
Combining near-infrared illuminants
to optimize venous imaging

Vincent Paquita,b,c, Jeffery R. Pricea, Fabrice Mériaudeaub,c,
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ABSTRACT

The first and perhaps most important phase of a surgical procedure is the insertion of an intravenous (IV)
catheter. Currently, this is performed manually by trained personnel. In some visions of future operating rooms,
however, this process is to be replaced by an automated system. We previously presented work for localizing
near-surface veins via near-infrared (NIR) imaging in combination with structured light ranging for surface
mapping and robotic guidance. In this paper, we describe experiments to determine the best NIR wavelengths
to optimize vein contrast for physiological differences such as skin tone and/or the presence of hair on the arm
or wrist surface. For illumination, we employ an array of NIR LEDs comprising six different wavelength centers
from 740nm to 910nm. We capture imagery of each subject under every possible combination of illuminants and
determine the optimal combination of wavelengths for a given subject to maximize vein contrast using linear
discriminant analysis.
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1. DESCRIPTION OF PURPOSE

The ultimate goal of our work is to develop an image-guided robotic system for automated catheterization.
In previous work,1 we described benchtop hardware and algorithms to image subcutaneous veins and map the
surface topography of the arm or wrist. This system employed NIR illumination for venous imaging and an NIR
structured light ranging system for surface mapping. Our purpose in the work described here is to determine the
optimal NIR wavelengths for optimizing vein contrast and to determine if and how those optimal wavelengths
vary between subjects with different physiological characteristics (e.g., skin tone and/or hair).

2. METHODS

Previous research2 has investigated the propagation of light in tissue as a function of wavelength and, to
some extent, the variation in venous image contrast as a function of (monochromatic) illumination wavelength
in the NIR range.3 We have constructed a benchtop optical system, as illustrated in Fig. 1(a), that allows us to
illuminate an area of the forearm or the hand with any combination of the six different wavelength-centered NIR
LEDs. For each subject, we acquire 63 NIR-illuminated images, at video frame rates, corresponding to all possible
combinations of the six wavelengths (26 − 1). We also acquire an RGB image of the skin surface with a color
calibration target to quantify skin tone and visualize any surface hair. For this experiment, apparent veins are
identified either manually or automatically from the NIR and/or RGB images. Each vein and background pixel
is then represented as a 63-dimensional feature vector corresponding to the (normalized) intensity under each
of the 63 illumination conditions. To find the optimal linear combination of illuminants, we perform two-class
linear discriminant analysis (LDA)4 for the vein vs. background problem. Vein segmentation and identification
is based on a line detection algorithm developed in remote sensing for road extraction.5
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2.1. Experimental setup

Our acquisition system (Figure 1) is composed of a NIR video camera with a 740nm long-pass interferometric
filter, a NIR multi-wavelength ring of LEDs and a NIR line-generating laser module.

(a) Schematic of the acquisition system (b) 3D rendering of the ring of LEDs.

Figure 1. Schematic of the acquisition system. On Figure 1(b), each of the six wavelengths is displayed with a different
color to illustrate the placement.

We have selected a Mutech Phoenix PC-1280/M Monochrome Camera with 10 bit pixel format with a
resolution set to 640× 480 (VGA) at 60 fps. Our choice was based on the appropriate spectral response of the
CMOS sensor in the NIR range of light, its compactness and the communication protocol allowing both video
signal transfer and hardware configuration. The camera is connected and controlled by an IBM compatible
personal computer (PC) via a USB 2.0 connection.

The optical system is composed of a 25mm lens with a NIR interferometric filter attached. In our setup the
NIR filter is used as a high pass filter; combined with the spectral response of the camera we obtain a band pass
filter which allows a sensitivity in the spectral range going from 740nm to 960nm.

The lighting source is composed of 144 LEDs mounted on a ring with 24 LEDs for each of the six wavelengths
(740, 770, 810, 840, 880 and 910). Each LED has a power dissipation around 30mW. The position of the LEDs
on the ring has been determined to get a uniform illumination of the scene even by switching or combining the
different wavelengths. In addition we have placed a diffuser in front of the LEDs to increase this uniformity. We
use a Measurement Computing PMD-1024HLS 24-line digital I/O module to select a wavelength or a combination
of wavelengths for illumination.

We use a 19-line generating beam splitter mounted on a 785nm laser diode to generate the structured light
source needed to create the 3D triangulation system. We can cover a surface up to eight square inches with the
19-line generator, therefore providing flexibility and control of the robotic catheter insertion system.

2.2. Data Collection

In this study, we have collected image data of subjects’ arms and/or wrists to build a large database of images.
Our goal is to find a possible generalization procedure in finding subcutaneous vessels using NIR imaging, which
implies to have the most representative panel of the population regardless ethnicity, age, and sex. Following
the experimental protocol which was approved by the Oak Ridge Site-wide Institutional Review Board, each
subject places a skin surface area from the region going from the extremity of the hand to the antecubital fossa
in the system cameras field of view and holds arm still for approximately ten seconds. During this period, the
target area will be illuminated by laser-line module (structured light source) and a series of combinations of
near-infrared LEDs. The combinations comprise single wavelengths and combinations of single wavelengths. For
each unique combination in the series, an image is acquired by the system camera and recorded in the database.



This process has been repeated for different arm/wrist regions.
For each individual we are recording the following information in the database:

1. age, gender, and ethnicity;
2. physical particularities: hairs, birth marks, scars, etc;
3. a digital color picture of the subjects arm/wrist using a standard color digital camera. This picture is

taken in presence of a color calibration target, in our case a MacBeth chart, to quantify skin tone for future
comparisons;

4. a NIR image of the laser line projection on the surface of the skin. This picture will be used for the 3D
reconstruction process and to create a region of interest mask.

5. 63 NIR images of the target area corresponding to the 26 − 1 combinations of the 6 different wavelengths.

2.3. Acquisition System Calibration

2.3.1. Distortion Correction

In computer vision, the calibration of an optical system is used to determine the intrinsic and extrinsic
parameters of a camera.6 These parameters correspond to the mathematical relations between the 3D space of
reference and the 2D perception of the scene, with the resulting equations, we are able to correct the distortion of
the picture and to compute the metric value of a pixel. Different methods of calibration already exist and many
tend to use the same process6, 7; we used the method describe in [8] for our application. The calibration is made
when the position of the laser compared to the camera and the focal plane of the optical system have been fixed.
The method consists of taking pictures of different orientations of a planar checkerboard pattern considered as
a metric reference for our system. Notice that we have to illuminate the scene with the NIR lighting source due
to the presence of the interferometric filter. The analysis of the position of all the square corners in a set of
six to ten pictures give us the intrinsic parameters of the camera: focal length, principal point, skew coefficient,
radial and tangential distortions. The Figure 2 presents an example of the correction result obtained with these
parameters.

(a) Distorted image of the pattern (b) Undistorted image

Figure 2. Distortion correction example

2.3.2. 3D Modeling

The 3D reconstruction process uses active optical triangulation by combining a camera and a laser line
generator.9 The geometry of the laser triangulation is shown in Figure (3). The camera is aligned along the Z
axis and the laser line generator is positioned at a distance b from the camera with the angle θ relative to the X
axis. Assuming that the considered laser point coordinates (x, y, z) in the 3D baseline has a projection (u, v) on
the image plane, the similar triangles equations give the mathematical relation between the measured quantities
(u, v, θ) and the coordinates (x, y, z):

[x, y, z] =
b

f. cot θ − u
[u, v, f ]. (1)



The calculation of the equation of each of the lines during the
calibration process depend on the previous triangulation equa-
tion. Because the position of the laser compared to the camera is
fixed, the 19 equations are calculated only one time. The second
part of the 3D reconstruction process depends on the detection
of the center of the laser stripe lines. The reflection of the laser
light on the surface of the skin is comparable to a blurry Gaus-
sian signal. To detect with accuracy the position of the center
of the laser line, we have previously tested with success different
subpixel peak detection algorithms such as: Blais and Rioux,10

Forest11 and the center of mass. However, the algorithm initially
implemented for the detection of the veins and explained in sec-
tion 3.3 appears to give better detection results and simplify the
classification of each of the center line pixels. This classification
is performed to associate those pixels with one of the nineteen
laser lines equations previously computed and used for the 3D
reconstruction (Figure 4). Figure 3. Principle of 3D reconstruction

with active optical triangulation

Figure 4. 3D reconstruction visualizations: from 2D to 3D

2.3.3. Spectral Reflectance

By nature each element receiving energy from a complex light source will absorb a portion of the light source
and will reflect or transmit the other part as an electromagnetic energy. The spectral response of this element
corresponds to the measure of the energy reflected at specific wavelengths. This response characterizes the
composition of the element, its state and represents its spectral signature. The physical quantity representing
the spectral response is the spectral reflectance which is the reflectance measured within a specific wavelength
interval. The reflectance corresponds to the ratio of the radiant energy reflected by a body to the energy incident
on the body at a fixed wavelength and is defined by the following relation:

R(x, y, λ) =
Ereflected(x, y, λ)
Ereceived(x, y, λ)

(2)

where (x, y) are the coordinates of the pixel, λ is the wavelength, R(x, y, λ) is the reflectance, Ereflected(x, y, λ)
is the energy reflected and Ereceived(x, y, λ) is the energy received.

In the case of an imaging system, different parameters have to be considered to measure the reflectance.
According to a study in face recognition using NIR imaging,12 the raw measurement I(x, y, λ) obtained by the
imaging system is given by:

I(x, y, λ) = L(x, y, λ)× S(x, y, λ)×R(x, y, λ) + O(x, y, λ) (3)



where (x, y) are the coordinates of the pixel, λ is the wavelength, L(x, y, λ) is the illumination, S(x, y, λ) is the
system spectral response, R(x, y, λ) is the reflectance of the viewed surface and O(x, y, λ) is an offset. Notice
that for a given experiment with fixed acquisition parameters and stabilized illumination, L(x, y, λ)× S(x, y, λ)
and O(x, y, λ) can be considered as constants for a given λ. With this hypothesis, by imaging uniform reflective
surfaces with a known reflectance values R(λ) constant for each pair (x, y), we can calculate L(x, y, λ)×S(x, y, λ)
and O(x, y, λ). Let Ii(x, y, λ) the resulting acquisition image of a uniform reflective surface i and Ri(λ) its
reflectance, we can write (3) as:

I1(x, y, λ) = L(x, y, λ)× S(x, y, λ)×R1(λ) + O(x, y, λ) (4)

I2(x, y, λ) = L(x, y, λ)× S(x, y, λ)×R2(λ) + O(x, y, λ) (5)

By subtracting equation 5 from equation 4 we have:

L(x, y, λ)× S(x, y, λ) =
I1(x, y, λ)− I2(x, y, λ)

R1(λ)−R2(λ)
(6)

and by replacing L(x, y, λ)× S(x, y, λ) in equation 4:

O(x, y, λ)) =
−I1(x, y, λ)×R2(λ) + I2(x, y, λ)×R1(λ)

R1(λ)−R2(λ)
(7)

By replacing L(x, y, λ)×S(x, y, λ) and O(x, y, λ) in equation 3, we obtain the reflectance formula for our calibrated
system:

R(x, y, λ) =
(I(x, y, λ)− I2(x, y, λ))×R1(x, y, λ)− (I(x, y, λ)− I1(x, y, λ))×R2(x, y, λ)

I1(x, y, λ)− I2(x, y, λ)
(8)

According to (8), we calculate the reflectance of each picture of the database after calibration of the system using
a white lambertian surface as I1(x, y, λ) and a black lambertian surface as I2(x, y, λ) of know reflectance values
respectively R1(λ) and R2(λ). For this experiment the reference surfaces are the white and black squares of the
MacBeth color chart.

2.3.4. Exposure Parameterization

The exposure time corresponds to the amount of time
a material is illuminated. It has to be adjusted in
such a way that the reflectance of the skin surface
appears to be maximum for each wavelength combi-
nation without saturation of the sensor. With our
system, we illuminate the target area with a com-
bination of up to six wavelengths, which implies an
increase of the total power dissipation of the LEDs.
In addition the reflectance of the skin is correlated
with physical particularities such as pigmentation or
thickness of the skin. In order to correct possible
over-exposure problems, we have characterized the
relation between exposure time and power dissipa-
tion for eight skin tone models related to eight Mac-
Beth chart color patterns. Figure 5 shows a graphic
representation of the eight relations. Figure 5. Relation between exposure time and power dissi-

pation for each skin tone model



2.3.5. Acquisition Results

The following pictures (Fig. 6) have been obtained with our NIR acquisition system for different subjects.
Each of these images represents one of the 63-image sets prior to any subsequent processing and mapped to the
skin tone color reference picture of the subject.

Figure 6. Examples of images obtained with our system for different subjects

3. IMAGE PROCESSING

The next step of our work consists to separate veins from other tissues and to find the path centerline of
each vessel. For this experiment, we have simplified our problem by considering a two class system, vein/ not
vein, without differentiating other physical particularities. We are processing the data using two approaches
designated as supervised learning and semi-supervised learning. Both methods are based on linear dimension
reduction approaches: principal component analysis (PCA) and linear discriminant analysis (LDA). With these
methods, we want to classify veins and other tissues in two classes by finding the most significant part of their
spectral signature. Our methods differ by the process used to create the vein/other tissues mask.
In this section we present and define the algorithms used to process the data and present classification results
with our methods. In the last part we present preliminary results on the cross correlation of projection in order
to establish the validity of a generalized detection of veins.

3.1. Principal Component Analysis

Principal components analysis (PCA)13, 14 is a dimension reduction technique used to project a M-dimensional
space into a lower N-dimensional space in order to simplify the data set. The result of the PCA corresponds to
a projection into a new N-dimensional space where the variance of data is maximized on the news axis. In the
case of a multi-spectral image, the visual result of the PCA can be compared as a histogram equalization15 but
performed on multiple dimensions.

3.2. Linear Discriminant Analysis

Linear discriminant analysis (LDA)4 is a dimension reduction technique which maximizes the between class
distances and minimizes the within-class scatter so that the class separability can be optimized in the transformed
space. Each feature vector of the dataset is labeled using an input classification mask which will be generated
manually for the supervised method and automatically for the semi-supervised method.



3.3. Curvilinear Structures Detection
In our NIR images of biological tissues, we can identify veins as a curvilinear structure which appears darker

than the surrounding skin due to the absorption-reflection phenomena. Our first approach1 to detect the veins
was to find the transitions between light and dark areas. Using a derivative filter sequence and only local criteria
this method tends to be limited in case of a low difference of contrast between vein and skin. According to
Steger’s road extraction algorithm,5 another approach for curvilinear structures detection is to consider a line as
a function and to identify it according to its differential geometric properties. Our application requires computing
the optimal path for the insertion of the catheter i.e. the equation of the centerline of a vein wide enough to
receive the catheter. Regarding the previous statement, we have adapted Steger’s algorithm for our problem and
we present one result of the location of the centerline of the veins (Fig.7(b)), the mask automatically calculated
based on the centerline and the approximated width of the veins along this axis (Fig.7(c)) and the mask created
manually for comparison with the automatic generation (Fig.7(d)).

(a) Initial image (b) Veins centerlines
detected

(c) Mask created au-
tomatically

(d) Mask created
manually

Figure 7. Results of the centerline vein detection process

To generate automatically the mask, we are processing the result of the PCA of the dataset which obviously
presents the best contrast vein/not vein regardless the skin tone of the subject.

3.4. Results: Supervised Learning
For this method we define manually the location of the area of interest (Fig. 8(b)) and the location of the veins

(Fig. 8(d)). The PCA and LDA are computed only on the feature vectors contained in the region of interest.

(a) Initial image (b) Mask created man-
ually

(c) PCA result (d) Mask veins created
manually

(e) LDA result

Figure 8. Steps and results of the supervised learning method

The mask vein/not vein (Fig.8(d)) is used to initialise the LDA. Figure 8(c) presents the result of the PCA and
figure 8(e) presents the result of the LDA.



3.5. Results: Unsupervised Learning

For this method we define the location of the area of interest (Fig. 9(b)) based on the location of the laser
line projection on the surface of the skin. By filling the area delimited by the 19 laser lines (Fig.9(b), we are
analyzing the only interesting region in the picture because it is the only one we can use to compute the 3D
surface model and so the only one we can use to compute the 3D needle path. In a first step we compute the PCA
on the feature vectors included in the ROI (Fig.9(c)) and we use the result to make the vein centerline detection
(Fig.9(d)). Finally, after creating the mask for the veins, we are analyzing the area using a LDA (Fig.9(e)).

(a) Laser line projec-
tion

(b) ROI generated
from Fig.9(a)

(c) Result of the PCA (d) Veins detection on
Fig. 9(c)

(e) Result of the LDA

Figure 9. Steps and results of the unsupervised learning method

3.6. Cross validation results

Our goal is to find a possible generalization procedure in finding subcutaneous vessels using NIR imaging
using the physical characteristics of the skin as only parameters. Each of the 63-dimension vector correspond to
the spectral signature of a pixel. Using the LDA approach, we are reducing the dimensionality of each data set
to a ten dimension subspace representing a projection of the information in a new definition space which keep
the intrinsic properties of the initial data and simplify the separability of the different classes. As a result of the
LDA, we obtain a projection matrix which defines the classification parameters of our problem. Considering that
each pixel of the dataset has a feature vector corresponding to one of the two classes, our hypothesis was to use
the projection matrix calculated for one of the subjects of the database, to project the dataset of another subject
and see if we obtain a valid classification result, and if we can see an influence of the skin tone parameters on
these results.

(a) Cross validation for a same skin tone than reference (b) Cross validation for a different skin tone than reference

Figure 10. Some results of cross validation

Using the projection matrix computed for one subject (Figure 9(e)), we have projected all the datasets of the
database regardless their skin tone properties in a ten dimension subspace. Figure 10(a) represents the results
we generally obtain for dataset with a same skin tone and figure 10(b) represents the results we obtain for a
dataset with a different skin tone. As you can see, in figure 10(a) the apparent veins have been classified correctly
on the center area (with the most homogeneous illumination) and we obtain errors on the offset area where we



have reflection problem due to the topography of the surface of the skin i.e. with the normal to the surface not
pointing in the direction of the camera. In figure 10(b), almost all the pixels have been misclassified.

For the moment our database includes only 20 subjects for 100 datasets so we will not conclude about a
possible generalization of our method, but the preliminary results tend to point out a correlation between the
skin tone characterization and our classification method. In addition for one subject we noticed that two regions
of the forearm may need different acquisition parameters to obtain a result which means that we may need to
extend our skin model with other parameters such as quality of the skin, body fat mass, etc.

4. CONCLUSION AND FUTURE WORK

Our long-term goal is to develop a fully-automated, vision-guided robotic system for needle insertion and
catheterization. In earlier work,1 we presented a vision-based system to guide a robot that combined the 2D
localization of a vein with a 3D model of the surface of the skin. Using this system, we evaluate the hypothesis
that different NIR illuminations can be combined to improve the contrast of venous imagery and that the form
of this combination may vary under different physiological characteristics. In this paper, we present a system
and methods for acquiring and analyzing venous imagery under a variety of NIR illumination wavelengths. We
evaluate how various illumination wavelengths can be optimally combined to improve venous contrast. We
furthermore examine how the optimal wavelength combinations might vary due to skin tone and/or the presence
of hair.
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