA 
algorithm to aggregate frequent patterns in different 
category to get different category of event. 

Experiments on sensor network datasets demonstrate that 
MNOE beats the existing algorithm. EDPA can detect 
events in high accuracy and distinguishing non-overlapping 
episode from overlapping episode, significant episode from 
non-significant episode help improving the accuracy of 
EDPA.

The rest of the paper is organized as follows: Section 2 is 
preliminaries. Section 3 presents the frequent patterns based 

framework for event detection. The proposed algorithms (i.e. 
MNOE, EDPA) and EGMAMC model are presented in three 
subsections respectively. Section 4 gives related works. Section 5 
gives the experiment results and we conclude in section 6. 

2. PRELIMINARIES 
Definition 1. (Time Series) A sequence of objects, 

1 1 2 2{ , , , ,..., , }i iT o t o t o t ,  where 

1 2{ , ,..., }iO o o o  represents the symbols of different types 

of objects and it  the time of occurrence of the i th object. 

Definition 2. (Frequent Pattern) A subsequence of object symbols 

(i.e. 1{ , ,..., }j iP o o o ) that appear in a time series with 

frequency no less than a user-specified threshold (i.e. minimum 
support). 

Definition 3. (Maximal Frequent Pattern) Given a frequent pattern 

1 2{ , ,..., }i mP o o o , there do not exist another frequent 

pattern
1 2{ , ,..., }j nP o o o  includes iP . If 

i jP P , then 

( ) ( )i i j jP o P o ,
i jo o , where ( )i iP o  represents the 

index of symbol 
io  in iP .

By defining different measures of the contribution that the 
occurrences of objects made to supports, we can get different 
kinds of frequent patterns, namely sequential pattern and episode. 

Definition 4. (Sequential Pattern) Given a set of time segments 

and a minimal support S . A sequence occurs once or more than 

once in a segment contributes 1 to its support. If a sequence’s 

support is larger than S , it’s a sequential pattern. 

Definition 5. (Episode) Given a time series and a minimal support 

E . A sequence occurs once in this time series contributes 1 to 

its support. If a sequence’s support is larger than E , it’s an 

episode. 

 Laxman etc. [15] is the first one defines non-overlapping episode 
as follows: 

Definition 6. (Non-overlapping episode) Suppose an episode 
occurs in the time series twice, if any object associated with either 
occurrence doesn’t occur between the objects associated with the 
other occurrence, then these two instances of the episode are 
called non-overlapping episode. The frequency of an episode is 
defined as the maximum number of non-overlapping occurrences 
of the episode in time series. 

To describe the distribution of frequent patterns in a time series, 
we defined feature flows. 

Definition 7 (Feature Flow) Suppose a time series 

1 1 2 2{ , , , ,..., , }i iT o t o t o t   is segmented into 

a segmentation 1 2{ ( ), ( ),..., ( )}TSeg s tf s tf s tf . A flow of 

frequent pattern feature can be written as the sequence: 

88



1 2{ ( ), ( ),..., ( )}f f f f Ty y tf y tf y tf , ( )f iy tf is a measure 

of frequent pattern feature f  in time frame itf , the sequence of 

time frame 1 2{ , ,..., }Ttf tf tf  is a mapping of the segmentation

Seg .

( ( ))
( ) log( )

( ( ))

p

f

p

N s tf N
y tf

N s tf N
, where ( ( ))pN s tf is

the number of occurrence of pattern p in segment ( )s tf .

( ( ))N s tf is the total number of occurrence of all the frequent 

patterns in segment ( )s tf . N and
pN  are the number of 

occurrence of all the frequent patterns and pattern p  in all 

segments respectively. 

Definition 8 (Event) An event in time series is a set of frequent 

patterns 1 2{ , ,..., }nP p p p  and any two patterns ( ip and

jp ) must satisfy the following necessary conditions: 

1. Their feature flows 
fiy and

fjy  must be identically 

distributed. 

2. ip  and 
jp  must occur in the same time segments with high 

probability. 

3. FREQUENT PATTERN BASED 

FRAMEWORK FOR EVENT DETECTION 
The presented frequent pattern based event detection framework 
consists of frequent pattern discovery, frequent pattern selection 
and modeling. In frequent pattern discovery phase, we can use any 
existing algorithms to discovery various types of frequent patterns 
(sequential pattern and episode) and section 3.1 presents the 
proposed MNOE algorithm which can discovery non-overlapping 
episodes. For different data mining tasks, there are many methods 
have been proposed to select interesting frequent patterns from the 
closed set of frequent patterns. In section 3.2, we present a 
Markov chain based method to distinguish significant and non-
significant episode and it can be used as a method to select 
frequent pattern. Finally, in modeling phase, different models can 
be trained from selected frequent patterns to achieve different 
tasks (e.g. clustering, classification and associate rule). In section 
3.3, we present EDPA algorithm which clusters frequent patterns 
for event detection in stream data. 

3.1 Finding Non-overlapping Episodes 
The concept of non-overlapping episode was firstly proposed by S. 
Laxman etc. [15] (see Def. 6). But it’s regret that S. Laxman etc. 
[15,16] only proposed an algorithm to find non-overlapping 
episodes from the complete set of episodes. It’s obviously not 
efficient. So based on the same definition of non-overlapping 
episode and its frequency, we present a iterative algorithm which 
directly find non-overlapping episodes from the given time series. 

Algorithm MNOE 

Input:

1.a set S  of time annotated  time series projection 

,P head body

2.The length of episode to be found in current iterate: l

3.The maximum time interval permitted between every two 
successive events in an episode: maxGap 

4. minimum support: minSpt

Output: the set of non-overlapping episodes 

1. Sorting iP  increasingly in S by the time stamp annoted 

to the last element in .iP head

2. for (every projection iP  in S){ 

3.             for every element e  in .iP body {

4.                If (substraction of . _e time stamp and the   

time stamp of the last element in .iP head   is larger 

than maxGap) then 

5.                                 Break; 

6.                If e is the element belonging to |e| with   

smallest time stamp in .iP body  and the   

time stamp of the first element in .iP head is larger than 

the time stamp of last element in HashtableFE(|e|), then  

7.          e contribute 1 to the support of |e|. 

8.           Project e  on .iP body : iP =projection( e );

9.                . ( )iS add P

10.   For every key value (i.e.|e|) in HashtableFE 

11.          if  HashtableFE(|e|).size is larger than minSpt

12.                   Call MNOE( S , 1l , maxGap , minSpt )

Operator | . | on a sub-sequence x (i.e. | |x ) means don’t 

consider the annotated time stamps on x . For example, | |e

represents an event type, | |, _e e time stamp

represents an instance of | |e appears in time series at 

_time stamp . So | . |iP head represents the prefix of 

episodes in current iterate, .iP head  represents the instances. 

.iP body  represents the set of all events occur after .iP head in

time series. The sorting of 1 2{ , ,..., }nS P P P in line 1 of 

MNOE guarantees us getting the maxmum number of non-
overlapping occurrentces of the episode. HashtableFE is a hash 
table got |e| as the keys, and HashtableFE(|e|) represent the set of 

event instances following the current prefix | . |iP head . Finally, 
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projection( e ) follows the rule: if 
iP  is the new projection, then 

. .i iP head P head e , .iP body  is a sub-set of event 

instances in .iP body  whose time stamps are larger than e .

3.2 Significant Frequent Episodes 

3.2.1 EGMAMC Model 
EGMAMC is a combination of memory Markov chain and 
aggregation Markov chain: 

Suppose 1 2{ , ,..., ,..., }t TX x x x x , where {1,..., }t T ,

1 2{ , ,..., }t nx E e e e  is the state at current time point, E

represents state space. Then 

1

1 1 1

( | ,..., ) ( ) ( | ) ( ) ( | ) ( | )
L L K

l l

t t t L t t l t t l

l l k

p x x x p l p x x p l p x k p k x       (1) 

where L is the maximum time delay permitted (i.e. the maximum 
time interval between every successive events permitted in an 

episode), the state space is categorized into K  clusters, ( )p l
represents the probability that the state at current time point is 

determined by the state at the l  before time points. 

( | )l

t lp k x  denotes the probability in which the l  before time 

points state determines the current time state belonging to the 

cluster k . ( | )tp x k  denotes the probability the state at current 

time point is tx  on condition that the current time point state 

belongs to cluster k .

The states in EGMAMC’s state space are categorized into episode 

event eK  and noise nK . eK  denotes the events associated with 

the episode 
1 2 1{ , ,..., , }N N

e e e eS S S S , where 
i

eS

represents the event appears in the i th  slot of and N is the 

length of . nK  denotes the event not associated with . If 

set the maximum interval between every two successive events as 

L , we get the  based EGMAMC model :

1

1

1

1

1 1

( | , ..., )

( | , ..., ) ( | )

( | , ..., ) ( | , ) ( | )

t t t L

L
l

t t L t t l

l

L K
l

t t L t t l t l

l k

P x x x

P l x x P x x

P l x x P x k x P k x

(2)

When t l ex K  and , t l nl l x K ,

1( | ,..., ) 1t t LP l x x  otherwise, 1( 1| ,..., ) 1t n t L nPl x K x K .

Set 1( ,..., )t n t L nP x K x K  which indicates the 

probability that the time interval of two successive instances of 

episode is larger than L .  is larger means  distribute 

more sparsely in the time series, vice versus.  

Set ( | )l

n t lP k K x  as the probability that the current 

state belongs to noise (i.e. 1  is the probability that the 

current state belongs to episode event).  

When ek K , if 
1n

t l ex S , then ( | , ) 1
n

t e e t l
P x S K x  ,

( | , ) 0n

t e e t lP x S K x .

When nk K ,
1

( | , )t n t lP x K x
M

, where M is the 

number of event type which could appear in the given time series. 
We suppose the noise obeys an independent identical distribution. 

Based on the definition above, given an observed time series o ,

it’s generated by in the probability: 

( ) ( )

( ) ( ) ( ) ( )

( )

( )

(1 )
( )

( | )

(1 )
( ) ( (1 )) ( ) ((1 )(1 ))

(1 ) (1 )
( ) ( ) ( )
1

(1 ) (1 )
( ) ( ) ( )
1

(1 ) (1 )
( ) ( )

n e n e
n n e e

n eq o q o en n
e

eT
e

e
e

q o q o q o q o

q oT

q oT

q oT

P o

M M

M

M

M

M

M

M

  (3) 

Where | |T o  denotes the length of the observed time series, 

( )n

nq o  is the times noise states transit to noise states in o .

Similarly, ( )e

nq o  represents the times noise states transit to the 

first event in (i.e. 
1

eS ). ( )n

eq o  denotes the times episode 

states transit to noise state, ( )e

eq o  represents the times episode 

states transit to all the episode states “except” 
1

eS , ( )e

eq o

represents the times episode states transit to all the episode states.  

We could approximately consider ( )e

eq o Nf , so we get 

equation (4) from (3) as follows: 

(1 )(1 ) (1 )
( | ) ( ) ( ) N fT M

P o
M

    (4) 

Informally speaking, if  is larger, appears less frequently in 

o , if is larger,  distributes more sparsely in o . Next 

section introduces the method to test whether is proper to be 

utilized to describe a given time series o .

3.2.2 Significance Testing of Frequent Episodes 

This study compare EGMAMC model with an i.i.d model by 

Likelihood ratio testing. If the hypothesis of is more proper 

than i.i.d model to be considered as the generative model of  the 

90



observed time series o  is accepted,  is called significant 

episode. 

We test the alternate hypothesis 1H : time series o is generated 

by an EGMAMC model , against the null hypothesis 0H :

time series o is generated by an independent identical distribution 

model . . .i i d  If  inequation (5) holds then 0H  is rejected (i.e. 

is significant) 

1

0

( | )
( ) 0

( | )

P o H
L o

P o H
  ( is determined by fixing the 

probability of Type  error)                                                     (5) 

According to equation (4), when 1
1

M

M

 or 

1
1

2
, there is too much noise in time series o , so that 

1H  is equal to 0H . So it’s only necessary to test the two 

hypothesis under condition 
1

M

M

 and 1
1

2

.

Since
0

1
( | ) ( ) TP o H

M

 is a constant, inequation (5) is 

equal to 
1 0( | ) ( | )P o H P o H , and according to 

equation (3), 1( | )P o H  is equal to ( )e

eq o , so 

inequation (5) is equal to  

( ) ( )e

eL o q o   ( is determined by fixing the 

probability of Type  error)                                                      (6) 

Type  error is the probability of incorrectly accepting 0H

under the condition that ( )L o .

0

1
( ( ) ; ) ( ) ( )T

fP P L o H Q
M

                      (7) 

Where ( ) | { ; ( ) } |e

eQ o q o  represents the number of T

-length time series which let ( )L o  hold. 

( )Q has an upper bound as 

(1 )( ) ( 1)k T T k

T

k

Q C M M
                               (8) 

k

TC  is the combination number of choosing k  position in a T -

length time series to place episode states. There are T positions  

are filled by states which are determined by the noise at the time 

point before, the combination number of these states is 
TM .

The remaining positions in the T -length time series should be 
filled by the states are determined by episode states, and each of 

these position has ( 1)M  choice of the state, because it could 

not be chosen as the next episode state. So the combination 

number is 
(1 )( 1) T kM . After all we get 

m i n

m i n

(1 )

( )

( )

1
( ) ( 1 )

1 1
1 ( ) (1 ) ( )

1

1 ( ) ( )
1 1 1

( ) (1 )

1 ( )
1 1

( ) (1 )

T k T T k

f T

k

T k k T k k

T

k

T k

P C M M
M

M
C

M M M

T
M M

M
T

M M

T

Mc

T
M M

(9) 

where (.) is the cumulative distribution function of a standard 

normal random variable and the approximation holds for large T

due to the central limit theorem. min ( )( )
1

T kM
c

M
 is a 

constant, min ( )k  represents the minimum appears in 

the time series in which k . So if given the upper bound of 

Type error  (e.g. 0.5 ) then  

11 1
( ) (1 ) ( )

T T

M M M c

                          (10) 

When T is larger, T

M

, and ( )e

eq o Nf , then 

according to inequation (6), when T
f

M N

, 0H  is rejected. 

Since in a time series o , ( )e

eT q o T N f

T T

, in 

order to satisfy 
1

M

M

,

( 1 )

T
f

N M

 must hold. 

Summarizing above, when 
T

f
MN

and 1

2
, is 

significant episode in time series o .

3.3 Frequent Pattern Clustering for Event 

Detection 

3.3.1 Frequent Pattern Spectral Analysis
Intuitively, an event could be represented by a set of correlated 
frequent patterns. Instances of different types of frequent pattern 
have different distributions in a time series segmentation. For 
example, if a subsequence of objects is an episode in a time series 
segment, its instances must densely distribute in the segment, 
otherwise the distribution is sparse. If a subsequence of objects is 
a sequential pattern in a time series segmentation, it must 
periodically distribute in the original time series. It’s obverse that 
a subsequence of objects can both be episode and sequential 
pattern.

Feature flows can be used to describe the distribution of frequent 

patterns (see Def. 7). Given a feature flow
fy , we can decompose 

it into frequency components by discrete Fourier transform (DFT): 
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2
( 1)

1

( ) , 1,2,...,
tiT k

T
k f

t

X y t e k T

kX denotes the amplitude of the sinusoid with frequency k T .

The dominant period of the feature flow is represented by the 
frequency component which has the maximum signal power. We 
call this maximum frequency component as dominant power 

spectrum, i.e. 
2max || ||f kS X , 1, 2,...,

2
Tk ,

2|| ||kX  indicates the signal power at frequency k T . And the 

corresponding dominant period is 
2arg max || ||f k

k
P T X .

As shown in table 1, according to the values of 
fS  and 

fP , we 

categorize frequent patterns into four categories. 

Table 1 Categories of frequent patterns and corresponding 

event types. 

Pattern 

Categories 

Feature flow 

description 

Event 

Categories 

Examples 

in offices 

Burst 
Pattern 

(episode but 
not 

sequential 
pattern)

High 
fS ,

aperiodic or 
long-term 
periodic

(
2f

TP )

Burst Event: 
Just happen in 

a short time 
frame with 

large volume. 

A fire 
alarm or an 

annual
conference

Regular 
Pattern 

(episode 
and

sequential 
pattern)

High
fS , short-

term periodic 

(
2f

TP )

Regular Event: 
Daily Happen 

events 

Work day 
Meetings 

Rare Pattern 

(neither 
episode nor 
sequential 

pattern,
namely 
noise)

Low 
fS ,

aperiodic or 
long-term 
periodic 

Rare Event: 
Just happen in 
several short 
time frames, 

sometimes this 
kind of event 

is very 
important, 

sometimes it is 
only noise 

Somebody 
fell down 

Routine 
Pattern 

(not episode 
but 

sequential 
pattern)

Low
fS , short-

term periodic 

(
2f

TP )

Routine Event: 
Happen 

periodically 
but not so 

often
comparatively 
with regular 

events 

Every day 
cleaning 
work or 

biweekly 
meetings 

As defined in Table 1, different kinds of events can be represented 
by corresponding categories of frequent patterns, each category of 
frequent pattern can be interpreted as different combinations of 

episode and sequential pattern. We should note that the detection 
of rare event is a very important and challenging topic [17], but 
it’s not proper to represent it by frequent patterns. So in this paper, 
we don’t discriminate rare event and noise and the clustering 
algorithm for event detection only considered the other three 
categories of events. 

According to the definition of sequential pattern and episode (see 
Def.4 and 5), if a frequent pattern is episode, it can approximately 

indicate its high 
fS  feature. If a frequent pattern is sequential 

pattern, it can approximately indicate its short term periodic 
feature. So we can map categories of frequent patterns to the 
combinations of episode and sequential pattern. In this way, we 
needn’t to do DFT on feature flows when we get all the frequent 
patterns. It promotes the computing efficiency in practice. 

3.3.2 EDPA Algorithm

If two patterns ( ip and
jp ) are representative of the same event, 

they must satisfy the following necessary conditions: 

1. Their feature flows 
fiy and

fjy  must be identically 

distributed. 

2. ip  and 
jp  must occur in the same time segments with high 

probability. 
To measure the distribution similarity of feature flows, we 
introduce mutual information (MI). In information Theory, MI is 
usually used to measure the distance between two distributions 

(e.g. ( )fiD y  and  ( )fjD y ). ( ( ), ( ))fi fjMI D y D y can get 

a value between [0,1] , if ( ( ), ( )) 1fi fjMI D y D y  , 

( )fiD y and ( )fjD y  are identical. The value of 

( ( ), ( ))fi fjMI D y D y  gets smaller when the distance of 

( )fiD y and ( )fjD y  becomes larger. 

Let iTS  denotes the set of time segments containing pattern ip ,

to measure the probability of pattern ip  and 
jp  occur in the 

same time segment, we defined time segment occurrence overlap 
as follows: 

| |
( , )

min(| |,| |)

i j

i j

i j

TS TS
d f f

TS TS

For a set of pattern feature iA , we define its mutual information 

distance and time segment occurrence overlap as follows: 

,
( ) min ( ( , ))

i
i i j

fi fj A
MI A MI f f

,
( ) min ( ( , ))

i
i i j

fi fj A
d A d f f

To detect events occur in time series is to find a set of pattern 

feature iA  that minimizes the following cost function:  
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( )

( ) ( )
i

i

i i fjfj A

C A
d A MI A S

                             (11) 

The underlying event e associated with frequent patterns in iA

can be represented as: 

( )
i

i

fj

fj

fj A fufu A

S
y e y

S
                                              (12) 

The proposed EDPA (Event Detection by Pattern Aggregation) is 
a greedy algorithm. It initializes the pattern feature set 

{ }i iA f , in each iteration it merges two feature sets together 

if the merged result get a smaller value of the cost function, i.e. 

( ) ( )i j iC A A C A  and ( ) ( )i j jC A A C A .

Intuitively, frequent pattern features in the same category 
correlated stronger than those in different categories and it could 
also be verified by the cost function (equation (11)). So each time, 
we only input the feature flows of the frequent patterns in the 
same category to find a special kind of event as defined in Table 1, 
namely we use the feature flows of burst pattern to detect burst 
event, the regular pattern to detect regular event etc. 

Algorithm EDPA 

Input: feature flows 1 2{ , ,..., }nF f f f  represent patterns in 

1 2{ , ,..., }nP p p p

Output: events 1 2{ , ,..., }mE e e e

1. for every if  in F

2.        init 
1

i

fi

A
S

3.  sort 1 2{ , ,... ,..., }i nA A A A A in ascendant order 

4.  while A  is not empty 

5.        .iA A next

6. //aggregate patterns set together until the aggregation 

increase ( )iC A

7.        for every 
jA  in A  where i j                     

8.    if ( ) ( )i j iC A A C A  and ( ) ( )i j jC A A C A

9.                                 
i i jA A A  and 

jA A A

10.                                  min ( )iC C A

11.                   else  

12.      output iA  as ke  into E //represent ke  as equation (12)

13.                                   iA A A

14.                                    break for loop 
15.                end if 
16.         end for 
17.  end while 

18. output E

4. RELATED WORK 
S. Laxman etc. [15] defined non-overlapping episode and 

proposed the first algorithm to discovery non-overlapping 

episodes. But unfortunately,  the algorithm proposed by S. 

Laxman etc. can only discover non-overlapping episode from the 

set of all episodes (including overlapping and non-overlapping 

ones) , which means this algorithm must based on the result 

output by a episode discovering algorithm such as WinMiner [3]. 

MNOE proposed in this paper doesn’t traverse all the episode 

space, we only pick out our interested ones, namely non-

overlapping episodes. 

Meger and C. Rigotti. [3] proposes a complete algorithm (i.e. 

WinMiner) to find frequent episode pattern in a single long 

sequence. WinMiner only constrains the maximum time interval 

between every two successive events in episodes, so the length of 

sequential pattern is unbound. But WinMiner does not consider 

the time interval and position of the objects in the pattern 

instances. J. Pei and J. Han [2] presented the first algorithm 

discovering sequential patterns. 

Giannella et al. [5] proposed a frequent itemsets mining algorithm 
over data stream which utilizes tilted windows to calculate the 
frequent patterns for the most recent transactions and maintains a 
tree data structure (i.e. FP-stream) to represent the frequent 
itemsets.  
Manku and Motwani [7] proposed an approximate frequency 
counts in data streams. Cormode and Muthukrishnan [4] proposed 
an algorithm to find the hottest k items by group testing. The 
algorithm is used with the turnstile data stream model which 
allows addition as well as deletion of data items.  
Gaber et al. [6] proposed an AOG-based algorithm: Lightweight 
frequency counting LWF. It can find an approximate solution to 
the most frequent items on-line using adaptation and releasing the 
least frequent items regularly in order to count the more frequent 
ones.
There is a series of research projects worked on event detection 
and correlation of events especially in the database community. 
TelegraphCQ [21] focuses on meeting the challenges that in 
handling large streams of continuous queries over high-volume, 
highly-variable data streams. Aurora [22, 23] manages continuous 
data stream for monitoring applications; it focuses on DBMS-like 
support for applications. Borealis [24] provide advanced 
capabilities that are commonly required by newly-emerging 
stream processing applications. The STREAM project [25] views 
stream processing as the running of continuous queries expressed 
in a query language (CQL) that includes sliding windows and 
sampling over the data stream. Unfortunately, the mentioned 
projects do not consider the frequent patterns as an important 
structure in data streams. In this paper, authors argue that frequent 
patterns form events in data stream and different types of frequent 
patterns have different features which also represent different 
features of events. EDPA presented in this paper cluster frequent 
patterns into events based on the feature follow of frequent 
patterns. 

5. EXPERIMENTAL EVALUATION 
We evaluated the presented framework on two public datasets 
(MERL and IL dataset) and a dataset come from a smart building 
project (Smart-Building dataset). All the datasets are generated by 
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sensor networks. We use relative minimum supports in our 

experiments and represent them as ( m in SS p t , m in ES p t ),

m in , m in ( 0 ,1)S ES p t S p t , where m i n SS p t is the 

relative minimum support for sequential pattern and m in ES p t

is the relative minimum support for episode. 

We compared efficiency performance of the proposed MNOE 
algorithm with NOC algorithm [15] on all the three datasets. 
Because S. Laxman etc. [15] declare any episode discovering 
algorithm could be used at the step of generating all the episodes 
(non-overlapping and overlapping episode) in NOC. So we 
implemented the most efficient episode discovering algorithm 
WinMiner [3] proposed in existing literatures and generated all 
episodes for NOC. We implemented PrefixSpan [2] to discover 
sequential patterns.  

We evaluated the proposed EDPA algorithm on MERL dataset 
and Smart-Building dataset, because these two datasets include 
event calendars of the spots where the sensor networks were 
deployed. We can measure the performance of EDPA by accuracy. 
For an output event of EDPA, if its duration is overlapped with an 
event recorded in the event calendar, we consider this event is 
correctly detected. The accuracy of EDPA is the percentage of 
correctly detected events in all the events output by EDPA. All the 
frequent patterns (both sequential pattern and episode) input into 
EDPA are maximal and we evaluated EDPA when the input 
episodes are overlapping or non-overlapping and are significant or 
non-significant respectively (we don’t distinguish overlapping 
sequential patterns between non-overlapping ones or significant 
sequential patterns between non-significant ones). 

All the algorithms are implemented in Java, and run on a window 
server platform with CPU 3.5G, Memory 2G. 

5.1 Experiments on MERL and IL Datasets 
MERL Motion Detector Dataset [18] 1(using “MERL dataset” for 
short) has been collected by Mitsubishi Electric Research Labs 
(MERL) from a network of over 200 sensors for two years 
between March 2006 and March 2008. This sensor network was 
deployed in an office building and each sensor only records the 
motion signals caused by individuals. We picked a subset of the 
data which records the data generated by 4 sensors in a meet room, 
namely “nitta” and got a 4 dimension time series last from 2006-
03-23 03:10 to 2007-07-04 06:18. We aggregated the raw data 
into 25229 records by adding the values of records in the same 
minutes together and took the reservation records of this meeting 
room provided in MERL dataset as the ground true of events 
happened in this room. 

Intel Lab Dataset [19]2(using “IL dataset” for short) has been 
collected from 54 sensors from February 28th to April 5th , 2004. 
We selected the data generated by sensors from No. 1 to No. 10, 
which forms a 40 dimensional time series (every record fired by a 
sensor includes 4 values) and discretized the time series by 
algorithm proposed in Ref.[20]. As illustrated in Fig.3 (a), MNOE 
beats NOC on runtime. The proposed MNOE is more efficient 
than NOC under any minimum support set. Fig.3 (b) shows that 
EDPA achieves better accuracy when maximal sequential patterns 
and maximal significant non-overlapping episodes are input. 

                                                                
1 http://www.merl.com/wmd/ 

2 db.csail.mit.edu/labdata/labdata.html

(a)x-axis represents different minimum support sets, y-

axis represents the runtime of algorithms 

(b) x-axis represents different minimum support sets, y-axis 

represents accuracy of EDPA. 

Fig.3 (a) Compare the runtime of MNOE and NOC under 

different minimum support sets on MERL and IL datasets. (b) 

accuracy of EDPA playing on MERL dataset under different 

minimum support sets and different input episodes: 

overlapping, non-overlapping, significant and non-

overlapping. 

5.2 Experiments on Smart-Building Datasets 
We also apply the proposed algorithms in a sensor network data 
analyzing system, namely EventMiner. Smart-Building dataset 
has been collected from a sensor network in a smart building. The 
sensor network we studied consists of six sensors and is deployed 
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in a meeting room. The sensors could throw out events 
simultaneously. The event types include temperature, motion, 
illumination, acoustic, humidity and carbon dioxide. The finest 
time granularity is minute. As listed in table 2, we split five 
month’s data into three data sets. The event calendars in these 
datasets are the reservation records of this meeting room. For 
space limitation, we plot average runtimes of MNOE and NOC 
under different minimum support sets in Fig. 4 and it shows that 
MNOE also beats NOC. As the results are similar, we only plot 
the results of EDPA playing on Dataset1 in Fig.5. The maximal 
significant non-overlapping episodes also improve the accuracy of 
EDPA. 

Table 2. Smart-Building Datasets 

Data sets Number of 

records 

Month

Dataset1 43359 6 

Dataset2 89125 7-8 

Dataset3 116993 9-11 

Fig. 4 Compare the runtime of MNOE and NOC. 

Fig. 4 illustrates the average runtimes of the two algorithms under 
different minimum support sets (i.e. (0.16,0.2), (0.17,0.3), 
(0.18,0.4), (0.19,0.5), (0.2,0.6)). The result shows our MNOE is 
more efficient than NOC and scalable to large datasets. It 
demonstrate that an algorithm directly discover non-overlapping 
episode is necessary. 

Fig. 5 accuracy of EDPA under different minimum support 

sets in Dataset1. X-axis represents different minimum support 

sets, y-axis represents accuracy of EDPA. 

Fig.6 a screen shot of EventMiner illustrates discovered 

frequent patterns and detected events 

Fig.6 shows the visualizing interface of frequent patterns and 
events. In the right panel, a table list all the discovered frequent 
patterns and their supports. In the left top panel, the frequent 
patterns are organized in a tree which help users to find out outlier 
or novel patterns intuitively. In the left bottom panel, the events 
formed by the frequent patterns are plot on the time line. 

6. CONCLUSIONS 

This paper proposed a frequent pattern based event detection 
framework. In the phase of frequent pattern discovery, non-
overlapping episode is discovered by the proposed MNOE 
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algorithm. Every non-overlapping episode constructs a 
corresponding EGMAMC model. In the frequent pattern selection 

phase, we utilize likelihood ratio testing (set Type error as 0.5) 
to measure whether EGMAMC is more proper than i.i.d. model to 
describe a given time series. If an EGMAMC model is accepted in 
the likelihood ratio testing, the corresponding episode is said to be 
the significant episode in the given time series. Finally in the 
modeling phase, we defined feature flow to represent frequent 
pattern instances in time series and presented EDPA clustering 
algorithm which can aggregate input frequent patterns into events. 
Experiments on sensor network datasets demonstrate that MNOE 
outperforms the existing algorithm and selecting maximal 
significant non-overlapping episode as features improves the 
performance of EDPA. 
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ABSTRACT
In regression problems where the number of predictors ex-
ceeds the number of observations and the correlation be-
tween the predictors is high, a dimensionality reduction or
a variable selection approach is demanded. In this paper we
deal with a real application where we want to retrieve the
physical characteristics of a combustion process from the
measurements obtained with a spectroscopic sensor. This
application shows up a multicollinearity problem but fur-
thermore it is considered an ill-posed problem.

Guided by this application scenario, we propose a clustering
approach to find out homogeneous subsets of data which are
embedded in arbitrary oriented linear manifold. This model
is developed under certain assumptions guided by a priori
problem knowledge. The resulting division preserves both,
the priori assumptions and the homogeneity in the models.
Thereby we break the whole problem in n subproblems im-
proving its individual prediction accuracy versus a global
solution. We show the obtained improvements in a real ap-
plication scenario related with estimating the temperature
from spectroscopic data in a remote sensing framework.

General Terms
Dimensionality reduction, supervised learning, clustering,
regression, remote sensing, principal components analysis
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Figure 1: Predictors correlation matrix.

1. INTRODUCTION
In this paper we study a method to transform a regression
problem in a classification + n regression problems through-
out a supervised clustering technique that makes used of the
data principal components.

The scenario that has motivated our work concerns with
a method for the retrieval of physical properties in a com-
bustion process, and specifically with the estimation of the
temperature which appears among others as a very impor-
tant parameter to be monitored [14, 15, 19, 21]. The physics
of this process is governed by the Radiative Transfer Equa-
tion (RTE)[8], and its a challenging problem due to its glob-
ally non-linear behavior and its high dimensionality data i.e.
spectral data.

Furthermore the predictors or input variables are highly cor-
related to each other which could lead to a degradation of the
prediction accuracy. That degradation is due to an overkill
adjustment of the model parameters leading to overfitting,
and reducing the prediction performance on new data sets.
This phenomena is called multicollinearity, and its influence
depends on the data and the methodology applied. Regard-
ing the data influence, we want to note that the predictors
redundancy it is not as important as its non homogeneity.
In [2] a comparative study of two popular methods (neu-
ral networks NN and multivariate adaptive regression spline
MARS), is done when multicollinearity is present. The study
concludes that NN outperforms MARS facing multicollinear-
ity problems. Also in [4], the authors proposed a truncated
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total least squares method discarding the smallest singular
values to face the computational problem due to singular
values that are close to zero.

An important knowledge related with the RTE equation is
that different variables of the spectral data provides differ-
ent information on the physical properties. It is also known
that every predictor contains information related with all
responses or outcome variables, although there are physi-
cal reasons to acknowledge the fact that the relationship
should be stronger between the above mentioned predictors-
responses. Due to the fact that the most energetic predic-
tors are more related with every response that any other, it
is not a trivial process to uncover the physical relationships,
specially because sometimes these relationships can involve
many variables and the already exposed global non-linearity.

The figure 1 illustrates the correlation matrix of our pre-
dictors data. The red color represents predictors which are
highly correlated. Most of the matrix is highly correlated
and it suggests that exists multicollinearity in the data.

A general approach to solve these problems is to consider
its principal components (PC) as predictors instead than
the original variables [12]. These new variables are the or-
thogonal linear combination of the original predictors in de-
creasing order of variance.

The extension of principal component analysis (PCA) to a
regression problem is named principal component regression
(PCR) which performs a regression using the principal com-
ponents instead of the raw predictors. Although this intu-
itive and appealing approach is optimal from a preserving
energy point of view, it does not necessarily provide a mean-
ingful representation of the data; i.e. it does not correspond
to physical quantities.

This approach has been studied in previous works [6, 7] with-
out getting the desired accuracy and robustness. This lack
of success can be assign to the next two reasons. First, we
are dealing with a non-linear problem and therefore it might
not find out the truly relationships between variables since
we are using a linear method. The second reason is related
with the fact that we are trying to reduce the whole set of
predictors at once. This implies that the PCA makes an op-
timal reduction (from the least square error point of view)
without checking if the variation is due to a physical param-
eter or another, and therefore mixing the information.

In [7] an alternative approach to solve this problem was pro-
posed. The proposal is based on a feature selection of the
original predictors using the eigenvectors coefficients, and
applying a maximum local peak selector to force a spreading
predictors selection. Despite of the results improvements,
the mean variance error was still high.

Although an optimal variable selection approach is desirable
in our context application, it can be very expensive. Even
knowing the number of desired features t from a set of u

there are q =
`

u

t

´
= u!

(u−t)!t!
subsets which is impractical for

high dimensionality data. There are other methods com-
putationally more practical but they lack of optimality or
assume monotonicity as the branch-and-bound feature se-

lection algorithm [5].

Thereby due to the multicollinearity problems and compu-
tationally cost , we address the problem from a clustering
point of view. We propose to use a supervised clustering
method based on principal components analysis to find out
linear and homogeneous data subsets, desiring that these
new data subsets will be easier to estimate. We define ho-
mogeneity as energy or variance preserving and we suppose
that it exists in some locality. With this approach we pursue
two main goals: find out a lower dimensional linear manifold
where the predictors and the responses lay on, and decou-
ple (at least in some degree) the non-linear relation between
them.

Our proposal algorithm can be regarded as a two-step algo-
rithm. The first step finds a linear manifold that is going
to extract the common information (correlated) between the
predictors and the responses, while the second step is going
to find out the clusters of the projected data in that manifold
obtaining the data with a common behavior.

The paper is organized as follows. Section 2 introduces
the general regression framework and the underlying latent
model. In Section 3, the algorithm is described and ex-
plained, including the density clustering process. Section 4
introduces the combustion temperature estimation problem
and we provide with the results obtained. We conclude with
a discussion of the method and the results in Section 5.

2. REGRESSION MODELS
2.1 General Framework
The application that has motivated our work is a multi-
variate prediction in a regression setting problem. We as-
sume there is a database D of d-dimensional feature vectors
(D ∈ �d×n) with n samples, and each one of the samples
di ∈ D is composed by a set of predictors xi ∈ �p×1, and a
set of responses denoted by yi ∈ �s×1, where p + s = d (see
notation1).

Then we can consider the following form:

Y = BX + E (1)

being Y = [y1 . . .ys]
T , X = [x1 . . .xp]

T , and B = [b1 . . .bp]
is the s × p matrix of coefficients, and E is the s × n error
matrix.

An optimal B which minimizes ‖ Y − BX ‖F is given by

B = YXT (XXT )−1 (2)

and the prediction ŷ0 over a new element x0 is obtained by
1Bold capital letters denote a matrix D, bold lower-case
letters a column vector d. dj represents the j

th column
of the matrix D. dij denotes the scalar in the row i and
column j of the matrix D and the scalar i-th element of
a column vector dj . All non-bold letters represent scalar

variables. ||x||2 =
√

xT x designates Euclidean norm of x.
||A||F = tr(AT A) = tr(AAT ) designates the Frobenious
norm of a matrix.
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ŷ0 = YXT (XXT )−1x0 (3)

When the operation (XXT )−1 in not possible because of its
singularity due to the multicollinearity, then a regulariza-
tion can be applied. The methods ridged regression or the
more recent lasso, make used of the regularization penaliz-
ing the large regression coefficients. They try to minimize
the following expression,

min
B

||Y −BX||F + λ||B||22 (4)

where the second term shrinks the coefficients towards zero.
The regularization parameter λ controls the amount of shrink-
age, and allows to solve (XXT )−1 when it is singular. Then,

the estimation is obtained by Ŷ = Y+YXT (XXT +λI)−1X
- see [11, 17, 10] and the references therein-. These ap-
proaches have been tested and despite its generalization im-
provements, the obtained overall accuracy is not acceptable.

Another alternative to avoid the multicollinearity is to re-
duce the data in order to making the new predictors inde-
pendent each one from each other. It does not leave out any
variable, but uses a weighted sum off all of them to make
this reduction. The weights are allocated according to its
contribution to the variance of the variables.

Let

P = ΓT X = [p1 . . .pk]T . (5)

where P is a k × n matrix with k ≤ p, Γ is a p × p matrix
with the first k eigenvectors of the covariance matrix XXT

on its first k columns, and pki is the projection of the i
th

observation into the first k bases of Γ.

Therefore in PCR setting the predictor ŷi is given by

ŷi = YPT (PPT )−1pi =

= YXT Γ(ΓT XXT Γ)−1ΓT xi. (6)

The regression estimation can be expressed in parametric
from by: ŷij = bi0 + bi1p1j + . . . + bjkpkj + ε, where pkj

is the k
th principal component of the j

th sample. Then, it
is hoped that the projections will still retain good predic-
tive behavior, and that the pi will be interpretable. This
approach is desired whenever we are obtaining a weighted
combination of a subset of variables which are correlated and
have common information. Then, it is not desirable to drop
any predictor out and using principal component analysis
would be helpful. In our case that is not very desirable be-
cause a few predictors are going to be used to estimate most
of the responses reducing the flexibility of the model facing
new observations, leading to overfitting and bias towards a
subset of the data set.

In the next subsection we introduce the underlying model
base on latent models that allows to find the correlated clus-
ters in the data.

2.2 Underlying model
Different techniques can be considered to relate two sets of
variables. In regression problems, one of these approaches
is to calculate the PCs of the two groups, followed by the
calculation of the regression equation.

The algorithm can be summarized as:

1. Compute the principal components of the predictors
and responses matrix variables.

2. Compute the projection P = [p1 . . .pk]T of each data
set using the first k eigenvectors [γ1 . . . γk]T .

3. Calculate the regression equation to predict each Px
from one set from the other Py in the other set.

For our purpose of finding clusters of linearly homogeneous
data, the algorithm fails because two input and output sub-
spaces associated to different local homogeneity (for instance
the first input eigenbase and the second output eigenbase)
created by the PCA analysis can be related and they do
not from an orthogonal base which is necessary to preserve
homogeneity.

To overcome this, we consider the following model to support
the supervised clustering via principal component method.
Suppose that we have a response variable Y which is related
to an underlying latent model Hy ∈ �s×k being k � s by a
linear relation where,

Y = BHy + E (7)

and in addition, we have a measurement on a set of spectral
data X related to the underlying model Hx ∈ �p×l being
l � p,

X = AHx + F (8)

where Hxi⊥Hyj ∀ i, j : i �= j.

The underlying models Hy and Hx are reduced subspaces of
the original data variables which preserves their information
from the least squares error reconstruction point of view.

Therefore we are seeking for those elements which share
common linear subspaces which corresponds with lines, planes
or hyperplanes formed by the projection into the models Hy
and Hx. Thus, Y can be predicted by Hy, Hy by Hx, and
Hx by X.

For a given number of predictors, the latent structure in (7)
and (8) is an special structure case of an error-in-variables
model, where H = [Hx+Hy] and it is subject to ‖ H ‖= 1.
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Figure 2: Lines of Total Least Squares (TLS) vs. Least
Squares(LS) error.

We could set up an optimization criterion as follows

min
B,A,H,‖H‖=1

Pn

i=1(yi − BHyi)
2

σ2
y

+

Pn

i=1(xi − AHxi)
2

σ
2
X

(9)

where we try to minimize the distance between the outcome
and the latent model Hy and simultaneously minimizing the
distance from predictors to the latent model Hx. This opti-
mization problem amounts with finding the linear subspace
that relates the two underlying models, preserving the infor-
mation of both. and can be solve as an eigen-problem(see
appendix A).

There is also a geometric interpretation to this underlying
model, as locating the line, plane or hyperplane nearest to a
collection of points where the distance is measured not only
in the ”y” axis but using the true euclidean distance. This
is refereed in literature as total least squares error (TLS).
The figure 2 shows the difference between the typical least
squares error (LS) where the error is measure along the y-
axis, and TLS that calculates the true euclidean distance be-
tween the point and the line. This problem can be solved us-
ing a singular value decomposition (SVD) on the augmented
matrix C(x, y). A further description of the method and its
solution can be find in [9], and [16].

A similar geometric interpretation but constrained to the
problem of characterizing affine subspaces in �p passing
through specified affine subspaces of lower dimension, is
developed as a constrained principal component analysis
in [18]. It provides an interesting related parametric as well
as Cartesian systems of equations formulation.

We want to point out that the solution of (9) can also be
explain as maximizing the next objective function,

tr{XHxHxT XT } + tr{YHyHyT YT } (10)

hence the set of variables with higher variance will be more
influential. To control that influence, we propose a weighted
version of the solution adding the parameter α which range

is 0 ≤ α ≤ 1. The resulting objective function is:

(1 − α)tr{XHxHxT XT } + (α)tr{YHyHyT YT }. (11)

This can be solved by the augmented matrix Z = (X,Y) as
we did before (see appendix A), but multiplying the predic-
tors X by (1 − α), and the responses Y by α

2.

In [1] Bair et. al. mention a similar idea as a natural super-
vised modification that encourages the leading eigenvector
to align with Y. They do not pursue the idea further, be-
cause the estimate requires of the responses as well as the
predictors and it can not be used directly with the test data.

In the next, we introduce the algorithm used to find the
different linear models contained in the data, and its de-
scription.

3. SUBSPACE CLUSTERING ALGORITHM
PROPOSAL

Firstly we want to introduce the physical motivation that
has guided this work. In the Section 1, we introduced the
multicollinearity problem and how different techniques try
to solve it, having different advantages and drawbacks. We
propose a supervised clustering approach to split the prob-
lem which not only helps to reduce the multicollinearity
problems in a regression framework, but furthermore it fits
a priori application knowledge.

In our remote sensing application problem we can detect two
types of samples upon their behaviors. We can affirm that:

1. in general, whenever there is a big variation in the pre-
dictors (i.e.spectral data) it also imply a big variation
in the responses (i.e. temperature profiles), but

2. in some cases, a small variation of the predictors can
also imply big variation in the responses.

In both situations, every predictor is affected by the vari-
ations, and both reinforce the multicollinearity. However,
considering those affirmations we can assume that locally
there exists a group of situations that behaves as explained
in the first item (almost linearly), but further away of this lo-
cality the behavior shifts to be a non-linear one as explained
at item two.

The proposed algorithm tries to exploit this problem knowl-
edge associated to physical properties, and find out different
models that have homogeneous local behavior. Therefore,
we look for those samples whose behavior follow the above
mentioned problem knowledge, and we separate them into
different models according to its common behavior from a
linear point of view.

Whether such locality exists, then the samples that belongs
to that locality will build up a cluster once the original data
is projected into the linear embedding subspace obtained by

2Without any lost of generality, we need to notice that the α

parameter is squared during the optimization problem (see
appendix A) and then the weighting process will be squared.
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Algorithm 1

1: Input:
X ∈ �nxs % It ts centered and scaled
Y ∈ �nxp % It is centered and scaled
ρ := density clustering algorithm parameters
α := 0
stepα := 0.1

2: Output:
Set of clusters indexes idx clusters

3: for α := 0 : stepα : 1 do

4: X := (1 − α)X
5: Y := (α)Y
6: Z := [X|Y]
7: r := rank(Z)
8: [U S V ] := SVD(Z)

9: P := U
T
Z

10: for i := 1 : 1 : r do

11: if (density clustering algorithm(Pi, ρ) ≥ 2 ) then

12: return idx clusters
13: end if

14: i := i + 1
15: end for

16: α := α + stepα

17: end for

solving (9). That model tries to exploit the first affirmation
from above capturing the maximum redundancy between
the predictors and responses, reducing simultaneously the
residuals E and F from (7), and(8). Then, we can discover
the different clusters iteratively assuming locality behavior.

The proposal algorithm is described in algorithm 1. It is
composed by two main for loops which use a greedy approach
to adjust the parameters α and r. At steps 4, 5 and 6, we
composed the augmented matrix Z and we weight it by α.
Initially, the value of α is set to 0 and therefore Z = [X|0]
which corresponds with an unsupervised mode.

Afterwards, we solve (9), and we transform the raw predic-
tors into projected predictors P using the eigenvectors U.

To calculate the eigenvectors of the augmented matrix Z we
use the singular value decomposition (SVD) (algorithm step
8). Then the matrix Z can be decomposed as: Z = UDVT ,
where the columns of U ∈ �d×d give the eigenvectors of
ZZT , the columns of V ∈ �n×n give the eigenvectors of
ZT Z. Being r the rank of Z, the linear embedding is ob-
tained by its λ ≤ r first eigenvectors which corresponds with
a λ dimensional space related with the amount of linearity
between X and Y.

Then, we apply a density clustering algorithm to detect the
homogeneous data in the projected space. The density clus-
tering algorithm discovers arbitrary shaped clusters based
on the density of the data, therefore finding the different
models in the projected space.

Afterwards, if the algorithm does not find more than one
cluster during the first main loop, the α parameter described
in (11), is modified to weight the X and the Y encourag-
ing the leading eigenvector to align with Y. We repeat the
process until we find a division.

During the execution, α is going to range from 0 to 1, or
in other words from unsupervised clustering or equivalently
PCA clustering, to a fully supervised clustering.

We want to point out that we are weighting uniformly both
predictors and responses, and a more specific weighting func-
tion could be applied if we desire to introduce a priori infor-
mation related with blocks of data.

Once the algorithm has found the different clusters we apply
a learning algorithm to obtain the estimations of the new
models. We use a wrapper approach [13] to analyze these
results, and if one of the models does not have successful
results we apply again the algorithm to its data and so on,
until we find successful results or we can not find any other
cluster, meaning that there is not any other linear relation.

4. APPLICATION TO A COMBUSTION TEM-
PERATURE ESTIMATION SCENARIO

Here we are going to apply the above explained algorithm to
the combustion scenario which is related with the inversion
of the radiative transfer equation (RTE) [8] which is defined
as,

Li =

Z z1

z0

Bi{T (z), C(z)}Ki(z)dz (12)

Ki =
dτi

dz

where the parameter Li expresses the amount of energy
emitted by each wavenumber i, Bi is Planck’s law (stan-
dard black body emission), τi is the transmittance, T (z) is
the temperature profile, C(z) is the gas concentration pro-
file, and Ki is the so-called temperature weighting function
that gives the relative contribution of the radiance coming
from each region dz. The forward problem is to obtain Li

knowing the physical parameters. But we would like to in-
vert this equation, that is: from the radiance measure Li

provided by the spectrometer, we would like to know the
temperature profile. Given the measurements of energy rep-
resented by xi ∈ �p×1, we would like to predict the flame
constituents such as temperature, and length, represented
by yi ∈ �s×1. We would like to learn a mapping f such
that Y = f(X), where X ∈ �p×n represents the energy
emitted at different wavenumbers and Y ∈ �s×n indicates
the temperature profiles and length. Recall that each col-
umn corresponds to a different observation. For instance,
each sample xi is a spectrum of radiance in the infrared
range of 2110cm

−1 − 2410cm
−1 with p = 2341. Likewise,

each sample yi is the corresponding temperature, and length
with q = 200.

4.1 Experimental Design
The synthetic dataset used in this study has been gener-
ated with a simulator based on the well known experimen-
tal database HITRAN [20]. The parameter ranges used to
generate this dataset are based on typical combustion envi-
ronment conditions. The temperature ranges from 296 K to
1100 K with several different profiles, the length range cov-
ers from 0.05 to 0.85 meters, and the concentration values
for CO2 and H2O have been selected as typical ones from
combustion of fossil fuels at different temperatures.

4.2 Results
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Figure 3: Clusters formed under the first two projected di-
mensions.

In this section, we report the results obtained from applying
the algorithm 1 to the temperature estimation scenario.

We have centered and scaled the dataset (either X and Y)
and we have begun with an unsupervised mode, therefore
α = 0. After a few iterations, the algorithm stops with an α

value of 0.4 which means that we are in somewhere between
unsupervised and totally supervised mode.

Ideally these clusters should appear as lines, planes or hy-
perplanes (depending of the reduction dimensionality), but
eventually the projected data does not match exactly with
this patterns. The figure 3 illustrates the projected data
[p1,p2]

T into its first two components. It shows the dif-
ferent geometry of the projected data.Therefore instead of
looking for lines, planes or hyperplanes, we need to use a
density clustering algorithm to identify different density ar-
eas related with different models. For this purpose we have
used the well known density clustering algorithm DBSCAN
algorithm [3].The same figure 3 shows with different colours
the four clusters discovered by DBSCAN.

The clusters have different structure showing different lin-
earity. The wider is the structure, the less linear it is. We
explained above that ideally the structures should be lin-
ear, but it depends on the data. Therefore, we can estimate
with a linear regressor three of the models and we can use a
non-linear model to estimate the fourth.

To show the improvements between the clustering approach
and a global model we have done four different proofs. Each
proof corresponds with different data sets retrieval associ-
ated to each one of the clusters discovered.

In order to make a fair comparison for each one of the proofs,
we have fixed the parameters used in the regression model for
every proof. We have used a multilayer perceptron (MLP) as
non-linear regressor, and the predictors have been reduced
to 80 using a PCA reduction. We also fixed the multilayer
perceptron (MLP) architecture to a unique hidden layer with
40 hidden neurons. For the training process, the data is
splitted into a training dataset (70%) and a testing dataset
(30%). Whether a MLP or a linear regressor has been used,
it is indicated in the results (see table 1).

The table is divided in two rows, and each one in another
four which corresponds to the number of clusters discovered
by our algorithm. The first row from above shows the global
model results per each one of the clusters, and the second
row shows separately the error for each one of the models.

To give a better insight into the quality of the results we have
included the figure 4. For instance, the picture a) shows an
example where the global model does not estimate well the
temperature profile but the cluster model does. Moreover,
the global model has some oscillations which are non desire
because in our physical problem the hottest temperature is
always at center. In the other hand, the picture b) shows an
example where both models achieve successful results, and
the estimation error is very low.

Because using a full rank search (see line 10, algorithm 1)
can be computationally very expensive, we have decide to
lower the value of r. One option would be to choose an
r equal to the number of eigenvalues which accounts for a
relative percentage of the total variance. We have chosen
90% of total variance. This reduces significantly its value
due to the multicollinearity of the data.

As can bee seen in table 1, and figure 4, the results obtained
with our clustering approach improves the results of a global
approach.

In section 3, we introduced the idea of iteratively applying
the algorithm to the non-linear cluster or the “widest” from
a geometrical view. This is needed whenever we still do
not reach successful results. In our application we did not
exploit this idea because the results obtained with this four
clusters were successful. Furthermore, we do not want to
subdivide the problem into many clusters because we are
in a semi-supervised solution, and an overkill division could
lead to a misinterpretation, and classification problems.

Because we are working in a semi-supervised learning due
to the α parameter, we need to answer the next question:
how to choose between the four different models associated
to the different clusters?.

In this study, the most direct answer is related with the
physical properties of the application problem. The four
discovered clusters are highly related with different lengths
of the temperature profile. Hence, each one of the clusters is
related with a local length area where exists a linearity, and
the data is homogeneous. Therefore we can make a priori
observation of the length of the temperature profile (using
other sensoring technique), and then apply the appropriate
model.

Another via to solve that problem, deals with learning the
function that classifies the data into these four clusters. De-
pending on the degree of supervised learning where we are
working on, the classification will be more or less difficult
to learn. We have done some naive proofs using support
vector machines to learn the classification and we have ob-
tained a classification error around 6% which is very promis-
ing although the proofs have not been extensive enough to
consider it with reliability.
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Figure 4: Comparative behavior between the global and cluster approaches.

Table 1: Mean Absolute Error per sample(MAEs) of temperature, and its standard deviation (SD).
Method Cluster No. Temperature Test Temperature Train

(MAEs/SD)K (MAEs/SD)K
Cluster 1(MLP) 2.04/2.84 2.32/3.36

Global Model Cluster 2(MLP) 3.47/3.32 2.38/3.24
Cluster 3(MLP) 0.90/1.12 0.35/0.49
Cluster 4(MLP) 0.97/1.32 0.41/0.51

Model 1 Cluster 1(MLP) 0.61/1.29 0.52/0.60
Model 2 Cluster 2(linear) 0.40/0.45 0.31/0.26
Model 3 Cluster 3(linear) 0.39/0.86 0.19/0.16
Model 4 Cluster 4(linear) 0.42/0.46 0.24/0.19

5. CONCLUSIONS
In this paper, we have presented a clustering approach based
on principal componets to extract the overall redundancy
between two sets of high dimensional data in a regression
framework. The method is guided by a physical motiva-
tion in a remote sensing scenario where we want to predict
the temperature profile from the spectrum of energy. We
developed a new algorithm, which exploits the redundancy
between two data sets to find out different clusters of lin-
early correlated data between them. Our algorithm reduce
the dimensionality using principal components and more-
over helps to solve the multicollinearity problem searching
for homogeneous correlated clusters.

We evaluated our methodology on a real remote sensing sce-
nario, showing how our algorithm outperforms the results
obtained by a single regressor model, and furthermore gives
an insight into the physical interpretation of the data which
is very valuable.

One question that needs to be addressed is how to choose
between the different models due to we are using some infor-
mation of the response variables to discover linear structures
in the data. This is not a main drawback in our remote sens-
ing scenario, because we have discovered that the different
clusters are highly related with different lengths of the tem-
perature profile, and therefore we can make a rough but
useful classification, based on this parameter.

We believe that the classification can be learned and there-
fore making a complete automatic retrieval process. In a
more general framework, it is clear that the classification
learning process success depends on the value of α parame-
ter which controls the shift from unsupervised towards su-

pervised learning. A more deeper study of this parameter
and its influence into the classification learning process is
needed to obtain more extensive conclusions.
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APPENDIX
A. UNDERLYING MODEL OPTIMIZATION
We assume that the data is centered and scaled, then

min
B,A,Hx,Hy

nX
i=1

(Yi − BHyi) +
nX

i=1

(Xi −AHxi) =

min
B,A,Hx,Hy

‖ Y − BHy ‖F + ‖ X− AHx ‖F

subject to
8><
>:

HxT Hx = I,

HyT Hy = I,

Hx⊥Hy ∀ i, j : i �= j.

then we have to minimize simultaneously both terms to min-
imize the expression. To do this we can aggregate the two
sets of data and their models as(

Z = (Y,X)

H = (Hy,Hx)

then,

min
H

‖ Z −HT Z ‖F =

min
H

tr{ZT Z − ZT HHT Z}

and including the constraints using the Lagrangian multi-
pliers into the cost function �(H) = ZT Z − ZT HHT Z −
λHT H − λ, and equating the derivatives to zero the equa-
tion is formuled as an eigenvector problem,

ZZT H = λH
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ABSTRACT
The clustering validation and clustering interpretation are
the two last steps of clustering process. The validation step
permits to evaluate the goodness of clustering results using
some measures. Valid results are then generally interpreted
and used in cluster analysis. The validity measures are clas-
sified into three categories: unsupervised measures, super-
vised measures and relative measures. Several supervised
measures have been proposed to perform supervised evalu-
ation such as entropy, purity, F-measure, Jaccard coefficient
and Rand statistic. Generally, these measures evaluate re-
sults according to class labels. However, they are not always
able to distinguish interpretable clusters because most of
them depends on the number of labels. This paper proposes
a new supervised evaluation measure - called “homogeneity
degree”- that permits to merge the steps of validation and
interpretation. Our measure is applied to a real traffic data
set and is used to interpret some traffic situations. Compar-
ison with other evaluation measures shows the performance
of our proposal.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Data mining ; I.5.3 [PATTERN RECOGNI-
TION]: Clustering
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1. INTRODUCTION
In domains such as road traffic, there is often a need to

extract data measuring the evolution of some parameters.
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The values of these parameters are generally recorded by
sensors placed on roads and are useful for road traffic mon-
itoring systems to supervise the traffic state. Nowadays,
these systems face every day a lot of troubles to maintain
the traffic fluidity. Solutions have to be found and used to
solve the problem of congestion. When a traffic situation is
consistent and repetitive such as congestions preceding com-
panies opening hours, traffic engineers can make actions to
decrease -or to solve- the problem. For example, they can
modify traffic lights synchronization, change real-time trav-
eller’s guidance ... These situations are called ’typical’ ones
and are generally very dependent on human activity and so
on academic and administrative calendar. So, it would be
judicious to begin by identifying the different types of days
- and so the factors - that influence each situation and then
to use these factors to guarantee suitable solutions in the
future.

Clustering is a widely used technique in data mining appli-
cations to achieve this goal. In fact if we consider the values
recorded by a sensor along a day as the features of an object
and if we associate to each object class labels representing
the characteristics of the day associated to this object (holi-
day, working day, the day of the week, the month day, ...), it
will be interesting to use one clustering method to group ob-
jects according to traffic values and then to use an evaluation
measure based on class labels in order to view how labels are
distributed on clusters. This distribution must reveal if ev-
ery cluster is described by unique labels that ”well-represent”
the cluster and consequently if the results of clustering are
interpretable with respect to the type of days. These la-
bels will then represent the factors that influence a traffic
situation.

In literature, there have been several proposals to deal
with evaluation measures [1, 2, 4, 5, 6, 7, 8, 10, 11, 14, 13].
The authors of [13] classify these measures into three cat-
egories : unsupervised measures, supervised measures and
relative measures. The first category uses internal criteria
such as distances between objects to verify the compactness
of clusters and/or the separation between the clusters. The
second category is based on external criteria like class la-
bels and permits to compute the degree of correspondence
between cluster labels and class labels. Relative measures
permit to compare clustering results obtained with different
values of input parameters. In this paper we are interested
particularly in supervised measures because they are closely
related to our problem .

Several supervised measures have been proposed to per-
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form supervised evaluation such as entropy [12], purity [13],
precision, recall, F-measure [3, 15], Jaccard coefficient, Rand
statistic and Folkes and Mallows index [6]. However, these
measure are not always able to detect interpretable clusters
because of the way that these measures handle labels and
also the dependance of some of them on the number of la-
bels.

In this paper we propose a new supervised measure called
”homogeneity degree” where the validation of results leads
to a possible interpretation of them. The basic idea of our
measure is to compute the extent to which a cluster contains
all objects of a specific label and then for the highest extents
to verify that the corresponding objects represent a great
proportion of the cluster. This permits us to verify if each
cluster is described by representative labels and so to be able
to interpret the clustering results.

This paper is organized as follows. Section 2 discusses
some related works. Section 3 details the proposed ap-
proach. Section 4 presents the algorithm illustrating our
approach. Section 5 introduces the experiment study and
discusses the roles of some parameters used in our approach.
Section 6 concludes the paper.

2. RELATED WORKS
According to [6], 4 steps are necessary to group objects

into clusters: (i) feature selection where characteristics of ob-
jects are identified; (ii) clustering algorithm selection where
a clustering method is first chosen and then used to create
clusters, (iii) clustering validation or evaluation that aims to
verify the correctness of clustering results basing on a pre-
defined criteria and (iiii) results interpretation which aims
to verify that clusters are meaningful and useful.

Clustering evaluation permits to evaluate the individual
”goodness” of each cluster or the overall ”goodness” of clus-
tering results using some measures. Evaluation measures are
generally classified into three categories: unsupervised mea-
sures, supervised measures and relative measures[13]. We
will only focus in this paper on supervised measures because
we are looking to propose a novel measure belonging to this
category.

Supervised measures are based on external criteria. They
are generally used when objects are described by external
attributes corresponding to class labels. For example, credit
approval data sets may be described by 2 class labels (ap-
proved and rejected) corresponding to the acceptance of the
credit or not. It exists 2 different definitions of supervised
measures : According to Halkidi, Batistakis and Vazirgian-
nis, supervised measures aim to evaluate the clustering re-
sults by comparing them to a predefined partition which
represents the user intuition about the clustering structure
[6]. For Tan, Steinbach and Kumar in [13], supervised mea-
sures aim to compute the degree of correspondence between
cluster labels and class labels. With this definition, there is
no need for a pre-specified partition. In this paper, we will
use the latter definition because we think that it is more
intuitive and more general.

Several measures have been proposed to express this de-
gree such as entropy [12], purity [13], precision, recall, F-
measure [3, 15], Jaccard coefficient, Rand statistic and Folkes
and Mallows index [6]. The following sections present these
measures and their limits.

2.1 Supervised measures

Entropy aims to distinguish the clusters described by
a single class label. Given pij the proportion of objects
of cluster i described by class label j and L the number
of class labels, the entropy of a cluster i is computed as
−∑L

j=1 pij log2 pij [12]. Purity has the same role than en-

tropy. The purity of a cluster i is equal to maxj(pij) [13].
The overall entropy of clusters (resp. overall purity) is equal
to a weighted sum of all entropies (resp. purities). An en-
tropy (resp. purity) value close to 0 (resp. close to 1) means
that the cluster is well described.

Precision expresses the proportion of objects of cluster i
described by a class label j (pij). Recall reflects the propor-
tion of objects of a class label j in a cluster i (mij) in respect
to the total number of objects of class label j (mj) and is
equal to mij/mj . F-measure combines the two measures
precision and recall. The general formula of F-measure is

F (i, j) = (1+β2).precision(i,j).recall(i,j)

β2.precision(i,j)+recall(i,j)
[3, 15]. Traditionally,

it is computed using a β value equal to 1. The other values
of β lead to favouring either precision or recall. To compute
the overall F-measure of the clustering result, we pick out
for every class label, the highest value of F-measure in all
clusters and then we compute the weighted average of these
F-measure values. A F-measure value close to 1 means a
good clusters structure .

Concerning Jaccard coefficient, Rand statistic and Folkes
and Mallows index , given the partition P1 generated by
clustering method and a partition P2 defined such that the
objects having the same label are grouped into the same
cluster, the 3 measures are based on computing the corre-
spondence degree between P1 and P2 and precisely on the
computation of the following values:

• MM : the number of couples of objects that belong to
the same cluster in P1 and to the same cluster in P2.

• MD : the number of couples of objects that belong to
the same cluster in P1 but to different clusters in P2.

• DM : the number of couples of objects that belong to
different clusters in P1 and to the same cluster in P2.

• DD : the number of couples of objects that belong to
different clusters in P1 and to different clusters in P2.

The sum of values MM, MD, DM et DD is noted M . Given
these M couples, Jaccard coefficient (J), Rand statistic (R)
and Folkes and Mallows index (FM) are defined as [6]:

J =
MM

MM + MD + DM
(1)

R =
MM + DD

M
(2)

FM =

√
MM

MM + MD
.

MM

MM + DM
(3)

The values of these measures vary between 0 and 1. Good
results are obtained when these values are near to 1.

2.2 Limits of the existing supervised measures
As mentioned in the introduction, we intend to use a su-

pervised evaluation measure that permits the detection of in-
terpretable clusters. However the measures presented above
are not always able to reflect this situation. This is due to
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three reasons: the inability to reflect the overall validity of
a cluster and/or the partition, the way that the measures
handle labels and the dependance on the number of labels.

The first type of reasons concerns Precision and Recall.
These measures evaluate cluster only according to a given
label. They are not able to reflect the overall validity of a
cluster and they can’t be used to interpret the clustering
results.

The second type concerns Entropy and Purity. If we con-
sider a cluster that contains the majority of objects of class
label 1 and the majority of objects of class label 2 and where
the proportion of each category of objects represent the half
of the cluster cardinality, the cluster can be considered as
interpretable since it is described by unique labels. However,
entropy and purity are not able to reflect this situation be-
cause they are only based on the proportion of objects of
a cluster described by a class label j in respect to the to-
tal number of cluster’objects and not in respect to the total
number of objects of j in the data set.

The dependance on the number of labels concerns F-
measure, Jaccard coefficient, Rand statistic and Folkes and
Mallows index. To illustrate this dependance, consider the
example given in figure 1 illustrating the distribution of 7
labels on 2 clusters C1 and C2. Cluster C1 is composed of all
objects having label l1 or l2 (the number of labels is equal
to 2). Cluster C2 contains all objects described by the re-
maining labels l3, l4, l5, l6 and l7 (the number of labels is
equal to 5). So, the cluster C1 and C2 are interpretable since
they are described by unique labels (l1 or l2 for the cluster
C1 and l3, l4, l5, l6 for the cluster C2). However, when we
compute the values of F-measure, Jaccard coefficient, Rand
statistic and Folkes and Mallows index, we have:

• F (C1, l1) = 0.66

• F (C1, l2) = 0.66

• F (C2, l3) = 0.33

• F (C2, l4) = 0.33

• F (C2, l5) = 0.33

• F (C2, l6) = 0.33

• F (C2, l7) = 0.33

• Overall F-measure = 2×(3×0.66)+5×(3×0.33)
3×7

= 0.42

• J = 0.1

• R = 0.52

• FM = 0.175

F-measure values of l3, l4, l5, l6 and l7 in cluster C2 are
very low in contrary to ones of l1 and l2 in cluster C1 due to
the increase of the number of labels in cluster C2. This leads
to a low value of the overall F-measure (= 0.42) and to the
invalidity of clustering results. We note also the low values
of Jaccard coefficient, Rand statistic and Folkes and Mallows
index. Consequently, even if each cluster contains all objects
of a given class label and is interpretable, all these measures
are not able to express it. This confirms the sensibility of
these measures to the number of labels.

The following section presents our approach based on a
new evaluation measure called ”homogeneity degree” that
permits to take into account these limits.

Figure 1: Distribution of 7 labels on 2 clusters

3. PROPOSED HOMOGENEITY DEGREE-
BASED EVALUATION MEASURE

The basic idea of our evaluation approach is to merge the
steps of validation and interpretation. Indeed, the criteria
that we use to validate the correctness of clustering results
is the fact that these results must be interpretable. In other
words, we consider that a partition is valid if every cluster
of the partition is described by unique labels and if, for each
cluster, the proportion of objects having the associated la-
bels represent more than the half of the cluster cardinality.
These labels will be called representative labels. To reach
this goal, we compute for every label the extent to which
a cluster contains all objects of this specific label and then
for the highest extents we verify that the corresponding ob-
jects represent a great proportion of the cluster. We call the
measure that illustrates this idea ”Partition Homogeneity
degree”. Algorithm 1 in section 4 illustrates this idea.

The homogeneity degree of a partition depends on the ho-
mogeneity degrees of its clusters. In this section, we present
these two degrees and then we give an illustrative example
and some propositions to explain better the new concepts.

3.1 Cluster homogeneity based on class labels
Naturally, a cluster is homogeneous according to its labels

if its objects have the same label. However, a crisp defini-
tion of the notion of homogeneity may be very restrictive in
practice and makes homogeneity largely depending on the
application’s domain and on the data sets. The homogeneity
degree concept as introduced in the rest of this section pro-
vides a fuzzy measure of homogeneity and is called overall
homogeneity degree of a cluster.

The homogeneity of a cluster depends on two hypothesis.
First of all, the number of objects of a cluster described by a
given label must represent at least a proportion greater than
50% of the objects of the domain associated to the same la-
bel (the majority rule). The degree that illustrates this idea
is called homogeneity degree in respect to a domain. Sec-
ondly, the number of objects verifying the first hypothesis
must represent a proportion greater than the half of cluster
cardinality. This hypothesis is illustrated by partial homo-
geneity degree. A cluster verifying these two hypothesis is
called valid-interpretable cluster. The higher the homogene-
ity degree in respect to a domain and the partial homogene-
ity degree are, the better the interpretability of the cluster
is.

Overall homogeneity degree of a cluster takes its values in
the range [0,1], where 1 indicates that the cluster is a fully
valid-interpretable cluster and 0 indicates that the cluster
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is not a valid-interpretable one. A value between 0 and 1
indicates the degree of validity-interpretability of the cluster.

The definition of overall homogeneity degree requires the
use of two thresholds α ∈ [0.5, 1] and β ∈ [0.5, 1] assuring
the coherence of results. The practical utility of these pa-
rameters will be better explained later.

Next, some useful notations are introduced.

• X = {O1, O2, . . . , On}: a set of n objects, also called
the domain.

• L = {l1, l2, . . . , lm}: a set of m labels.

• Pk(C1, C2, . . . , Ck): a partition of k clusters.

• SCij = {Or ∈ Ci : Label(Or) = lj}: the set of objects
of cluster Ci having the label lj .

• Sj = {Or ∈ X : Label(Or) = lj}: the set of objects of
X having the label lj .

• ‖ · ‖: set cardinality symbol.

3.1.1 Membership degree of a label to the domain
The membership degree MDα(lj , Ci) of a label lj to the

domain X in respect to a cluster Ci expresses the proportion
of objects of Ci described by label lj in respect to the total
number of objects of X having the label lj . MDα(lj , Ci) is
defined as follows:

MDα(lj , Ci) =

{ ‖SCij‖
‖Sj‖ , if

‖SCij‖
‖Sj‖ ≥ α and ‖ Sj ‖�= 0;

0, Otherwise
(4)

As it is shown in Eq. 4, MDα(lj , Ci) will be equal to
0 any time the proportion of objects described by label lj
is strictly less than a given threshold α. This threshold
represents a sensibility indicator assuring that Ci contains
at least (100 ∗α)% of objects of X described by the label lj .

3.1.2 Homogeneity degree of a cluster in respect to
a domain

Homogeneity degree of Ci in respect to the domain, de-
noted HDα(Ci), represents the mean of the non-null mem-
bership degree of the different labels to the domain. It is
computed as follows:

HDα(Ci)=

{
1
B

· ∑m
j=1 MDα(lj , Ci), if B �= 0;

0, Otherwise.
(5)

where B =‖ {lk : lk ∈ L ∧ MDα(lk, Ci) > 0} ‖, that is,
the number of labels lk such that MDα(lk, Ci) is strictly
positive.

3.1.3 Membership degree of a label to a cluster
The membership degree MCα(lj , Ci) of a label lj to a

cluster Ci reflects the proportion of objects of Ci described
by lj . In other words, MCα(lj , Ci) permits to measure the
importance of label lj in cluster Ci. Formally, MCα(lj , Ci)
is computed as follows:

MCα(lj , Ci) =

{
‖SCij‖
‖Ci‖ , if MDα(lj , Ci) ≥ α;

0, Otherwise
(6)

As it is shown in Eq. 6, only labels for which MDα ≥ α
are included in the definition of MCα(lj , Ci). This ensures

that only the most important labels in respect to the domain
are considered to compute MCα(lj , Ci).

3.1.4 Partial homogeneity degree of a cluster
The partial homogeneity degree of a cluster Ci, denoted

HCα,β(Ci), computes the proportion of objects of Ci de-
scribed by labels that have a certain importance in respect
to the domain (MDα(lj , Ci) ≥ α). Like for MDα, we use
a threshold β to force the cluster to contain at least a pro-
portion greater than β. Formally, the partial homogeneity
degree HCα,β(Ci) is given by Eq. 7:

HCα,β(Ci)=

⎧⎪⎪⎨⎪⎪⎩
∑m

j=1 MCα(lj , Ci),

if
∑m

j=1 MCα(lj , Ci) ≥ β;

0,
Otherwise

(7)

3.1.5 Overall homogeneity degree of a cluster
The overall homogeneity degree of a cluster Ci takes into

account the homogeneity degree of Ci in respect to the do-
main and the partial homogeneity of Ci. It is denoted by
Dα,β(Ci) and is computed through Eq. 8 hereafter:

Dα,β(Ci) = HDα(Ci) · HCα,β(Ci) (8)

For a cluster Ci, a value of Dα,β different from 0 means
that the cluster is a valid-interpretable one. In this case, the
labels that have a MDα(lj , Ci) �= 0 are called representative
labels of the cluster Ci.

3.2 Partition homogeneity degree
For a partition Pk(C1, C2, . . . , Ck), a cluster Ci may have

a maximal homogeneity for a given α and β. However, the
homogeneity degree of another cluster Cj may not be maxi-
mal for these values α and β. To overcome this problem, we
introduce the notion of homogeneity degree of a partition.

Let Pk(C1, C2, . . . , Ck) be a partition of k clusters.
The homogeneity degree of Pk is defined by the function
DPα,β(Pk) and is computed as follows

DPα,β(Pk) =

⎧⎪⎪⎨⎪⎪⎩
∑ i=k

i=1 Dα,β(Ci)

k
,

if ∀i, Dα,β(Ci) �= 0;
0,
otherwise

(9)

The value of DPα,β(Pk) varies between 0 and 1. When
this value is different from 0, the partition is said a valid-
interpretable partition.

3.3 Illustrative example
Consider a set X of objects described by 4 class labels :

• Label l1 indicates that the day is between Monday and
Friday and is a holiday.

• Label l2 indicates that the day is between Monday and
Friday and is not a holiday.

• Label l3 indicates that the day is a Saturday or a Sun-
day and is a holiday.

• Label l4 indicates that the day is a Saturday or a Sun-
day and is not a holiday.
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Let L = {l1, l2, l3, l4} be the set of labels. Suppose that
‖ S1 ‖= 5, ‖ S2 ‖= 10, ‖ S3 ‖= 6, and ‖ S4 ‖= 4. Let C1

and C2 be two clusters defined on X. The content of these
two clusters is shown in Figure 2. Cluster C1 contains 12
objects (three are described by label l1, one by l2, six by
l3 and two by l4). Cluster C2 contains 13 objects (two are
described by label l1, nine by l2 and two by l4).

Figure 2: clusters C1 and C2

Consider now cluster C1 and suppose that α = 0.6 and
β = 0.5. Using Eq. 4 and Eq. 6, we get:

• MD0.6(l1, C1) = 0.6; MC0.6(l1, C1) = 0.25,

• MD0.6(l2, C1) = 0; MC0.6(l2, C1) = 0,

• MD0.6(l3, C1) = 1; MC0.6(l3, C1) = 0.5,

• MD0.6(l4, C1) = 0; MC0.6(l4, C1) = 0.

For instance: MD0.6(l1, C1) = 0.6 since
||SC1,1||
||S1|| = 3

5
=

0.6 ≥ α and MD0.6(l2, C1) = 0 since
||SC1,2||
||S2|| = 1

10
= 0.1 <

α.
Then, by using Eq. 5 and Eq. 7, we get:

• HD0.6(C1) = 1
2
(MD0.6(l1, C1)+MD0.6(l3, C1)) = 0.8,

• HC0.6,0.5(C1) = MC0.6(l1, C1) + MC0.6(l2, C1) +
MC0.6(l3, C1) + MC0.6(l4, C1) = 0.75.

Next, after the computation of HD0.6(C2) and
HC0.6,0.5(C2), the homogeneity degrees of clusters C1 and
C2 can be calculated by Eq. 8. This leads to:

D0.6,0.5(C1) = HD0.6(C1) · HC0.6,0.5(C1)

= 0.8 · 0.75

= 0.6

D0.6,0.5(C2) = HD0.6(C2) · HC0.6,0.5(C2)

= 0.62

Finally, the homogeneity degree of partition P2(C1, C2) is
computed by Eq. 9:

DP0.6,0.5(P2) =
1

2
(D0.6,0.5(C1) + D0.6,0.5(C2))

=
1

2
(0.6 + 0.62)

= 0.61

Tables 1, 2 and 3 hereafter give the values of Dα,β(C1),
Dα,β(C2) and DPα,β(P2) for some values of α and β. It is
easy to see that for α = 1 and β = 0.5, cluster C1 is more
homogeneous than cluster C2, while for α = 0.6 and β = 0.5,
C2 is more homogeneous than C1.

Table 1: Values of HDα(C1), HCα,β(C1) and Dα,β(C1)
α β HDα(C1) HCα,β(C1) Dα,β(C1)

0.5 0.75 0.6
0.6 0.7 0.8 0.75 0.6

0.9 0 0
0.5 0.5 0.5

0.8 0.7 1 0 0
0.9 0 0
0.5 0.5 0.5

1 0.7 1 0 0
0.9 0 0

Table 2: Values of HDα(C2), HCα,β(C2) and Dα,β(C2)
α β HDα(C2) HCα,β(C2) Dα,β(C2)

0.5 0.69 0.62
0.6 0.7 0.9 0 0

0.9 0 0
0.5 0.69 0.62

0.8 0.7 0.9 0 0
0.9 0 0
0.5 0 0

1 0.7 0 0 0
0.9 0 0

Table 3: Values of DPα,β(P2) for different values of α
and β

α β Dα,β(C1) Dα,β(C2) DPα,β(P2)
0.5 0.6 0.62 0.61

0.6 0.7 0.6 0 0
0.9 0 0 0
0.5 0.5 0.62 0.56

0.8 0.7 0 0 0
0.9 0 0 0
0.5 0.5 0 0

1 0.7 0 0 0
0.9 0 0 0

3.4 Propositions
This section presents a series of propositions concerning

the relationship between HDα, HCα,β , MDα and MCα.

Proposition 1. Giving a cluster Ci,

• Part 1: if maxj(
‖SCij‖
‖Sj‖ ) < α, then HDα(Ci) = 0

• Part 2: given α = 1, if � lj such that
‖SCij‖
‖Sj‖ = 1, then,

HDα(Ci) = 0, otherwise HDα(Ci) = 1

• Part 3: if there is at least one label lj such that
‖SCij‖
‖Sj‖ = 1, then limα→1(HDα(Ci)) = 1

Proof. :

• Part 1: given a cluster Ci, maxj(
‖SCij‖
‖Sj‖ ) < α means

that for every label lj (j = 1, . . . , m),
‖SCij‖
‖Sj‖ < α, then

for every label lj (j = 1, . . . , m), MDα(lj , Ci) = 0.
Consequently, according to Eq. 5, HDα(Ci) = 0.
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• Part 2: as consequence of the Part 1, given α = 1, if �

lj such that
‖SCij‖
‖Sj‖ = 1, then, it is trivial to conclude

that HDα(Ci) = 0. Otherwise, given a cluster Ci,
HDα(Ci) is equal to the mean of the MDα(lj , Ci),
∀lj , that are different from 0. When α = 1, we take

into account only the values of
‖SCij‖
‖Sj‖ , ∀lj , that are

equal to 1 to compute HDα(Ci) (the maximum value

of the proportion
‖SCij‖
‖Sj‖ is 1). So, if there is at least

one label lj such that
‖SCij‖
‖Sj‖ = 1, then HDα(Ci) = 1.

• Part 3: as mentioned above, HDα(Ci) is equal to the
mean of the MDα(lj , Ci) that are different from 0. If
α is close to 1, so for the computation of HDα(Ci), we

take into account only the values of
‖SCij‖
‖Sj‖ , ∀lj , that

are greater than α. Then, the mean will be greater
than α which is close to 1.

Proposition 2. Let Plj be a set of r clusters containing
objects having the label lj. The following holds:

• Part 1: if ∀ Ci ∈ Plj, MDα(lj , Ci) �= 0, then∑r
i=1 MDα(lj , Ci) = 1 .

• Part 2: If for a given cluster Ci ∈ PLj ,
MDα(lj , Ci) > 0.5, then ∀ Cm �= Ci and ∈ PLj ,
MDα(lj , Cm) < 0.5

Proof. :

• Part 1: according to section 3.1.1, MDα(lj , Ci) is equal
to the proportion of objects of a cluster Ci described by
a label lj in respect to the total number of the objects
of X having the label lj when this proportion is greater
than α. Next, if ∀ Ci ∈ Plj , MDα(lj , Ci) �= 0, then:

r∑
i=1

MDα(lj , Ci) =
‖ SC1j ‖
‖ Sj ‖ +

‖ SC2j ‖
‖ Sj ‖ + · · · + ‖ SCrj ‖

‖ Sj ‖

=
‖ SC1j ‖ + ‖ SC2j ‖ + · · ·+ ‖ SCrj ‖

‖ Sj ‖
= 1

Otherwise, if ∃ Ci ∈ Plj such that MDα(lj , Ci) = 0,
we will have some proportions that will not be taken
into account and so

∑r
i=1 MDα(lj , Ci) will be strictly

less than 1.

• Part 2: Basing on the part 1 of the proposition 2, if
for a given cluster Ci ∈ PLj , MDα(lj , Ci) > 0.5 so:∑r

m=1,m�=i MDα(lj , Cm) < 0.5. Consequently, ∀
Cm �= Ci and ∈ PLj , MDα(lj , Cm) < 0.5.

Proposition 3. Let Ci be a cluster with labels list
Labels(Ci). If ∀lj ∈ Labels(Ci) MDα(lj , Ci) ≥ α, then
HCα,β(Ci) = 1.

Proof. MDα(lj , Ci) ≥ α means that MCα(lj , Ci) =
‖SCij‖
‖Ci‖ . Consequently, if ∀lj ∈ Labels(Ci) we have

MDα(lj , Ci) ≥ α, then,

HCα,β(Ci) =
‖ SCi1 ‖
‖ Ci ‖ +

‖ SCi2 ‖
‖ Ci ‖ + · · · + ‖ SCij ‖

‖ Ci ‖

=
‖ SCi1 ‖ + ‖ SCi2 ‖ + · · ·+ ‖ SCij ‖

‖ Ci ‖
= 1

Proposition 4. If HDα(Ci) = 0, then HCα,β(Ci) = 0.

Proof. HDα(Ci) = 0 means that ∀lj , MDα(lj , Ci) = 0.
Thus, according to Eq. 6, MCα(lj , Ci) = 0, ∀lj . Conse-
quently, HDα,β(Ci) = 0.

4. HOMOGENEITY DEGREE-BASED
EVALUATION ALGORITHM

The basic idea of the proposed algorithm is to run one of
the clustering methods (CLUSTERING algorithm) and compute
the partition homogeneity degree DPα,β for different values
of α and β. The values of α and β that maximize DPα,β are
stored and the value of DPα,β is hold.

Procedure homogeneity−degree( X : Set of objects)
Pk← CLUSTERING(X)
DPmax ← 0
αmax ← 0
βmax ← 0
For α from 0.5 to 1 by stepα do

For β from 0.5 to 1 by stepβ do

compute DPα,β(Pk)
If (DPα,β(Pk) > DPmax) then

DPmax ← DPα,β(Pk)
αmax ← α
βmax ← β

end If

end For

end For
return (αmax, βmax, DPmax)

End
Algorithm 1: Homogeneity degree-based evaluation
algorithm

Thresholds α and β vary from 0.5 to 1 by step stepα and
stepβ , respectively. The parameters stepα and stepβ are
chosen by the user before running the algorithm. Both stepα

and stepβ must be in the range ]0, 0.5]. Values of these steps
can be 0.01, 0.1, 0.2 ...

The complexity of the algorithm is O(CP + 1
stepα

1
setpβ

)

where CP is the complexity of the used clustering algorithm.

5. EXPERIMENTS AND DISCUSSIONS
This section presents an application of the proposed algo-

rithms on a real road traffic data set. Since our objective is
not the comparison of clustering algorithms, we choose the
well-known K-means [9] to test our algorithm.

5.1 Road Traffic data set
Road traffic measures, also called fundamental data, are

generally recorded by sensors. They permit to describe the
state of the traffic in space and time. In this paper, we are
interested in flow measures. A flow measure corresponds to
the number of vehicles that pass through point x in a road
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network during a time interval I. It is expressed in vehicles
per unit of time (generally hours or minutes).

More than 300 sensors are placed on a road of a french
city. Every day, each sensor records 480 values of flow mea-
sure (one value every 3 minutes). An object of 480 attributes
{A1, A2, . . . , A480} is associated to each sensor where A1 is
the number of vehicles on 00h00, A2 is the number of vehi-
cles on 00h03, and so on. Along the year 2003, about 365
objects were collected for every sensor. We focus on the
data set given by one of these sensors to experiment our ap-
proach. The data set contains 365 objects. Among them,
132 objects have some missing values of numeric attributes.
Therefore, since the proposed algorithm do not deal with
missing values, we use only 233 objects. We use also two
sets of labels (L1 and L2) to test our approach. The labels
associated to these sets are built from 3 attributes :

• Attribute A481 which indicates if the flow values are
recorded in a working day (between Monday and Fri-
day) or not. The values domain of A481 is {Y, N}.

• Attribute A482 which is associated to the day of a week.
Its values domain is {1, 2, . . . , 7}.

• Attribute A483 indicating if a day is a holiday or not.
The values domain of A483 is {Y, N}.

The first set L1 is built from the attributes A481 and A483.
Each label of the second set L2 is composed of the two at-
tributes A482 and A483. Instead of creating labels using
cartesian product of attributes , we will look through ob-
jects and extract only the values of the attributes that ap-
pear together. For instance, for the second set L2, some
labels such that 3Y (a wednesday holiday) or 7Y ( a sunday
holiday) are not associated to any object in data set for the
year 2003. So, it is not necessary to include them in the
set of labels. According to that, L1 will contain 4 labels
({Y Y, Y N, NY, NN}) and L2 will be composed of 12 labels
({1N, 2N, 3N, 4N, 5N, 6N, 7N, 1Y, 2Y, 4Y, 5Y, 6Y }).

5.2 Application of the homogeneity degree-
based evaluation algorithm

In this section, we present the clustering results obtained
by homogeneity degree-based evaluation algorithm and com-
pare the proposed degree of homogeneity used by the algo-
rithm to the other supervised measures such that entropy,
purity, F-measure, Jaccard, Rand and Folkes and Mallows.
First, the tests are made on the set L1 that contains 4 la-
bels. Then we will use the set L2 of 12 labels to show the
performance of our proposed measure in comparison to the
other ones when the number of labels increases (see section
2.2).

Table 4 (resp. table 5) shows the K-means clustering re-
sults obtained with the set of labels L1 (resp. set L2) and
k = 2. For every cluster, we compute the cluster homogene-
ity degree (D), the entropy (E) and the purity (P) and then
we give the values of the partition homogeneity degree (DP),
the overall entropy (OE), the overall purity (OP), the over-
all F-measure (OF), Jaccard coefficient (J), Rand statistic
(R) and Folkes and Mallows index (FM) to evaluate the final
clustering results.

As it is shown in table 4, the values of all the measures
reflect the goodness of clustering results. Indeed, we have
DP0.9,0.9 = 0.97, OE = 0.2, OP = 0.96, OF = 0.96,

J = 0.93, R = 0.96 and FM = 0.96. Nevertheless, if we
concentrate on cluster C1, we can note that the value of
cluster homogeneity D0.9,0.9(C1) is particulary better than
entropy. This confirms that entropy is not always able to
express the fact that a cluster is composed by representative
labels even if objects described by one label represent a great
proportion of the cluster (see label NN in cluster C1).

Table 4: Results of the application of Algorithm 1
with 4 labels

C1 C2 Tot.
YY 4 0 4
YN 3 155 158
NY 1 0 1
NN 70 0 70
Tot. 78 155 233

D0.9,0.9 0.96 0.98 DP0.9,0.9=0.97
E 0.62 0 OE=0.2
P 0.89 1 OP=0.96

OF - - 0.96
J - - 0.93
R - - 0.96

FM - - 0.96

Table 5 shows the distribution of labels into clusters and
the values of the supervised measures when the number of
labels increases and become equal to 12 (labels of set L2). If
we look at the distribution of labels of clusters C1 and C2,
we can note that C1 contains all objects of labels 1N , 2N ,
3N , 4N and 5N , and the majority of objects of label 6N .
The second cluster contains all objects associated to label
7N , 1Y , 2Y , 4Y , 5Y and 6Y and 10 objects out of 25 of
label 6N . According to the point of view explained in sec-
tion 3, the clusters are valid-interpretables, and evaluation
measures must reflect this idea. The results of table 5 show
that whether we look on the goodness of each cluster sep-
arably or on the goodness of the overall clustering results,
only our measure of homogeneity degree is able to valid the
results. For example, if we concentrate on the validation of
the overall clustering results, we have:

• DP0.7,0.8(P2) = 0.87

• OE = 2.32

• OP = 0.3

• OF = 0.36

• J = 0.18

• R = 0.45

• FM = 0.41

These values confirm that the measures of entropy, purity,
F-measure, Jaccard, Rand and Folkes and Mallows are de-
pendent on the number of labels and cannot always validate
interpretable clusters.

5.3 Identification of factors associated to typ-
ical situations

As mentioned in section 1, a typical traffic situation is a
consistent and repetitive situation. Concretely, if we con-
sider that each cluster is represented by its centroid, each
typical situation will be represented by the centroid of a
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Table 5: Results of the application of Algorithm 1
with 12 labels

C1 C2 Tot.

1N 32 0 32
2N 29 0 29
3N 34 0 34
4N 28 0 28
5N 35 0 35
6N 25 10 35
7N 0 35 35
1Y 0 1 1
2Y 0 1 1
4Y 0 1 1
5Y 0 1 1
6Y 0 1 1
Tot. 183 50 233

D0.7,0.8 0.95 0.8 DP0.7,0.8=0.87
E 2.57 1.38 OE=2.32
P 0.19 0.7 OP=0.3

OF - - 0.36
J - - 0.18
R - - 0.45

FM - - 0.41

cluster (a set of objects having similar behaviours � repet-
itive behaviours) and the factors influencing this situation
are the representative labels of the cluster associated to it.

According to section 3.1.5 and if we consider the reparti-
tion of labels described in table 5, we have:

− For C1:

• MD0.7(1N, C1) = 1

• MD0.7(2N, C1) = 1

• MD0.7(3N, C1) = 1

• MD0.7(4N, C1) = 1

• MD0.7(5N, C1) = 1

• MD0.7(6N, C1) = 0.71

• D0.7,0.8(C1) = 0.95.

Then, 1N , 2N , 3N , 4N , 5N and 6N are the represen-
tative labels of cluster C1 and the factors influencing
the traffic situation associated to C1.

− For C2:

• MD0.7(6N, C2) = 0

• MD0.7(7N, C2) = 1

• MD0.7(1Y, C3) = 1

• MD0.7(2Y, C3) = 1

• MD0.7(4Y, C3) = 1

• MD0.7(5Y, C3) = 1

• MD0.7(6Y, C2) = 1

• D0.7,0.8(C2) = 0.8.

Then, 7N , 1Y , 2Y , 4Y , 5Y and 6Y are the representa-
tive labels of the cluster C2 and the factors influencing
the traffic situation associated to C2.

The identification of the factors influencing a traffic situ-
ation allow experts to make decisions such as:

• Forecasting: the fact that each cluster is described
with distinct labels permits to conclude that each ob-
ject having a label lj must be included in a cluster
for which label lj is representative. This permits to
predict the behaviour of any object.

• Detection of outliers and atypical situations: this op-
eration is the consequence of the forecasting step. In-
deed, if we have a new object Or described by a label
lj that is more close to the centroid of a cluster Ci than
the other centroids and if the label lj is not representa-
tive of cluster Ci, then the object Or is considered as
an outlier or an atypical traffic situation. For instance,
considering the results of table 5, if the flow values of
a new object are recorded a sunday and if this object
is more close to the centroid of the cluster C1 than
to the one of C2, this means that there was a traffic
problem like an accident that occurred near the sensor
that collected these flow values. Such situations can
also be detected in real time if we consider the values
of an objects as a stream data and treat them as soon
as we collect them.

The precision of forecasting and/or detection of outliers
are very related to the values of α and β since these parame-
ters reflect the quality degree of clustering interpretation the
user wants to have. A high degree of precision is so assured
by high values of α and β (values close to 1).

6. CONCLUSION
In this paper, we presented a new evaluation measure

called Homogeneity degree that permit to identify the fac-
tors influencing road traffic situations. The measure is based
on class labels and aims to validate only interpretable clus-
ters. We showed that our measure is better than the existing
ones such as F-measure or Jaccard coefficient since the lat-
ter are not always able to identify interpretable results. As
future directions, we intend to apply our approach to other
domains like biology or medicine and to propose a new algo-
rithm allowing us to use the homogeneity degree as relative
measure to choose the best clustering results.
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ABSTRACT
Skyline queries have gained attention for supporting multi-
criteria analysis of large-scale datasets. While a lot of sky-
line algorithms have been proposed, most of the algorithms
build upon pre-computed index structures that cannot gen-
erally be supported over sensor data of dynamically chang-
ing attribute values. We aim to design a scalable non-index
skyline computation algorithm for sensor data. More specifi-
cally, we propose Algorithm SkyTree constructing a dynamic
lattice that divides a specific region into several subregions
based on a pivot point maximizing dominance region. Such
structure enables to perform region-wise dominance tests,
which eliminates unnecessary point-wise dominance tests.
In addition, we ensure the progressiveness that has not been
supported by any non-index algorithm, where we can iden-
tify k points maximizing the sum of dominance regions as
the greedy approximation method. The k points are used
to reduce communication cost between sensors in computing
global skyline. Our evaluation results validate the efficiency
of Algorithm SkyTree, both in terms of response time and
communication overhead, over existing algorithms.

1. INTRODUCTION
Skyline queries have gained attention as an alternative oper-
ator for multi-criteria analysis of large-scale datasets, due to
intuitive query formulation. For a multi-dimensional dataset,
the skyline queries return a subset of “interesting” points
that are no worse than, or not dominated by, any other
points. If a point p is better than another point q in at least
one dimension and not worse than q in all other dimensions,
it is said that p dominates q.

To illustrate traditional skyline queries with static data, we
describe an example with a new SQL expression, i.e., SKY-
LINE OF [5, 6].

Example 1 (Skyline queries) Consider a hotel retrieval
system using a database such that Hotel(hno, name, price,
star, city). To find interesting hotels with cheap price and

Permission to make digital or hard copies of all or part of this work for
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not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SensorKDD’09, June 28, 2009, Paris, France.
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high star on city ‘Paris’, a user can formulate a skyline query
as follows:

SELECT * FROM Hotel
WHERE city = ‘Paris’
SKYLINE OF price MIN, star MAX; (Q1)

This paper studies skyline computation for sensor data in
which the query processing consists of two parts. First, each
sensor computes local skyline itself, where data are horizon-
tally distributed. Second, we then take into account how
to merge local skyline to identify global skyline over entire
sensors. Each challenging issue has been mainly studied in
centralized and distributed skyline computation respectively.
We thus aim to optimize two key costs– (1) the response
time in computing the local skyline at each sensor, and (2)
the communication cost between sensors in computing the
global skyline.

We first consider how to compute local skyline for each
sensor. Existing solutions have mainly focused on improv-
ing skyline computation using pre-computed auxiliary struc-
tures such as a bitmap [20], sorted list [7, 8], R-tree [12, 18],
and a new index to access points in Z order [14]. These
structures are essential in ensuring the efficiency of compu-
tation, by pre-partitioning data into regions and enabling
block-level dominance tests. For instance, as R-tree parti-
tions datasets into minimum-bounding rectangles, multiple
data points in each rectangle can be pruned in batch, from
a single dominance test (e.g., between a skyline point and
a bounding data point of the rectangle). Without such pre-
partitioning, dominance tests are done on point pairs and at
most one point can be pruned from each test. However, it is
infeasible to assume that such structures are maintained in
the sensors, as values of data are constantly and dynamically
changing, e.g., humidity and temperature.

Our goal is thus to study skyline computation algorithms
requiring no index, yet enabling batch pruning. While non-
index algorithms have been studied [5, 10, 19], all these al-
gorithms require to compare a skyline point with all other
skyline points to ensure the correctness, i.e., incurring O(s)
tests for each skyline point, when the number of skyline
points is s. However, since s tends to increase exponentially
over dimensionality, i.e., “curse of dimensionality”, such cost
critically hurts the scalability of algorithms.

In a clear contrast, we propose a novel algorithm, not requir-
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ing index, yet achieving efficiency by reducing point-based
dominance tests between skylines. To achieve this goal, pivot
points are dynamically selected, with respect to which the
entire region are partitioned into disjoint subregions. The
partitioned structure is abstracted as a dynamic lattice on
which we define the partial dominance or incomparability
notions. We perform block-level dominance tests on the lat-
tice that reduce pair-wise dominance tests. Our evaluation
results show that Algorithm SkyTree is significantly more
efficient than existing non-index algorithms over all experi-
mental settings.

An additional advantage of Algorithm SkyTree is to identify
the skyline in a progressive manner. Progressiveness is stud-
ied as a desirable property in [12, 18], requiring to ensure
the following two properties:

1. Online skyline qualification: The first skyline can
be returned before all the other skylines are identified.

2. Sublinear skyline qualification: Returning a sky-
line point does not require to compare it with all other
skyline points.

All existing non-index algorithms compare a skyline point
with all other skyline points before qualifying it as a skyline
and leave optimizing such skyline qualification cost as an
open problem. As a result, no such algorithm is progressive,
failing to ensure both [5, 10] or the first property [19] listed
above.

In a clear contrast, Algorithm SkyTree does block-level tests
on the lattice. It enables to instantly qualify a skyline point
by only comparing with some skyline points in “promising”
regions. This property allows Algorithm SkyTree to progres-
sively produce more results early on, without compromising
correctness.

This progressiveness of our proposed algorithm, in addition
to reduce response time by decreasing pairwise dominance
comparisons as described above, also contributes to reduce
communication cost between sensors. Specifically, we pro-
pose a pivoting strategy that greedily find k representative
skyline points [15], to reduce both response time and com-
munication cost, by maximizing dominated local points in
each sensor. However, as the problem of finding the exact
k representative skyline points is known to be NP-hard in 3
or higher dimensional space [15], our proposed solution can
be considered as a good practical approximation, as we also
empirically validate in Section 5.

To summarize, we believe that this paper has the following
contributions:

• We study the problem of supporting skyline computa-
tion over sensor data in scalable and progressive man-
ners.

• We design Algorithm SkyTree, enabling block-level dom-
inance tests on a lattice structure dynamically gener-
ated from a selective pivot point.

• We validate the efficiency of Algorithm SkyTree in terms
of both response time and communication cost, over
existing non-index skyline algorithms.

The rest of this paper is organized as follows. Section 2
reviews existing skyline algorithms and Section 3 discusses
preliminaries on general skyline problem. Section 4 proposes
Algorithm SkyTree based on a dynamic lattice. Section 5
shows experimental results and Section 6 presents our re-
markable conclusions.

2. RELATED WORK
This section surveys existing skyline computation algorithms.
Skyline queries have been first studied as maximal vectors
in [13, 3, 4] which developed algorithms with better time
complexity based on theoretical analysis. To estimate the
cost of skyline computation, [3, 9, 6] has been formulated
the size of skyline as a probabilistic equation. Later, start-
ing from [5], many skyline algorithms have been studied in
database community.

In particular, we present related algorithms in two cate-
gories:

• Centralized algorithms: These algorithms assume data
are centrally stored and aim to minimize computation
costs.

• Distributed algorithms: These algorithms assume data
are distributed over nodes and aim to minimize com-
munication cost across nodes.

2.1 Centralized Skyline Algorithms
We first survey existing centralized algorithms, which can be
divided into those using indices and those not. Though our
problem assumes distributed sensor environments, existing
centralized algorithms, aiming to minimize response time,
can inspire an efficient local skyline computation within sen-
sor. In particular, sensor environments, with values con-
stantly and dynamically changing, are more relevant to non-
index algorithms.

2.1.1 Algorithms with Indices
This section presents existing skyline algorithm using aux-
iliary structures. Specifically, Tan et al. [20] first proposed
Bitmap and Index using bitmap and B-tree indices to sup-
port progressive skyline computation. Chomicki et al. [7, 8]
proposed SFS by using a sorted list of points that helps to
reduce point-wise dominance comparisons. Kossmann et al.
[12] and Papadias et al. [18] employed an R-tree index that
facilitates block-level dominance comparisons without direct
point-level access on the disk. Recently, Lee et al. [14]
proposed a new index to access points in Z order. These
algorithms, by leveraging pre-materialized structures, have
limited applicability to (1) queries with complex Boolean
constraints such as “join” or “group by” or (2) dynamically
changing data as in sensors.

2.1.2 Algorithms without Indices
This section presents existing non-index skyline algorithms.
Specifically, Börzsönyi et al. [5] proposed basic skyline com-
putation methods, BNL and D&C. Later, Godfrey et al.
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[10] developed LESS with attractive average-case asymp-
totic complexity in external memory environment. Recently,
Park et al. [19] proposed SSkyline, reducing the dominance
comparisons between non-skyline points by sequentially re-
arranging the order of accessing points. For a special case
of dealing with low cardinality dataset, Morse et al. [17]
proposed skyline computation using a static lattice struc-
ture. Since these algorithms do not essentially require any
indices, skyline queries can support sensor data with dynam-
ically changing values. However, typically lack efficiency and
scalability, as we will further discuss in Section 4.

2.2 Distributed Skyline Algorithms
Centralized algorithms, not considering communication over-
head across sensors, incur prohibitive communication cost
when naively adopted to our problem. Recent research ef-
forts studied algorithms for minimizing communication cost
over vertically or horizontally distributed data sources, as
we survey as follows.

2.2.1 Algorithms on Vertically Distributed Data
In typical Web scenarios, data are often vertically distributed,
e.g., price information residing in hotels.com and distance
in maps.com, as typically assumed in [1, 16]. Balke et
al. [1] first proposed distributed skyline computation re-
ducing unnecessary data access cost. Further, Lo et al. [16]
proposed progressive skyline computation under the same
model which is based on a good “terminating object” using
a linear regression technique for early termination.

2.2.2 Algorithms on Horizontally Distributed Data
Sensors can be viewed as dynamically changing horizontally
distributed data. Existing algorithms, assuming static data,
typically leverage indices [11, 2] to identify local skylines.
Specifically, Hose et al. [11] proposed an algorithm finding
relaxed skyline results on Peer Data Management Systems
(PDMS). Although these initial results are not guaranteed
to be global skyline, these reduce the communication cost
across sensors, by pruning out dominated objects from local
sensors. Recently, Bartolini et al. [2] proposed a faster al-
gorithm SaLSa using a minC sorted list, which outperforms
SFS by communicating promising result subset to prune out
local objects and avoid fetching unnecessary data. With the
same goal, our proposed algorithm approximately generates
k representative skyline points that is used to eliminate un-
necessary fetches across sensors.

3. PRELIMINARIES
We first introduce basic notations to present the skyline
problem. Let D be a finite d-dimensional data space such
as {d1, d2, ..., dd}, where each dimension has a domain
of real numbers. Let dom(D) be a domain of total data
space, i.e., dom(D) = dom(d1) × . . . × dom(dd). Let S be
an entire dataset with finite n points, which is a subset of
dom(D), i.e., S ⊆ dom(D). A point p in S is represented as
(p1, . . . pd), where ∀i(1 ≤ i ≤ n) : pi ∈ dom(di).

Based on these notations, we formally state dominance and
skyline, respectively. Throughout this paper, we use min
operator for skyline queries. These definitions are consistent
with the skyline literature.

Definition 1 (Dominance) Given p, q ∈ S, p dominates
q on D, denoted as p ≺D q, if and only if ∀ i ∈ [1, d] pi ≤ qi

and ∃ j ∈ [1, d] : pj < qj .

Definition 2 (Skyline) A point p ∈ S is a skyline point
on D if and only if any other point ∀q( �= p) ∈ S does not
dominate p on D. The skyline is a set of skyline points on
D in S, denoted as SKYD(S).

The cost of skyline algorithms heavily depends on the num-
ber of dominance comparisons between points. Given a
dataset S with n points, skyline algorithms can perform up

to n(n−1)
2

pairwise dominance tests. To design an efficient
algorithm, we have to study how to reduce such dominance
computations as much as possible.

Toward the goal, we use the following properties of skyline
computation in [14].

Proposition 1 (Transitivity) Given, p, q, r ∈ S on D, if
p ≺D q and q ≺D r, then p ≺D r.

Proposition 2 (Incomparability) Given p, q ∈ S, if p
⊀D q and q ⊀D p, p and q are incomparable on D, denoted
as p ∼D q.

For simplicity, we replace notations ≺D, ⊀D, ∼D, and
SKYD(S) into ≺, ⊀, ∼, and SKY(S) if it is clear from
the context.

We now present how existing algorithms exploit these prop-
erties for reducing dominance tests.

• Reducing tests on non-skyline using dominance:
The number of dominance tests on a non-skyline point
p can vary from 1 (when p is dominated from the first
test) to n−1 (when dominated from the last tests). It
is thus important to order dominance tests such that
non-skylines are first compared with some point q that
is highly likely to dominate all non-skyline points. This
inspires the intuition used in a sorting-based algorithm
[7, 8] ordering data points in topological order by a
monotonic scoring function, ensuring that if q ≺ p,
q is guaranteed to rank higher in the topological or-
der. By performing dominance tests with the highest
ranking point q with non-skylines, we can expect to
prune non-skylines with very few tests. All existing
non-index algorithms focus on optimizing these costs.

• Reducing tests on skylines using incomparabil-
ity: However, incomparability is also helpful for re-
ducing dominance tests between skylines. Typically,
index-based skyline algorithms exploit them, by pre-
partitioning datasets and detecting incomparability re-
lationships between partitions. Suppose that a hyper-
rectangle subregion R on D is represented as [u1, v1)×
. . .× [ud, vd), where the virtual best point and the vir-
tual worst points are Rbest = (u1, . . . , ud) and Rworst =
(v1, . . . , vd) respectively. Given two subregions Ri and
Rj , they are incomparable, if Ri and Rj are not over-
lapped, Rbest

i ⊀ Rworst
j , and Rbest

j ⊀ Rworst
i . In such

case, the points corresponding to each subregion are
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also incomparable, i.e., if Ri ∼ Rj , then ∀p ∈ Ri, ∀q ∈
Rj : p ∼ q. The property has inspired a divide-and-
conquer approach [12, 18, 14] which first partitions an
entire region D into several subregions, then computes
the skyline for each subregion independently. As this
reduction requires pre-partitioning, existing non-index
algorithms do not optimize for this cost, while our pro-
posed algorithm, through effective dynamic partition-
ing, exploits this reduction as well.

4. ALGORITHM SkyTree
This section presents our proposed algorithm not requiring
pre-computed indices. In this work, we assume memory size
is large enough to keep local skylines and focus on minimiz-
ing CPU cost. We first present how to partition a specific
region into disjoint subregions in which region-level relation-
ships are defined with respect to a point p. Observe that the
partitioned subregions are abstracted as a lattice with the
relationships such as partial dominance or incomparability.
This structure enables block-level tests to reduce point-wise
comparisons. We then explain how to select such desirable
pivot point. Specifically, a pivot point pV dynamically con-
structs the lattice maximizing the size of dominance regions,
i.e., the volume of regions dominated by the pivot point. As
recursively extending the structure, we sequentially identify
skyline points, where the total sum of dominance regions are
greedily maximized. In particular, the procedure generates
the skyline as a tree structure, where each node is a pivot
point selected from the subregion. In this aspect, we call
our Algorithm SkyTree.

4.1 Constructing a Dynamic Lattice
Given a point p, each point q in S can be mapped into a
d-dimensional binary vector. Suppose that the value on di

corresponds to the ith least significant bit. If point q is
smaller than p on di, the binary value is 0. Otherwise, the
binary value is 1. Let B be a set of all possible d-dimensional
binary vectors mapped from points, where the size of B is
2d, denoted as B = {B0, . . . , B2d−1}.

Observe that each vector corresponds to a disjoint region
partitioned from point p. Suppose that the size of dimen-
sions d is 3, where p divides 3-dimensional space into 8 re-
gions such that B = {B0 = 000, B1 = 001, . . . , B7 = 111}.
When the binary value on di is 0, the possible values of
points in a region are represented as the range [0, pi). Oth-
erwise, the range is [pi, 1]. For example, vectors B0 and B1

correspond to regions such as [0, p3) × [0, p2) × [0, p1) and
[0, p3]× [0, p2)× [p1, 1] respectively. For the sake of represen-
tation, we denote a set of regions R mapped into vectors,
i.e., R = {R0, . . . R2d−1} such that ∀Bi ∈ B : Bi → Ri.
A set of points mapped into the same vectors can be thus
shown as a block presenting a region.

We now present the relationship between binary values, which
in turn defines the relationships of the corresponding re-
gions. For example, since ‘000’ dominates ‘111’ on all di-
mensions, points in R7 can be safely pruned out if there exist
any other points in R0, i.e., ‘000’ dominates ‘111’. As the
another case, since ‘001’ and ‘011’ are identical on {d1, d3},
points in R1 may dominate points in R3 on {d1, d3}, and
vice versa. Meanwhile, ‘001’ dominates ‘011’ on {d2}. In
such case, we say that ‘001’ partially dominates ‘011’ on

000

010001 100

101011 110

111

000(0)

010(2)001(1) 100(4)

101(5)011(3) 110(6)

111(7)

(a) (b)

Figure 1: (a) A binary lattice when d=3, (b) An
encoded binary lattice with the partial dominance
relationship

{d1, d2, d3}, which indicates that there may exist a point in
R1 dominating another point in R3. As the other case, if
two binary vectors exist dominating values at each side, e.g.,
‘001’ and ‘010’, we say that they are incomparable, which in-
dicates that points with incomparable relationship can skip
dominance tests without loss of correctness.

We formally state region-level relationships between binary
vectors B. Let B.di is a binary value on di of vector B.

Definition 3 (Dominance in B) Given two vectors B and
B′, B dominates B′ on D, denoted as B ≺ B′, if and only
if ∀di ∈ D : B.di < B′.di.

Definition 4 (Partial dominance in B) Given two vec-
tors B and B′, B partially dominates B′ on D, denoted as
B ≺Par B′, if and only if ∀di ∈ D : B.di ≤ B′.di.

Definition 5 (Incomparability in B) Given two vectors
B and B′, B is incomparable with B′ on D, if and only if
∃di ∈ D : B.di < B′.di and ∃dj ∈ D : B′.dj < B.dj .

The vectors in B can thus be organized as a partially or-
dered set. To illustrate, when d = 3, Figure 1(a) describes a
binary lattice. The partial ordered set is based on the par-
tial dominance relationships between vectors, described as
arrows. We can exploit these relationships to reduce domi-
nance tests as follows:

• Dominance tests on dominance regions: If there
exist any other points in B0, we can prune out all
points in B2d−1. Observe that, when a point p divides

the region into 2d subregions, p is inherently contained
in B0. This implies that point p dominates all points
in B2d−1, requiring only 1 dominance test.

• Dominance tests on partial dominance regions:
If there exists an arrow from Bi to Bj , Bi partially
dominates Bj . This relationship indicates the relation-
ships between point sets in the corresponding regions
Ri and Rj , which we denote as Si and Sj respectively.
As points in Ri are likely to dominate those in Rj , we
need to perform dominance tests between Si and Sj ,
i.e., ∀p ∈ Si, q ∈ Sj : p ≺ q. To reduce unnecessary
dominance tests, we first identify skyline in Si, i.e.,
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Figure 2: Dominance regions on p and q

SKY(Si), based on which we reduce dominated points
in Sj . After these tests, Sj is reduced to S′

j ⊆ Sj ,
where we identify skyline SKY(S′

j) for Sj .

Recall that, by the transitivity, partial dominance holds
not only on directly connected pairs with an arrow but
also on all “reachable” pairs in the lattice. That is, if
there exists an arrow from Bi to Bj and also from Bj

to Bk, i.e., if Bi is reachable to Bk, Bi also partially
dominates Bk. we can thus use the same procedures
to reduce dominance tests on the points in Ri and Rk.

• Dominance tests on incomparable regions: For
all the remaining pairs, Bi and Bj are incomparable.
This implies that point sets Si and Sj in corresponding
regions Ri and Rj are also incomparable, i.e., ∀p ∈
Si, q ∈ Sj : p ∼ q. We can thus skip these tests with
known outcomes and focus on performing dominance
tests on point pairs within Si (and Sj).

Summing up, the block-level tests described above enable
to exploit dominance and incompatibility, to avoid unnec-
essary point-level dominance comparisons for both skylines
and non-skyline points. In particular, by dynamically gen-
erating the lattice on-the-fly, Algorithm SkyTree can effec-
tively support local skyline computation for sensor data with
dynamically changing values, unlike existing work building
upon pre-materialized indices.

4.2 Determining a Pivot Point
We now discuss how we can effectively divide space into re-
gions, by presenting how we select a pivot point pV that
determines the space division into 2d subregions. Desirably,
we should select an ideal pivot point reducing overall cost.
More specifically, (1) How do we select pV to minimize re-
sponse time to compute local skyline for each sensor? (2)
How do we select pV to minimize communication cost to
compute global skyline?

We first address the first question. To illustrate, consider
two pivot points p and q in Figure 2. Figure 2(a) illustrates
two regions with dominance with respect to p, i.e., Rp

0 and
Rp

3 (gray colors). Figure 2(b) similarly illustrates Rq
0 and

Rq
3. Observe that, points in Rp

3 and Rq
3 are guaranteed to be

pruned out after dominance tests with any point in Rp
0 and

Rq
0 respectively. Assuming data points are uniformly dis-

tributed, it is desirable to select a point maximizing the dom-
inated region. Assuming uniform distribution and attribute

Algorithm 1 SelectPivotPoint(S, R, tail)

Input: A dataset S = { p1, . . ., pn }
Output: A pivot point pV

1: head ← 1, cur ← 2. // Initialize variables.
2: maxDG ← CalculateDG(S[head], R).
3: while cur ≤ tail do
4: if S[head] ≺ S[cur] then
5: S[cur] ← S[tail].
6: tail ← tail − 1. // Move away a dominated point.
7: else if S[cur] ≺ S[head] then
8: S[head] ← S[cur]. // Change a dominated head point.
9: S[cur] ← S[tail].
10: tail ← tail − 1.
11: maxDG ← CalculateDG(S[head], R).
12: else
13: // Compare maxDG with curDG of S[cur].
14: curDG ← CalculateDG(S[cur], R).
15: if curDG > maxDG then
16: Swap between S[cur] and S[head].
17: curDG ← maxDG.
18: end if
19: cur ← cur + 1.
20: end if
21: end while
22: return S[head].

values normalized to (0, 1), the number of points in domi-
nated region for dataset of size n is V =

∏n
i=1 (1 − pi) × n.

We can then select a pivot point pV as a point maximizing
V . Note, by maximizing V , we consider all skylines as piv-
ots first, before any non-skyline point, because when p ≺ q,
Rp

3 is guaranteed to include Rq
3. Due to this property, many

prior literatures [7, 8, 10] similarly leveraged V (or its vari-
ants) for optimization, though our work is the first to use it
for space division.

We then address the second question of minimizing com-
munication cost in aggregating local skyline results from
sensors. Toward the goal, existing work [2] studies sharing
initial results across sensors, to eliminate dominated points
from other sensors early on, for saving overall communica-
tion cost. More specifically, for such initial results, k initial
results that dominate as many points as possible from each
sensor are desirable, where k < | SKY(S)|. In a different
problem context, Lin et al. [15] studied to identify k rep-
resentative skyline, maximizing the number of dominating
points as follows:

Problem 1 (k representative skyline) Given a dataset
S and an integer k, identify a set RS of k skyline points
maximizing the number of dominating points in S such that
|{ (p, q) | p ≺ q, p ∈ RS, q ∈ S}|.

While we can adopt the same intuition to identify the best
initial results for eliminating dominated points from other
sensors, the exact solution of identifying k representative
skyline points is known as NP-hard [15] in 3 and higher
dimensional space.

We thus consider a greedy approximation for this problem.
Fortunately, our pivot selection, greedily selecting a point
p maximizing the dominance region in R, can be viewed as
a greedy approximation. In other words, we can communi-
cate the first k pivots across sensors, to maximally eliminate
dominated points in other sensors.
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Figure 3: A toy dataset on two dimensional space

Algorithm 1 describes the pseudo code of our pivot selec-
tion for optimizing both response time and communication
cost, where tail is a variable presenting the last position in
S. Specifically, we perform pairwise dominance tests and
swapping, in order to put (1) skyline with (2) the biggest
dominance region as the first point p. When we sequentially
access points in S, we perform dominance tests between p
and a current accessed point q. If q is dominated, we replace
q into a point to be placed to tail. As the another case, if
(1) q dominates p or (2) q has bigger volume size than p, we
replace a dominated point into a point in tail or swap a pair
(p, q). The function CalculateDG(p, R) is to calculate a
dominance region for p, i.e.,

∑n
i=1 log(pmax

i − pi) such that
pmax is a virtual point presenting maximum values in R.

4.3 Computing the Skyline
This section discusses how we use the lattice structure B
(Figure 1) for the skyline computation. Essentially, our pro-
posed skyline computation accesses nodes in a lattice in a
topological order preserving partial dominance relationships.
For points in each node, we can skip dominance tests against
the points in other nodes with incomparable relationships,
and focus on dominance tests with the points in nodes with
dominance relationships.

More specifically, we describe this procedure as a pseudo
code in Algorithm 2. In lines 4-5, we determines pV from
the specific region R. In lines 6-14, we compute the vec-
tor for each point, and allocate it into list H presenting the
corresponding vectors. In an exceptional case, we store the
points that are identical to pV into an auxiliary list I which
is contained into the skyline result L. In lines 15-27, we
perform point-level dominance tests for blocks with the par-
tial dominance relationship, eliminate dominated points for
partially dominated blocks, and recursively call a function
for points in the subregion.

To illustrate SkyTree, we show an example with 10 points
on two dimensional space described as Figure 3. First, after
scanning whole points, a pivot point is determined as j. As
illustrated Figure 3(a), we generate 4 subregions, where j is
added into the skyline, and 3 points b, d, and f are simulta-
neously eliminated. For the other points mapped into ‘01’
and ‘10’, we recursively find pivot points. For ‘01’, pivot
points are sequentially selected as a and c, and added into
the skyline. For ‘10’, a pivot point is selected as i. Finally,
the skyline are identified as j, a, c, i, e and g. During the

Algorithm 2 SkyTree(S, R, L)

Input: A dataset S = { p1, . . ., pn }
Output: A list of skyline points L
1: max ← (1 << d) − 2. // Set the size of a lattice.
2: I ← {} // Initialize the list with identical points to pV .
3: H[1, . . . , max] ← {}. // Initialize the list of array H.
4: tail ← |S|. // Mark the last position of S.
5: pV ← SelectPivotPoint(S, R, tail).
6: for ∀ p ∈ S[1, . . . , tail] do
7: LID ← M(p, pV ) // M maps p into an encoded value.
8: if LID < max then
9: H[LID].Add(p). // Generate the list of each LID.
10: else if p = pV then
11: I.Add(p). // Store points identical to pV .
12: end if
13: end for
14: L.AddRange(I).
15: for LID ← 1 to max do
16: if H[LID].Size() > 0 then
17: for ∀ DID ∈ B: DID ≺Par LID do
18: EliminateDominatedPoints(H[DID], H[LID]).
19: end for
20: if H[LID].Size() > 0 then
21: // Set value ranges in RLID corresponding to LID.
22: RLID ← [pmin

1 , pmax
1 ] × . . . × [pmin

d , pmax
d ].

23: T ← SkyTree(H[LID], RLID,L).
24: L.AddRange(T ).
25: end if
26: end if
27: end for

skyline computation, all points are compared with two or
less times, as Figure 4 illustrates with a tree structure.

j(4, 3)

a(6, 2) i(2, 7)

c(9, 1) e(3, 5) g(1, 8)

Figure 4: A skyline tree structure in Figure 3

This skyline tree structure can also be used to efficiently
compute our approximation for k representative. More specif-
ically, when the required size of representative skyline k is
3, we start the traversal from the root node and enqueue j
in Figure 4 into a priority queue, keeping elements sorted in
the order of the volume V of dominating region. We then
iteratively pop the top element and enqueue its child nodes–
For instance, when the current top node j is dequeued, its
child nodes a and i are enqueued. This iteration contin-
ues until k points are popped, e.g., k representative skyline
points in Figure 4 are j, a, and i.

5. EXPERIMENTS
This section presents empirical evaluation results for Algo-
rithm SkyTree. We explain experimental settings (Section
5.1), and validate the efficiency in terms of response time
for local skyline computation (Section 5.2) and communica-
tion cost to identify global skyline results (Section 5.3).
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Figure 5: Varying d

5.1 Experimental Settings
All the algorithms are implemented in C++ language, as-
suming that window size for skyline computation is un-
bound. All experiments were conducted on Windows XP
with Intel Core Duo 2.66 GHz CPU and 2GB RAM.

To validate in extensive settings, we synthetically gener-
ated various datasets, varying three parameters– distribu-
tion, cardinality, and dimensionality. All attributes are real
numbers in (0, 1). More specifically:

• Distribution: We generate three datasets, i.e., Corre-
lated, Independent, and Anti-correlated, follow-
ing the data generation instructions presented in [5].

• Dimensionality d: We vary dimensionality d from 4 to
12 (Default: d = 8)

• Cardinality n: We vary cardinality n from 200K to
1000K. (Default: n = 200K)

With these datasets, we compare our proposed algorithm
with baselines, using the following two cost metrics:

• Computation cost for local results: We first validate
the efficiency of our algorithm in identifying local sky-
lines from a single sensor, by comparing against general
non-index skyline algorithms below as baselines. As a
cost metric, we measure response time and the number
of dominance tets.

– Algorithm SFS [7]: To compare with a general
class of non-index algorithms, we implement SFS
where objects are pre-sorted in a required topo-
logical order for free. While this assumption is
not practical and unfavorable to us, our intention
of comparing with this baseline is to validate the
efficiency of our algorithm even in these unfavor-
able settings.

– Algorithm SSkyline [19]: This algorithm is re-
ported to outperform all non-index algorithms.

• Communication cost for global results: We then vali-
date the efficiency of our algorithm in aggregating lo-
cal results and identify global skylines, by comparing
against distributed skyline computation algorithms op-
timizing for communication costs, as baselines.

– Algorithm SFS [7]: We can use SFS to identify k
initial results using the volume of dominance re-
gion as a sorting function and communicate these
results across sensors.

– Algorithm SaLSaV [2]: Algorithm SaLSa improves
SFS by using a sorted index based on minC func-
tion. However, we observe that, while minC func-
tion is desirable for pruning out non-skylines, it
is less desirable for maintaining skylines. We thus
implement SaLSaV ordering intermediate skylines
in the order of the volume V of dominating re-
gions.
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Figure 6: Varying n

5.2 Local Skyline Computation
This section extensively evaluates the efficiency of Algorithm
SkyTree in computing local skyline computation over vary-
ing dimensionality and cardinality. To validate the perfor-
mance, we leverage two measure such as response time and
the number of dominance tests (DT ) per a point [2].

5.2.1 The Effect of Dimensionality
We evaluate the effect of dimensionality in computing local
skyline as illustrated Figure 5. As references, we also state
the number of skyline points of each dataset (corresponding
to values in the x-axis) below– For instance, for an anti-
correlated dataset in Figure 5(c), when d = 4, we generated
has 1,850 skyline points, which increases to 184,473 when
d increases to 12. Existing non-index algorithms are sig-
nificantly affected by such growths in skyline points over
increasing d, as they do not optimize quadratic comparison
between skyline point pairs. In a clear contrast, Algorithm
SkyTree is highly scalable over d and thus significantly out-
performs existing algorithms, especially when the dimen-
sionality is high. For instance, Algorithm SkyTree returns
skyline results in less than 60 seconds in all datasets, while
it may take more than 600 seconds for SSkyline (i.e., 10
times speedup). This drastic speedup of Algorithm SkyTree
is achieved by considering both dominance and incompa-
rability relationships between regions in the lattice, based
on which we reduce unnecessary point-wise dominance tests
both for non-skyline and skyline points. We observe consis-
tently for DT , where SkyTree incurs three times less domi-
nance tests compared to SSkyline.

5.2.2 The Effect of Cardinality
We evaluate the effect of cardinality in computing local sky-
line as illustrated Figure 6. Similar to the dimensionality,
as the cardinality increases, the number of both skyline
and non-skyline points also increases. That is, Algorithm
SkyTree, using both dominance and incomparability rela-
tionships to reduce dominance tests for both skylines and
non-skylines, has larger room for improvements for high car-
dinality dataset. As a result, our proposed algorithm signif-
icantly outperforms all other algorithms in all experimen-
tal settings, especially when n is high– For instance, when
n = 1000K on anti-correlated dataset, Algorithm SkyTree
achieves up to 10 times speedup than Algorithm SSkyline,
i.e., SkyTree = 213 sec and SSkyline = 2177 sec.

5.3 Global Skyline Computation
This section presents the efficiency of Algorithm SkyTree in
computing global skyline computation over varying dimen-
sionality and cardinality. As a cost metric, we use a fetched
points (FP ) [2]. Given k initial representative skyline points
RS from one sensor, we measure the ratio of the objects that
are not dominated by these initial results, from each of the
remaining sensors. In other words, the lower the FP is, the
less the communication cost is. More formally,

FP (RS,Si) = 1 − |(p, q)|p ≺ q, p ∈ RS, q ∈ Si}|
|Si| .
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5.3.1 The Effect of Dimensionality
Figure 7 describes the effect of dimensionality for global sky-
line computation. Observe that, for independent and anti-
correlated datasets, Algorithm SkyTree outperforms other
algorithms in low dimensional space. For instance, in two di-
mensional space, Algorithm SFS and SaLSaV incur 12 and 30
times more communication overhead over Algorithm SkyTree
respectively. The cost gap closes for high-dimensional data,
as the accuracy of our greedy approximation decreases, as
the number of skylines exponentially increases over increas-
ing d. However, considering our approximation incurs much
less computational overhead, our proposed approach still has
advantage over existing algorithms.

5.3.2 The Effect of Cardinality
Figure 8 describes the effect of cardinality for global skyline
computation. Observe that FP decreases as the cardinality
increases and so does the number of skylines. However, for
all cardinality settings in all datasets, Algorithm SkyTree
consistently outperforms other algorithms. In particular,
the FP of SFS and SaLSaV is up to 2 and 3 times higher
than Algorithm SkyTree in the independent distribution.

6. CONCLUSION
This paper studied to support scalable skyline computation
over sensor data. Towards this goal, we designed Algorithm
SkyTree requiring no pre-computed index, but instead build-
ing a dynamic lattice and exploiting block-level dominance

tests. In particular, we studied how to improve the overall
efficiency in terms of both response time and communica-
tion cost. Our evaluation results validated that Algorithm
SkyTree significantly outperforms existing algorithms.
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SENSORKDD’09 CUP 

Problem Description 
For this inaugural SensorKDD Challenge, held in conjunction with the 3rd International 
Workshop on Knowledge Discovery from Sensor Data (SensorKD’09), we pose a general and 
open-ended problem related to the workshop theme Climate Change, Energy Assurance, and 

Infrastructural Impacts. Specifically, we focus on the first component and provide a large 
climate dataset consisting of daily global air temperature and precipitation measurements for a 
50-year period (1950-1999). 

The task is to detect significant changes in this data. Note that “change” in this context may be 
an abrupt change (i.e., an anomaly or outlier), a gradual change (i.e., a shift in distribution), an 
extreme event (i.e. heat wave, severe rainfall, drought) or something different altogether. We 
intentionally omit a precise definition here to invite creative problem definitions and solutions. 

Data 
The data consists of daily global air temperature and precipitation measurements, aggregated 
from heterogeneous sensors, for the period from 1950-1999 (see [1] for details). This data is also 
publicly available for download, for example from [2] or [3] (registration may be required). 
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ABSTRACT
The changes in rainfall and temperature patterns over In-
dia were detected using Mann-Kendall trend test, Bayesian
change point analysis, and a hidden Markov model. A re-
gionalization method was developed to identify homogeneous
regions that experience similar weather states. The region-
alization helped in finding contiguous regions with strong
change signals. The data were investigated at different tem-
poral and spatial resolution to explore the nature of changes.
The study found that all India summer monsoon is stable,
but the winter or the north-east monsoon is gradually in-
tensifying. It also detected an abrupt drop in the winter
and spring temperature over north-central India and a grad-
ual increase in the summer temperature over the peninsular
India. Robustness of the detected changes were evaluated
using recent reanalysis datasets.

Categories and Subject Descriptors
G.3 [Probability and statistics]: Markov processes, prob-
abilistic algorithms; I.5.3 [Pattern recognition]: Clus-
tering—algorithms, similarity measures; J.2 [Physical sci-
ences and engineering]: Earth and atmospheric sciences

General Terms
Algorithms

Keywords
Indian summer monsoon, trend, Bayesian change point anal-
ysis, hidden Markov models, Markov random fields

1. INTRODUCTION
Lenton et al. [15] found that Indian summer monsoon

(ISM) is one of those nine climatic phenomenon whose dis-
ruption due to climate change will have a drastic impact on
the climate over the entire globe. To predict the behavior
of ISM in the scenario of possible climate change requires a
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thorough understanding of the changes it has undergone in
the past. Recently, many studies have attempted to discover
changes in different facets of Indian monsoon and ascribe
causes to those changes [10, 13]. However, no definite con-
clusions have yet been reached because the climate change
signals in ISM are confounded by the large inherent variabil-
ity in the monsoon at intra-seasonal, annual, and decadal
time steps. This study undertook the challenge of finding
changes in the rainfall and temperature over India using
the data provided in the SensorKDD-2009 Challenge. Data
exploration and visualization methods were used to screen
the regions having homogeneous characteristics and strong
change signals. The screened regions were investigated for
changes in the seasonal, monthly, and daily characteristics of
rainfall and temperature using novel change detection meth-
ods.

The remainder of the paper is structured as follows: (i)
the statistical tools used to discover changes are first out-
lined, (ii) the data used in the study are described, (iii)
the methodology used to identify changes and the results
obtained are discussed, and finally (iv) conclusions are pre-
sented.

2. STATISTICAL METHODS USED TO DE-
TECT CHANGES

2.1 Mann-Kendall trend test
The Mann-Kendall trend test (MKT; [11, 17]) is among

the most widely used test for detecting linear trend in hy-
drological time series. The test is based on the order statis-

tics and is therefore less sensitive to the outliers. The test
statistic in the MKT follows a standard normal distribution,
therefore the significance of trends at a desired significance
level can be evaluated by comparing its value with standard
normal variate. Like other trend tests, the MKT assumes
observations to be independent and identically distributed.

2.2 Bayesian change-point analysis
Change point detection algorithms have been indepen-

dently developed in many branches of science and engineer-
ing including ecology [3], hydrology [18], and signal process-
ing [14] to detect abrupt changes in sequential data. The
underlying assumptions in most of these algorithms can be
explained by using product partition model [2] in which se-
quence of observations x1, x2, . . . , xN are assumed to be
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divisible into non overlapping K product partitions as

p(x1, . . . , xN ) = p1(x1, . . . , xρ1)p2(xρ1+1, . . . , xρ2)

· · · pK(xρK−1+1, . . . , xN )

The delineations between the partitions are called change

points [1]. The inference problem is to identify the num-
ber of change points K, location of change points xρk , k =
1, . . . , K − 1, and the parameters of distributions pk, k =
1, . . . , K.

The inference problem can be solved by using either Fre-
quentist approaches [16] that includes recently developed
methods like support vector machine [7] or Bayesian ap-
proaches [1]. This study uses the Bayesian method devel-
oped by Lavielle [14], which employs a penalized contrast

function to detect abrupt changes in the sequential data.
The algorithm assigns uniform prior distribution to the

change point sequences and estimates its posterior distri-
bution using Markov chain Monte Carlo based sampling
method [9]. The contrast function used in the study as-
sumes data to be independent and Normally distributed,
and enables detection of abrupt-changes in the mean, vari-
ance, or both properties of the data. The penalty term
used to identify the number of change points K is adap-
tively estimated by the algorithm. The Matlab implementa-
tion of the algorithm was obtained from the website http:

//www.math.u-psud.fr/lavielle/programs.

2.3 Autoregressive Hidden Markov model
The preceding algorithms to detect linear trend or abrupt

changes assume data to be independent. The independence
assumption can be justified for the monthly, seasonal, or
annual statistics in the rainfall and temperature data. How-
ever, the data at daily time step have strong temporal de-
pendence because a weather state associated with them typ-
ically persists for many days. Hence, detecting changes in
the daily data requires careful modeling of the temporal
structure which in this study is achieved by using autore-

gressive hidden Markov model (ARHMM) [8]. Tripathi and
Govindaraju [22] presents the application of ARHMM for
modeling Indian summer monsoon rainfall in detail. For
completeness, the ARHMM model is briefly described be-
low.

Let the rainfall or temperature at time t be denoted by
xt, t = 1, . . . , N {xt ∈ � and x = [x1, . . . , xN ]T}. In an
ARHMM, the data xt are assumed to depend on - (i) the
state variable zt {Z = [z1, . . . , zN ]T} that denotes state of
the weather, is hidden (not observed) and follows the first
order Markov property, and (ii) the data values at previous
time steps x̆t = [xt−1, . . . , xt−L]T where L is the number
of lags. To attain flexibility in modeling state duration, an
expanded sate HMM with type A topology was used. The
model parameters which are essentially the parameters of
the emission distribution p(xt|zt, x̆t), transition distribution
p(zt|zt−1), and distribution of the initial state p(z1) were
estimated by using the variational Bayes method [4].

2.4 Markov random fields
It is often difficult to detect changes in the data over a sin-

gle station or a grid point due to inherently large variabil-
ity and/or sampling issues, even if significant changes are
present in an extended homogeneous area [10]. It is there-
fore imperative to identify regions that are homogeneous in
terms of data characteristics. In the literature, homogeneous

groups are often delineated using physiographic make-up of
the region. However, this criterion may not always be suf-
ficient to uniquely identify a homogeneous region, and in
such cases it is desirable to let the observed data guide the
delineation process.

In this study, the aim of regionalization is to find group-
ings (or clusters) of grid points such that the durations and
timings of the weather states in grid points within a group
are similar. To achieve this aim, a metric is required that
can quantify the similarity between the grid points based
on the characteristics of the weather states. Spatial conti-
guity of the clusters is also desired in regionalization, which
is traditionally realized by using spatial co-ordinates (lati-
tude/longitude) of the grid points as additional attributes
in defining a similarity metric [20]. However, many stud-
ies on clustering have demonstrated that this approach of
achieving spatial contiguity often leads to poor regionaliza-
tion, particularly if the desired cluster does not form a simple

region with similar spatial coordinates [23]. This study ad-
dress the issues of similarity metric and spatial contiguity
by developing a regionalization algorithm in the Bayesian
framework by using the concepts of HMM and Markov ran-
dom fields.

Let the weather state at grid ‘l’ be given by Zl, l =
1, . . . , M (Zl = {z1, . . . , zN} and Z = {Z1, . . . , ZM}) where
M is the total number of grid points with observed data.
Let C be the number of clusters, and f = [f1, . . . , fM ]T

(fl ∈ {1, . . . , C}) be the cluster labels. The posterior distri-
bution of the cluster labels is obtained by using Bayes’ rule
as

p(f |Z) =
p(Z|f )p(f )

p(Z)
(1)

where p(f ) is the prior probability of the cluster labels and
p(Z|f ) is the likelihood function estimated as

p(Z|f ) =
M∏

l=1

p(Zl|fl) =
M∏

l=1

C∏
c=1

N (Zl|μZc ,ΣZc)
Ilc

. (2)

In Eq. 2, Ilc is an indicator variable taking a value of one if
fl = c, and zero otherwise; and μZc and ΣZc are the mean
and covariance of the weather state in the cluster c. The
probability N (Zl|μZc ,ΣZc) will be large if the durations
and timings of the weather states in grid ‘l’ are similar to
those of the region c, and relatively smaller otherwise, thus
providing the desired similarity metric.

To encode the preference for spatial contiguity in the clus-
ters, the prior probability p(f ) in Eq. 1 is chosen to be
a Markov random field (MRF). An MRF, also known as
a Markov network, is commonly used to model the joint
distribution between spatially dependent variables. Using
Hammersley-Clifford theorem [6], p(f ) is expressed as

p(f ) =
1

Ξ
exp[−

∑
l,m∈N

E(fl, fm)] (3)

where Ξ is a normalizing constant, E is an energy function in
the space of clusters, and N is a neighborhood set for the grid
points illustrated in Fig. 1. The prior distribution encodes
the belief that the grid points in the neighborhood set are
more likely to have same cluster labels - the degree of belief
being controlled by the energy function.

The posterior probability p(f |Z) in Eq. 1 with an MRF
prior cannot be estimated analytically. It can be approxi-
mated using variational Bayes or Markov chain Monte Carlo
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Figure 1: The neighborhood set of the Markov ran-
dom field used in the study. The neighborhood set
for a grid point consists of 8 neighboring grid points.

methods, however, the required computational cost can be
excessive. In this study, for simplicity, the posterior dis-
tribution is approximated by a delta function at its mode
p(f |Z) ∼ δ(f �) by maximizing the logarithm of the poste-
rior distribution

f � = arg max
f

M∑
l=1

C∑
c=1

ln p(Zl|fl, μZc ,ΣZc)−
∑

l,m∈N

E(fl, fm).

(4)
The maximization is performed iteratively by executing the
following two steps. In the first step, for an assumed value of
parameters (μZc and ΣZc), the objective function is max-
imized with respect f using an algorithm based on graph

cuts that guarantees the solution to lie within a constant
factor from the global maximum (see [5] for details on the
graph-cut algorithm). In the second step, for a given f , the
objective function is maximized w.r.t. μZc and ΣZc . To
make the calculations simple, the covariance matrix ΣZc is
assumed to be shared by all the clusters, i.e. ΣZc = εI ,
where I is an identity matrix. In the limit ε → 0 the re-
maining parameter μZc can be obtained by maximizing the
distortion function

J(μZc) = −
1

2

M∑
l=1

C∑
c=1

rlc‖Zl − μZc‖
2 (5)

leading to the following estimation equations

rlc =

{
1 if c = arg minj ‖Zl − μZj‖

2 ,

0 otherwise;
(6)

and

μZc =
1

Mc

M∑
l=1

rlcZl (7)

where Mc =
∑

l rlc represents total number of grid points in
the cluster c. Notice that due to the simplifying assumption
made for the covariance matrix, the second step in the max-
imization of Eq. 4 resembles K-means clustering algorithm
[20]. The energy function in Eq. 3 is selected as

E(fl, fm) =

{
0 if fl = fm, ∀l, m ∈ N,

λ if fl �= fm, ∀l, m ∈ N.
(8)

The value of λ = 0 corresponds to the uniform distribution
in the space of clusters, i.e. no preference for spatial conti-
guity or p(f ) is noninformative. Higher values of λ forces
neighbors to be in the same clusters. After observing results
from many simulations, the values of λ ≈ 0.01 to 0.1 were
found to be suitable for the present study. It was observed
that the choice of prior distribution, p(f ), essentially affects
the cluster assignment of primarily those grids points that
are either on the fringes of a region or are outliers.

650E 700E 750E 800E 850E 900E 950E 1000E
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Figure 2: The circles denote the grid points in the
NCEP/NCAR data over the Indian summer mon-
soon region. The grid points in the north-east or
winter monsoon region are marked by squares.

3. DATA USED IN THE STUDY
Figure 2 shows 101 grid points over India in the NCEP /

NCAR dataset [12]. The units of rainfall were reconverted
form Kg/m2

/s to mm/day. There were no missing values
in the data over the study region. In addition to 50 years
(1950 to 1999) of reanalysis data provided for the challenge,
nine years (2000 to 2008) of recent NCEP/NCAR reanalysis
data were used to test robustness of the detected changes.

4. RESULTS AND DISCUSSION
The changes detected in the rainfall data are first pre-

sented followed by changes detected in the temperature data.

4.1 Changes in rainfall
India receives most of its rainfall from two monsoon sea-

sons - the south-west or the summer monsoon during June to
September in which most parts in the country receive rain-
fall, and the north-east or winter monsoon during November
and December in which rainfall is confined to the eastern
peninsular India (Fig. 2).

4.1.1 Changes in the summer monsoon rainfall
We start by exploring changes in the spatially averaged

rainfall over the monsoon region. Figure 3 illustrates all In-
dia summer monsoon rainfall over the analysis period (1950-
1999) along with a linear trend line. The MKT statistic for
the time series is -1.10 which is not significant even at 5%
level. The Bayesian change point analysis also could not
find any significant abrupt change in the time series, imply-
ing that the summer monsoon is stable.

Next, changes were explored in the spatially distributed
rainfall over the monsoon period. Figure 4 shows the MKT
statistics for the median rainfall during June to Septem-
ber (JJAS). The results indicate that there is a decreasing
trend over the Himalayas in the north, Western Ghats in
the south, and hilly regions in the north-east. Apparently
all the significant changes appear in the mountainous re-
gions. However, we did not investigate changes over these
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Figure 3: Spatially average summer monsoon rain-
fall over India along with linear trend line. The time
series exhibits neither significant linear trend nor
significant abrupt changes.

regions in detail because firstly, NCEP/NCAR analysis has
some known issues in resolving rainfall over the high altitude
regions [12], secondly, the rain gage density over these hilly
regions is very low [19] to lend credibility to the reanalysis
results, and finally, the changes appear over the isolated grid
points instead of large contiguous regions.

The summer monsoon is most vigorous over the Indian
sub-continent during July and August (JA), so we investi-
gated rainfall during these two months in detail. Figure 5
shows the MKT statistics for the rainfall in JA, where apart
from the hilly regions, the north-west plains (west of the
river Ganges) appears to have an increasing trend in the
median rainfall. Both gradual and abrupt changes were ex-
plored in various other rainfall statistics of these two months,
and the most interesting result was obtained for the 90th per-
centile (abbreviated as 90%tile in the paper) rainfall. The
MKT statistic for the 90%tile July rainfall (Fig. 6) shows
that the magnitude of extreme rainfall has increased over
the north-west plains.

The results thus far indicate a weak signal of increasing
JA rainfall over the north-west plains - the increase is more
conspicuous for the extreme rainfall events. To gain more in-
sight into the nature of these changes, the daily rainfall data
were investigated, but before that it was deemed essential
to delineate homogeneous regions having similar timings and
durations of weather states. The regions were delineated us-
ing the regionalization algorithm discussed in section 2.4.

Figure 7 presents the homogeneous regions identified in
the JA rainfall by the algorithm. The grid points in the
north-west plains that have positive trends belong to region
3. The median rainfall time series in region 3 along with
the probability of an abrupt change is shown in Fig. 8(a).
The Bayesian change point algorithm suggested that around
1975 there was regime change in the monsoon characteristic
of the region. The mean of the median rainfall after 1975
(2.14mm) is roughly twice the corresponding value before
1975 (1.18mm). The standard deviation has also increased
from 0.78mm before 1975 to 1.30mm after 1975.

To ascertain the nature of increase, an ARHMM with four
weather states was fitted to the daily average rainfall data
in region 3. The results from the analysis indicate that the
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Figure 4: Mann-Kendall statistics for testing linear
trend in the median rainfall during June to Septem-
ber over India. The trends are significant at 1% level
for the grid points with absolute value of test statis-
tics greater than 2.3. The positive values of test
statistics indicate increasing trend and vice versa.
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Figure 5: Mann-Kendall statistics for testing linear
trend in the median rainfall during (a) July and (b)
August. The color coding is same as in Fig. 4.
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Figure 6: Mann-Kendall statistics for testing linear
trend in the 90%tile of July rainfall. The color cod-
ing is same as in Fig. 4.
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Figure 7: Eight regions identified by the regionaliza-
tion algorithm using July and August rainfall. The
value of λ in Eq. 8 was set to 0.08
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Figure 8: Probability of abrupt changes in the me-
dian rainfall and number of days in active state dur-
ing July and August over region 3 (Fig. 7). The
algorithm detected change point around 1975.

number of days in the active state (i.e. the weather state
associated with heavy rainfall events) has increased in post
1975 climate. Before 1975 there used to be on average 7.50
days of active spell whereas, after 1975, this value has gone
up to 13 days.

4.1.2 Changes in the winter monsoon rainfall
Figure 9 shows the spatially averaged rainfall time series

over the north-east monsoon region along with linear trend
line. The MKT statistic for the time series is 3.46 which
implies a significant positive trend at 1% level. Figure 10
presents spatial distribution of the MKT statistics in the
median rainfall during November and December, and it also
suggests a positive trend in the rainfall over the winter mon-
soon region, the trend being more significant in November
than in December, and more prominent in the 90%tile rain-
fall (Fig. 11) than in the median rainfall (Fig. 10).

To investigate the characteristics of the changes, an ARHMM
with four weather weather state was fitted to the average
daily rainfall over the winter monsoon region. The results
suggest that the number of days in the active state has in-
creased (Fig. 12(a)), but unlike the abrupt change observed
in region 3 of the summer monsoon, the increase is gradual
(MKT statistic = 3.55). In addition to the number of days in
active state, the magnitude of the extreme rainfall has also
increased (MKT statistic = 3.51) as shown in Fig. 12(b).

4.2 Changes in temperature
Figure 13 shows linear trend in the temperature during

four typical seasons in the northern hemisphere, namely -
DJF, MAM, JJA, and SON. The most conspicuous features
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Figure 9: Spatially average winter monsoon rainfall
along with linear trend line. The time series exhibits
linear trend significant at 1% level.

in the figure are - negative trend over the north and central
India during DJF, negative trend in the Gangetic plains dur-
ing MAM and positive trend over the peninsular India dur-
ing JJA. To investigate the characteristics of these changes,
the temperature homogeneous regions delineated by India
meteorology department and shown in Fig. 14 were used.

Figure 15 shows the 90%tile temperature time series in the
north-central (NC) region during the winter months (DJF).
The Bayesian change point analysis detected an abrupt change
in the time series in late 1960s. The magnitude of the
90%tile temperature in the winter months has dropped by
about 1.4◦C (from 21.57◦C to 20.18◦C) after 1960s. No sig-
nificant changes were detected in other characteristics of the
temperature over the NC region during the winter months.

The analysis of MAM months over the NC region indi-
cate a sudden change in the temperature during 1960s. The
change was detected in the 90%tile, median, and 5%tile tem-
perature time series. For brevity, only the 5%tile tempera-
ture time series and the probability of change in it are shown
in Fig. 16. Similar changes (sudden drop) around the same
period (1960s) in both DJF and MAM months suggest that
there can be a common cause for these changes. It is inter-
esting to note that in 1960s the NC region underwent green

revolution in which large tracts of land were brought under
irrigation.

In the peninsular India, the median and the 5%tile tem-
perature time series show significant linear trend (1% sig-
nificance level; MKT statistics being 5.85 and 5.90, respec-
tively) while 90%tile time series shows no significant changes
(Fig. 17). This result suggests that the magnitude of ex-
treme temperature has not increased during the summer
monsoon, but the the average temperature has gone up by
about 1◦C. A possible reason for this increase could be the
proximity of the region to the Indian Ocean where the sea
surface temperature has increased by about the same mag-
nitude in the monsoon months over the last 50 years [10].

4.3 Robustness of the detected changes
To test robustness of the detected changes, nine years

(2000 to 2008) of additional NCEP/NCAR reanalysis data
were used. It should be emphasized that nine years of data
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Figure 10: Mann-Kendall statistics for testing linear
trend in the median rainfall during (a) November-
December, (b) November, and (c)December. The
color coding is same as in Fig. 4.
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Figure 11: Mann-Kendall statistics for testing linear
trend in the 90%tile of November rainfall. The color
coding is same as in Fig. 4.
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Figure 12: Linear trend in (a) the number of
days in active state and (b) 90%tile rainfall dur-
ing November-December over the winter monsoon
region. The trends are significant at 1% level.
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Figure 13: Mann-Kendall statistics for testing lin-
ear trend in the median temperature during four
seasons. The color coding is same as in Fig. 4.
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Figure 14: Homogeneous temperature regions iden-
tified by India meteorological department, obtained
from the website http://www.tropmet.res.in. The
regions are named as: WH - Western Himalayas,
NW- North-west, NC- North-central, NE- North-
east, WC- West coast, EC- East coast, and IP- In-
terior Peninsula.
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Figure 15: Probability of abrupt changes in the
90%tile temperature over NC region during winter
months (DJF). The algorithm detected change point
in 1960s.
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Figure 16: Probability of abrupt changes in the
5%tile temperature over NC region during MAM
months. The algorithm detected change point in
1960s.
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Figure 17: Linear trend in the median, 5%tile, and
90%tile temperature over a region constituting Inte-
rior peninsula, and East and West coasts (Fig. 14).
The solid line denotes median temperature, solid
lines with square and plus symbols denote 95%tile
and 5%tile temperature respectively, and dashed
line represents linear trend. The trend is significant
for median and 5%tile temperature at 1% level. The
trends detected in the analysis period (1950 to 1999)
were tested for their robustness in the test period
(2000 to 2008).

are not sufficient to test the robustness because presence of
a few extreme years in the test data can significantly alter
the test results. Nevertheless, the the steps described in the
previous section were re-executed with the additional data
and the results obtained are summarized below:

(1) Including test data in the analysis did not alter the proba-
bility of the abrupt change detected in the JA rainfall over
north-west India during 1970s. The JA rainfall statis-
tics over the region in post 1975 climate also remained
same (mean of the median rainfall changed from 2.14 to
2.10mm, and number of active days changed from 13.0 to
13.4 days).

(2) The magnitude of gradually increasing trend detected in
the winter monsoon (Fig. 9) was reduced by adding the
test data (the MKT statistics dropped from 3.46 to 2.32)
probably because of two extremely weak winter monsoon
years (2002 and 2003).

(3) The abrupt changes detected in the temperature over
north-central India during DJF and MAM months re-
mained same in the test analysis, while the increasing
trend in the JJA temperature over the peninsular India
became more prominent (Fig. 17). The MKT statistics
for the median and the 5%tile temperature time series in-
creased from 5.85 and 5.90 to 6.83 and 6.98, respectively.

5. CONCLUDING REMARKS
In this study, Mann-Kendall trend test, Bayesian change

point analysis, and a hidden Markov model were used to find
changes in the rainfall and temperature patterns over India.
A regionalization algorithm was developed to identify ho-
mogeneous regions experiencing similar weather states. The
rainfall and temperature data were investigated at different
spatial and temporal resolutions to identify the nature of
changes. The main conclusions of the study are:
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(1) All India summer monsoon rainfall is stable over the 50
years of analysis period. There is a weak signal that the
number of active days (days with heavy rainfall events)
has increased over the north-west plains after 1970s. This
sudden change in the number of active days transpired
around the same time when the climate over Pacific Ocean
underwent a regime change [21] which is speculated to
have an impact on the Indian summer monsoon.

(2) The winter or the north-east monsoon is gradually in-
creasing due to significant increase in the frequency and
magnitude of heavy rainfall events.

(3) The winter (DJF) and the spring (MAM) temperature
over north-central India has encountered a sudden drop in
mid 1960s which can be attributed to the green revolution
in the area.

(4) The temperature over the Peninsular India has signifi-
cantly increased during the monsoon months (JJA). This
gradual increase may be linked to the increase in sea sur-
face temperature in the Indian Ocean.
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ABSTRACT
Knowledge discovery from temporal, spatial and spatio
-temporal data is pivotal for understanding and predicting
the behavior of Earth’s ecosystem model. An important in-
fluence leaving its impact on the ecosystem is the global cli-
mate system. In this paper, the Earth Science data that we
have analyzed consists of daily global air temperature and
precipitation measurements, aggregated from heterogeneous
sensors for fifty years (1950-1999). The enormous amount
of data that is available for analysis requires employment of
data mining techniques for discovering interesting patterns,
detecting significant changes and extracting meaningful in-
sights from the data. Our work considers the problem of
detecting anomalous (abnormal or unexpected) behavior in
the global climate system, discovering teleconnection pat-
terns and providing consequential insights to the analysts.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Management]: Database applications-
Data Mining

Keywords
global climate system, data mining, distance-based outlier
detection, spatio-temporal analysis, climate phenomena, tele-
connections

1. INTRODUCTION
Climate change is an emerging potential global stress on

all of the Earth’s ecosystems. For the past few billion years,
the Earth’s climate and the biosphere have been in constant
flux, with events ranging from ice ages to long periods of
warmth. Changes in climate either occur rapidly such as ice-
sheet disintegration in the poles or gradually over a long pe-
riod of time. Again, variation in climate occurs locally such
as variation in humidity due to effects of irrigation as well
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as globally. A widely researched and debated climate phe-
nomenon is global warming, which is the increase in Earth’s
average global temperature. Natural factors such as vol-
canic eruptions, changes in the Earth’s rotation and orbit,
amount of energy released from the Sun as well as human ac-
tivities post Industrial Revolution, population growth, eco-
nomic and technological development, anthropogenic green-
house gases have affected the Earth’s climate. In 2004, the
Ecosystems Interagency Working Group (EIWG) of the U.S.
Climate Change Science Program (CCSP) organized a work-
shop to identify and address the consequences of global cli-
mate changes for ecological systems. The global nature of
environmental problems requires assistance from different
disciplines such as statistics, mathematics and computer sci-
ence for capturing and modeling significant changes in the
structure and function of Earth’s ecosystem.

Climate related observations from satellite sensors, air-
borne cameras and weather radars accrue terabytes of tem-
poral, spatial and spatio-temporal data. The need to effi-
ciently handle and effectively analyze such humongous amount
of data encourages the application of data mining techniques
in this domain of research. The challenges associated with
analyzing these datasets are: (i) computational complexity
due to the availability of astronomical amount of data, (ii)
algorithmic complexity due to spatial dependency since par-
allelization of this work is difficult, and (iii) complexity due
to non-linear correlations between processes. Data mining
techniques and algorithms are equipped to maneuver such
datasets and develop anticipatory insights about extreme
weather condition changes (heat-wave, severe rainfall and
drought), assess climate shifts, conceive teleconnection pat-
terns and develop seasonal-to-interannual climate forecasts,
while fostering the application of such analyses to the ben-
efit of society. For example, Support Vector Machine and
Artificial Neural Network can help classification and predic-
tion of climate behavior; again identifying regions with sim-
ilar climate trends can be achieved by K-Means and Princi-
pal Component Analysis. Another track of analyzing such
datasets is detecting outliers and other anomalies. In the
context of climate research, outliers may arise either due to
erroneous measurements or due to some exceptional event
taking place.

Our work deals with detecting spatial, temporal and spatio-
temporal anomalies in the global climate system. A spa-
tial outlier is a geographically referenced area whose climate
measurements are significantly different from those of other
objects in its spatial neighborhood whereas temporal out-
liers are those time periods which experience abrupt changes
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in the historical similarity trends. A spatio-temporal outlier
is one whose climate behavior is significantly different from
those of other spatially and temporally referenced objects
in its neighborhood. We have used data mining techniques
and algorithms for this purpose. The data pre-processing
step reduces the dimensionality of the dataset and the out-
lier detection algorithm works on the reduced feature space
to identify outliers.

This paper addresses the following questions about the
global climate dataset provided to us, as part of the chal-
lenge:

• What are the durations between 1950 and 1999 that
have experienced anomalous behavior?

• What are the geographical locations on Earth which
have savored irregularity in climate?

• What are some of the spatio-temporal outliers in the
global climate dataset?

• Are the anomalies due to irregular temperature mea-
surements and/or precipitation measurements?

• Do the detected time periods match the timings of
some of the significant climate phenomena recorded in
history? If yes, what are the events?

• Do the detected locations experience such aberrations
due to some of these climate phenomena? In other
words, is there a relationship between the outliers rec-
ognized in temporal analysis with those ascertained in
spatial analysis?

• Does anomaly detection automate the discovery of tele-
connection patterns?

The rest of the paper is organized as follows: we begin in
Section 2 with the problem definition; Section 3 talks about
the issues related to preprocessing the data including a brief
description of the raw data format; Section 4 addresses some
of the related work and the outlier detection method that
we think are suited for the analysis of the dataset in hand;
Section 5 and 6 are concerned with the experimental results
and the analysis of the results; Section 7 discusses the results
of our spatio-temporal analysis and finally, we conclude the
paper in Section 9.

2. PROBLEM STATEMENT
Our focus in this work is to identify significant changes

in the global climate dataset, consisting of both tempera-
ture and precipitation measurements. The original call does
not mention any precise definition of the ‘change’. It may
be an unexpected change such as an anomaly, a gradual
change or may be an extreme event like drought and flood.
The changes can either be tracked across days (1950-1999 )
against which measurements have been collected or across
different locations (latitude, longitude) on Earth or across
both space and time. In this paper, we have detected spa-
tial, temporal and spatio-temporal anomalies and endorsed
how the results from the individual analysis are coordinated
with each other. The results also manage to provide an
improved understanding of potential links between climate
events that occur relatively large distance apart. Our prob-
lem statement is as follows:

Given the daily temperature and precipitation levels of all

locations on the Earth, find those days and those locations in

which temperature and precipitation is different compared

to other days and locations. This is our notion of ‘signif-

icant change’ in the context of global climate data. Once

the time periods and zones of aberration have been detected,

match them to the available records of climate phenomena

as well as to each other. Analyze the results for identifying

teleconnections linking worldwide climate anomalies too.

The following section provides a brief description of the
dataset and how it has been preprocessed for our need.

3. DATA PREPARATION
For this challenge, we have used the daily global tempera-

ture and precipitation data, aggregated from heterogeneous
sensors for 50 years (1950-1999) [9]. Each sensor corresponds
to a physical location (latitude, longitude) on the Earth’s
surface. The data is downloadable in csv format from the
Oak Ridge National Laboratory website [2].

3.1 Raw data format
The temperature and precipitation values have been pro-

vided in separate files with each entry as:

latitude, longitude, temp day1, . . . , temp dayN

Temperature records are in Degrees Celsius (◦C) and precip-
itation records are in millimeters per day (mm/day). The
raw data has 18048 rows (observations) and 18264 columns
(days). The 18048 rows stand for locations on the Earth:
94 latitudes ranging from 90◦N (88.5420◦N) to -90◦N (-
88.5420◦N) and 192 longitudes per latitude between 0◦E and
360◦E (358.1250◦E); the columns stand for days from 1950
to 1999. It may be observed that each row is an independent
observation of time series having 18262 data points. Figure
1 shows the plot of the temperature and precipitation for
the first location (latitude 88.5420◦ , longitude 0.0◦) in the
datasets for all days (1950-1999).

3.2 Data Pre-processing
The question that we want to answer in the very first

place is which years and which locations on Earth have ex-
perienced most anomaly. The downloaded data has thus
been preprocessed accordingly, before using any data min-
ing technique on them.

The challenge dataset is characterized by huge dimension-
ality and hence beseeches the employment of feature selec-
tion or feature compression techniques for data reduction.
We have identified two relevant features, temperature and
precipitation, each of which is a linear combination of the
data points available in the respective datasets.

For detecting the outliers over time, we have first reduced
the number of columns of each from 18264 to 18262 by re-
moving the first two column entries (which have latitude
and longitude information) and then transposed each of the
original data to obtain a 18262 × 18048 matrix. Each of the
final matrix looks as follows:

location1 location2 location3

day1

day2

where each location stands for <latitude, longitude>. The
dimensionality of each of this data matrix has now been re-
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Figure 1: Variation of temperature (left) and precipitation (right) for all days for the first location(latitude
88.5420◦N, longitude 0.0◦E). The graphs show periodic behavior for both the variables.

duced from 18048 to 1 by computing the L2-Norm of tem-
perature and precipitation measures for each day. The final
pre-processed matrix is 18264 × 2 where the two column
entries stand for the L2-Norm values of temperature and
precipitation across all locations for each day respectively.

For detecting the outliers over space, we have again re-
duced the number of columns of each from 18264 to 18262
by removing the first two column entries. The matrix is
18048 × 18262 in this case and looks as follows:

day1 day2 day3

location1

location2

where each location stands for <latitude, longitude>. The
dimensionality of each of this data matrix has now been re-
duced from 18262 to 1 by computing the L2-Norm of tem-
perature and precipitation values for each location. The
final pre-processed matrix is 18048 × 2 where the two col-
umn entries stand for the L2-Norm values of temperature
and precipitation values over all days for each location re-
spectively.

For detecting outliers that exist when both spatial and
temporal neighborhood are taken into consideration, we have
selected the sub portion of interest from each of the original
data matrix such that consecutive locations constituting the
local spatial neighborhood are along rows and the temporal
neighborhood is along column. Each of this matrix has then
been converted to a n×m spatial grid which is as follows:

longitude1 longitude2 longitude3

latitude1

latitude2

latitude3

where the (i,j)th cell bears the temperature or precipita-
tion measurement at a specific latitude and longitude on
Earth.

All the steps of data pre-processing have been conducted
in a Linux workstation with Matlab 2009a installation.

4. RELATED WORK
There has been enormous interest in mining spatial, tem-

poral and spatio-temporal patterns of late since the world
is changing at a constantly increasing pace. In 2001, Tan et

al.[18] has discussed some of the challenges associated with
preprocessing and analyzing Earth Science data as well as
some of the patterns of interest namely, associations, trends,
clusters and predictive models. Lin et al. [12] has used

a high dimensional clustering method and a method that
mines episode association rules in event sequences for dis-
covering patterns such as teleconnections between the ab-
normally low temperature events of the North Atlantic and
floods in Northern Bolivia. To analyze the effect of the
oceans and atmosphere on land climate, Earth Scientists
have developed climate indices that summarize the behav-
ior of selected regions of Earth’s oceans and atmosphere
over time. In the past, researchers have used observations
and eigenvalue analysis techniques, such as principal com-
ponents analysis (PCA) and singular value decomposition
(SVD) for discovering climate indices. Steinbach et al.[17]
has proposed an alternative shared nearest neighbor (SNN)
clustering-based methodology for determining climate in-
dices such that centroids of the clusters summarize the be-
havior of the ocean or atmosphere in those regions. Ku-
mar[11] has addressed the computational challenges in un-
derstanding patterns in global climate system from the con-
text of high-performance data mining.

In 2008, Auroop R Ganguly and Karsten Steinhaeuser
compared the problem of climate data mining with spa-
tiotemporal data mining (SSTDM) in [5], formulating new
challenges such as long-range and nonlinear dependence, non-
linear dynamic behavior, presence of thresholds, importance
of extreme events caused by global climate changes, uncer-
tainty quantification, etc. They presented a case study too
to demonstrate how simple data mining applications are ca-
pable of bringing to light novel insights in climate science.
Our work is a direct corroboration of this fact. The follow-
ing subsection explains the data mining techniques that we
have used for this work.

4.1 Distance-based Outlier Detection
Since the original dataset is not labeled, we have decided

to use an unsupervised anomaly detection method. Unsu-
pervised techniques can determine outliers based on non-
parametric measures such as distance and density. Since
outliers are events with very low probabilities, it is extremely
difficult to compute the exact probability. Therefore, most
of these techniques are heuristics and are based on the gen-
eral concept of nearest neighbors. Knorr et al. [10] and
later Ramaswamy et al. [14] proposed several definitions of
distance based outlier detection techniques. As an example,
consider the k nearest neighbor based anomaly detection
technique. For every data point, the algorithm first finds
the average distance to its k nearest neighbors. The ‘outlier-
ness’ of a point is then proportional to this average distance.
Higher the distance, more anomalous is the point. There are
several other definitions of distance-based outlier detection
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techniques such as the distance to its k-th nearest neighbor,
distance to its nearest neighbor and more. In this work, we
have used Orca, a near-linear time distance-based outlier
detection algorithm developed by Bay and Schwabacher [3].

Orca is written in C++ and compiled with MinGW32
(Windows). All our simulations have been conducted on
Windows platform. The default values for the distance com-
putation have been chosen as the average distance to five
nearest neighbors.

4.2 Neighborhood-based Outlier Detection
The traditional data mining algorithms are not often ap-

plicable for mining spatial datasets since spatial objects are
affected by spatial processes in the neighborhood. The cli-
mate behavior at a particular location is indeed influenced
by the climate conditions in its vicinity. Adam et al.[1] has
addressed the identification of spatio-temporal outliers and
trends in terms of the spatial and semantic relationships
among objects by considering the underlying spatial pro-
cesses as well as the features of these spatial objects. This
notion of spatial dependency along with the consideration of
a local temporal neighborhood helps us to identify spatio-
temporal outliers.

In this approach, we have computed a similarity score for
each unit in a n×m spatial grid by considering its r-point
neighborhood. If the score of a unit is significantly differ-
ent from the other scores in the grid, it is exhibiting spa-
tially anomalous behavior. We have computed the scores
of each of the unit in the spatial grid for a couple of con-
secutive timestamps. If a spatially anomalous unit is found
to deviate from the historical trends, it is deemed to be a
spatio-temporal outlier. Such spatio-temporal outliers en-
coding the sensor context information are often referred to
as ‘Conditional Anomalies’[16]. The cost of computing the
score for all units in the spatial grid is linear, if a r-point
neighborhood is considered, where r is much less than n×m

All steps of this neighborhood-based approach has been
implemented in a Linux workstation with Matlab 2009a in-
stallation.

5. EXPERIMENTAL RESULTS
The results of our experiment on the global climate data

using the method described in the preceding section have
been illustrated here. The analysis of the results have been
carried out in the next section.

5.1 Outliers over time
Table 1 depicts the top 20 Global Outlier Scores and the

days associated with each of the scores. In other words, the
table lists the top 20 days within 1950 and 1999 over all loca-
tions on Earth which have experienced most anomalous be-
havior, either due to irregular temperature or precipitation
or both. Higher the Global Outlier Score, more anomalous
the day is. In the table, the Temperature(Temp) and Pre-
cipitation(Prec) columns indicate each of their contributions
towards the Global Outlier Score. Orca took 0.4 seconds to
build the model.

Figure 2 shows the plot of the global outlier score and
Figure 3 shows the plot of the temperature and precipitation
outlier scores over all days (1950-1999).

5.2 Outliers over space

Table 1: Outlier detection results over time
Rank Day GlobalScore Temp Prec

1 17115 (Nov,1996) 23562 11 89
2 17118 (Nov,1996) 20732 36 64
3 17122 (Nov,1996) 13470 8 92
4 17114 (Nov,1996) 11843 7 93
5 17113 (Nov,1996) 11311 19 81
6 17235 (April,1997) 10407 24 76
7 941 (July,1952) 7618 54 46
8 17237 (March,1997) 5967 50 50
9 10802 (July,1980) 5844 77 23
10 17123 (Nov,1996) 5402 7 93
11 17488 (Nov,1997) 4882 45 55
12 12112 (March,1984) 4637 51 49
13 10801 (July,1980) 4504 76 24
14 17233 (April,1997) 4160 42 58
15 3631 (Dec,1959) 3673 29 71
16 17236 (April,1997) 3553 19 81
17 11668 (Dec,1982) 3186 79 21
18 12111 (March,1984) 3160 41 59
19 17125 (Nov,1996) 3135 44 56
20 2882 (Nov,1957) 3101 14 86

Table 2 depicts the top 20 Global Outlier Scores and the
location Earth associated with each of the scores. In other
words, the table lists the top 20 locations on the Earth be-
tween 90◦N and 90◦S,0◦E and 360◦E over all days (1950-
1999) which have experienced most anomalous behavior, ei-
ther due to irregular temperature or precipitation or both.
Higher the Global Outlier Score, more anomalous the lo-
cation is. In the table, the Temperature(Temp) and Pre-
cipitation(Prec) columns indicate each of their contribution
towards the Global Outlier Score. Orca took 0.4 seconds to
build the model.

Table 2: Outlier detection results over space

Rank Location GlobalScore Temp Prec

1 8600 (4◦N,103◦W) 3122990 29 71
2 2477 (6◦N,142◦W) 1936570 44 56
3 2668 (63◦N,140◦W) 1361460 15 85
4 8601 (4◦N,113◦W) 975072 55 45
5 8408 (6◦N,103◦W) 975072 15 85
6 2476 (65◦N,140◦W) 782831 15 85
7 8409 (6◦N,105◦W) 636560 60 40
8 8792 (2◦N,103◦W) 589208 64 36
9 16707 (77◦S,3◦E) 462306 18 82
10 8217 (8◦N,105◦W) 370309 13 87
11 2478 (65◦N,144◦W) 364466 46 54
12 16708 (77◦S,5◦E) 302682 21 79
13 8213 (8◦N,97◦W) 296638 57 43
14 16355 (73◦S,63◦E) 292548 33 67
15 11295 (21◦S,116◦W) 276308 27 73
16 2860 (61◦N,140◦w) 269883 31 69
17 7830 (12◦N,99◦W) 265246 40 60
18 8214 (8◦N,99◦W) 256445 39 61
19 2669 (63◦N,142◦W) 244847 12 88
20 7829 (12◦N,97◦W) 241949 54 46

Figure 2 shows the plot of the global outlier score and
Figure 4 shows the plot of the temperature and precipitation
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Figure 2: Variation of global outlier score for all days (left) and for all locations on Earth(right).
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Figure 3: Variation of temperature outlier score (left) and precipitation outlier score (right) for all days. The
graphs show quite a few anomalous behavior for both the variables.

outlier scores and over all locations (90◦N to -90◦N, 0◦E to
360◦E).

6. ANALYSIS OF RESULTS
The outliers detected by performing experiments on the

global climate data have been analyzed in this section for a
relevant interpretation.

6.1 Temporal Analysis
Based on the top 200 outlier scores over time, we infer

that significant anomalous behavior has been experienced
in the following time periods (ranked in order of the global
outlier score):

1. 1996-1998: Anomalous behavior started creeping in
during November, 1996 and it continued till July, 1998.
The top outliers in the entire dataset (1950-1959) are
from this period. During the first half of this anoma-
lous behavior, there was abnormal increase in both
temperature and precipitation measurements across dif-
ferent locations; finally, towards the end in 1998, heavy
precipitation was recorded as well.

2. 1950-1952: This period was marked by fluctuating tem-
perature measurements; however both temperature and
precipitation contributed to it being marked as an out-
lier.

3. 1980-1984: During the July of 1980, there was a sud-
den increase in the temperature which was followed
by both irregular temperature and precipitation till
March 1984.

1955-1957, 1965-1967 and 1971-1973 are also detected as
intervals of significant anomalous climate behavior.

Our results are reasonably aligned with the anomalies
cached in the historical records of global climate data. We

have identified outliers due to two major climate phenomena
: the Pacific ocean signatures El Niño and La Niña, which
are nothing but ocean-atmosphere phenomena marked by
temperature fluctuations in water surfaces of the tropical
Eastern Pacific Ocean. La Niña is characterized by un-
usually cold ocean temperatures in the Equatorial Pacific,
whereas El Niño (commonly referred to as El Niño-Southern
Oscillation or ENSO) is characterized by unusually warm
ocean temperatures over the Pacific Ocean Equator. Ac-
cording to the consensus list of El Niño and La Niña [7],
the years 1997 and 1998 were characterized by a cyclical se-
quence of El Niño and La Niña of very strong type. Again,
[15] and [8] confirms that 1957, 1965, 1966, 1967, 1972, 1982
and 1983 are El Niño years whereas 1950, 1955, 1973 are
spans of strong La Niña.

6.2 Spatial Analysis
Based on the top 200 outlier scores over space, the follow-

ing regions have been found to experience notable anomalous
behavior either due to irregular temperature or precipitation
or both (ranked in order of the global outlier score):

1. 12◦N to 12◦S, 80◦W to 140◦W: Area enclosed in this
zone mainly includes equatorial South Pacific Ocean,
parts of Ecuador, Colombia and Peru.

2. 60◦N to 65◦N, 110◦W and 160◦W: Area enclosed here
includes parts of Alaska and Canada.

3. 73◦S to 77◦S : This zone encloses parts of Antarctica.

Parts of Chile, Bolivia, north-western coast of United States,
Kenya, Bangladesh and Indonesia are also detected as loca-
tions experiencing anomalous climate.

Figure 5 shows the plot of the locations (based on top
400 outlier scores) on the world map which have been clas-
sified as an outlier due to irregular temperature (top) and
precipitation (bottom).
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Figure 4: Variation of temperature outlier score (left) and precipitation outlier score (right) for all locations
on the Earth’s surface. The graphs show quite a few anomalous behavior for both the variables.

Figure 5: Distribution of anomalous temperature (top) and precipitation (bottom) areas on Earth’s surface

These set of results go hand-in-hand with the areas af-
fected by the impact of El Niño and La Niña and accounts
for some of the calamities recorded in history such as drought
and floods, due to these Southern Oscillations. In the figure
5, the most prominent zone is the area bounded by 12◦N
to 10◦S, 80◦W to 140◦W. This is a part of the South Pa-
cific Ocean, which is the cradle of El Niño-Southern Oscil-
lation (ENSO). The effects of El Niño in South America are
much more direct and strong than in North America. Ac-

cording to [6], the western coast of South America includ-
ing Peru, Ecuador, Chile, northern Argentina and Southern
Brazil experience unusual rainfall and flooding conditions.
In North America and Alaska, winters are warmer than
usual, whereas California, northwest Mexico and southwest
US receive excessive rainfall. The winter season of 1997-1998
has been one of the wettest on record across California. Di-
rect effects of El Niño result in drier conditions in parts of
Southeast Asia and droughts in Northern Australia, which
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receive little or absolutely no precipitation. Kenya, Tanza-
nia and the White Nile Basin as well as parts of Bangladesh
experience wetter than normal conditions. Figure 5 reflects
most of the above-mentioned irregular behaviors that take
place due to the fickle moods of the El Niño-Southern Os-
cillation.

6.3 Teleconnections
Teleconnection patterns refer to the relationship between

climatic anomalies that occur in widely separated regions
on Earth. As is evident from the previous two sections,
the El Niño and La Niña variability in the Pacific region
affects the climate behavior of different locations on Earth
and hence some interesting teleconnections are associated
with these ENSO events. For example, drought in Northern
Australia and floods in East Africa are due to the Southern
Oscillations. Figure 5 essentially reveals some of the tele-
connection patterns on Earth. One of the most interesting
teleconnection pattern in the figure is how the anomalies of
sea surface temperature in the equatorial and tropical zones
has resulted in anomalies in the polar Antarctic Peninsula.
Thus, anomaly or outlier detection from the global climate
system automates the discovery of interesting teleconnection
patterns.

7. SPATIO-TEMPORAL ANOMALIES
In this section, we have presented our results and analyses

of contextual or spatio-temporal anomalies. Figure 6 shows
the plot of the winter (January) temperature in California,
USA for four consecutive years - 1950, 1951, 1952, 1953.
The plot fails to distinguish normal climate behavior from
anomalous behavior, if any. If, the distance-based outlier de-
tection method is used to compute the global outlier score
for each location, it is also not much able to capture spatio-
temporal abberations, as is evident from Figure 7(top). Fig-
ure 7(bottom) shows the plot of the similarity scores of win-
ter temperature (January) in California, USA for the four
consecutive years and it clearly highlights the contextual
outliers. Four of the spatio-temporal outliers marked in Fig-
ure 7(bottom) have occured in a year witnessing an ENSO
event.
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Figure 6: Variation of winter (January) temperature
in California, USA for 1950(magenta), 1951(green),
1952(red) and 1953(blue).

Thus, the spatial and temporal neighborhood-based ap-
proach helps us to monitor the anomalies that are hard to
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Figure 7: Variation of distance-based outlier score
(top) and neighborhood-based similarity score (bot-
tom) of winter(January) temperature in California,
USA for 1950(magenta), 1951(green), 1952(red) and
1953(blue).

detect in the global picture. The case study in the follow-
ing subsection highlights how our approach of neighborhood-
based outlier detection is suited for handling spatio-temporal
outliers over the traditional distance-based outlier detection
approach.

7.1 Ohio: A Case Study
We have analyzed the temperature of Ohio in recent con-

secutive years using the approach proposed in Section 4.2
to accentuate its merit. The data for the analysis has been
downloaded from [4]. Figure 8 shows the plot of the tem-
perature in the month of January in Ohio, USA for three
consecutive years - 2004, 2005 and 2006. This plot, like Fig-
ure 6 cannot classify normal and anomalous climate behav-
ior. The only piece of useful information that one can infer
from Figure 8 is that the average temperature for the month
of January has significantly increased from 2004 (green) to
2006 (blue). Figure 9(top) shows the plot of the distance-
based outlier detection scores and Figure 9(bottom) shows
the plot of the neighborhood-based similarity scores of av-
erage January temperature in Ohio, USA for the three con-
secutive years. According to the distance-based outlier de-
tection approach which presents a global view, the loca-
tions 38.25◦N, 80.25◦W and 42.75◦N, 80.75◦W are expe-
riencing anomalous behavior. However, on closer analysis
using the neighborhood-based approach which presents a
local view, we find that they are spatial anomalies and not
spatio-temporal ones since the trend in climate at those loca-
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tions are consistent over all three years. The spatio-temporal
anomaly in Ohio is at location 41.25◦N, 81.75◦W in the year
2004. Newspaper reports [13] indicates that this location,
close to Lake Erie did experience ’bone-chilling’ tempera-
ture in January, 2004.
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Figure 8: Variation of average January tempera-
ture in Ohio, USA for 2004(green), 2005(red) and
2006(blue).
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Figure 9: Variation of distance-based outlier score
(top) and neighborhood-based similarity score (bot-
tom) of average January temperature in Ohio, USA
for 2004(green), 2005(red) and 2006(blue).
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9. CONCLUSIONS

In this paper, we have used data mining algorithms for
analyzing the spatial, temporal and spatio-temporal nature
of Earth Science data. We have reduced data dimensional-
ity as a preprocessing step and then identified outliers in the
global climate system. The detected outliers not only stand
for abrupt changes in the global climate over the years, but
also explain some of the extreme events like drought and se-
vere rainfall at specific locations on Earth. The results from
our exclusive temporal and spatial analysis of the global cli-
mate data are fairly well-connected and reasonably aligned
to the records of climate history. The spatial analysis of
the outliers facilitates the discovery of interesting telecon-
nection patterns as well. In the future, we intend to extend
our approach for determining spatio-temporal anomalies for
handling growing region at reduced communication cost.

10. REFERENCES
[1] Nabil R. Adam, Vandana Pursnani Janeja, and

Vijayalakshmi Atluri. Neighborhood based detection
of anomalies in high dimensional spatio-temporal
sensor datasets. In SAC ’04: Proceedings of the 2004

ACM symposium on Applied computing, 2004.

[2] The ORNL 50-Year Re analysis Data
Download Website. http://www.ornl.gov/sci/
knowledgediscovery/SensorKDD-2009/challenge.

htm.

[3] Stephen D. Bay and Mark Schwabacher. Mining
Distance-based Outliers in Near Linear Time with
Randomization and a Simple Pruning Rule. In KDD

’03: Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and

data mining, 2003.

[4] University of Delaware Climate Data Archives.
http://climate.geog.udel.edu/~climate/html_

pages/download.html.

[5] A.R. Ganguly and K. Steinhaeuser. Data mining for
climate change and impacts. In Data Mining

Workshops, 2008. ICDMW ’08. IEEE International

Conference on, 2008.

[6] http://en.wikipedia.org/wiki/ENSO. El niño-southern
oscillation: Wikipedia entry.

[7] http://ggweather.com/enso/oni.htm. Enso years: A
consensus list.

[8] http://www.wrcc.dri.edu/enso. El niño, la nina and
the western u.s., alaska and hawaii.

[9] Robert Kistler, Eugenia Kalnay, William Collins,
Suranjana Saha, Glenn White, John Woollen,
Muthuvel Chelliah, Wesley Ebisuzaki, Masao
Kanamitsu, Vernon Kousky, Huug van den Dool, Roy
Jenne, , and Michael Fiorino. The ncepŰncar 50-year
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