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1. INTRODUCTION

Small animal imaging has become an important tool in the biomed-
ical sciences since it permits researchers to noninvasively screen
animal models for mutations or pathologies as well as to monitor
disease progression and response to therapy. The modality con-
sidered here is x-ray micro-CT which is useful for obtaining high-
resolution volumetric anatomic images of the internal structure of
an animal. In particular, we emphasize the MicroCAT™ which
is a circular orbit conebeam system that originally was developed
for mouse work at Oak Ridge National Laboratory [1, 2, 3] but
has since then been transferred to industry for commercialization.
Reconstructions are computed by means of the Feldkamp algo-
rithm [4]. Here we present two support algorithms called XFOV
and FOA which briefly can be summarized as follows.

In order to image an animal that is taller than what a given
symmetric detector array configuration supports, the XFOV algo-
rithm is used to essentially double the field of view [5]. The detec-
tor array is mechanically offset to appear as one half of a detector
array that is twice as wide. To compensate for the missing projec-
tion data, we apply an interpolation and weighting scheme during
reconstruction. Applied on its own, the weighting scheme can be
used for fast animal screening since it allows an image volume to
be reconstructed in about half the time it takes to compute a reg-
ular full reconstruction. The XFOV idea applies to circular orbit
conebeam algorithms in general including iterative ones.

Only the voxels located inside the axial cylinder inscribed by
the image volume need be considered during reconstruction [6].
However, the FOA algorithm [7], which is a data-driven prepro-
cessing scheme, makes it possible to identify an even smaller, but
still convex subset of voxels that include all those relevant to the
object under study. By concentrating on this subset of voxels dur-
ing reconstruction, the computational demands of the otherwise
time consuming backprojection step of the Feldkamp algorithm
can be greatly reduced without sacrificing the image quality. Pre-
sented here in connection with x-ray imaging, the FOA idea is
general by nature and applies not only to other circular conebeam
algorithms including iterative ones but also to other types of pro-
jection image reconstruction problems.

We provide experimental results based on the Shepp-Logan
3D head phantom as well as mouse data from a MicroCAT scanner.
More results will be presented at the meeting.
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2. EXTENDED FIELD OF VIEW (XFOV)

Let P(®,Y, Z) represent the 2D projection at view angle ® with
(Y, Z) denoting the spatial location of a detector element. Nor-
mally, data is sampled for 0 < ® <2m, |Z| < dz, and |Y| < dy.
But suppose that the detector array has been offset such that pro-
jection data is acquired for —dy <Y < §, where 0 < 4. while
data for . < Y < dy is missing. See Fig. 1a. Setting the missing
projection data to zero is not a viable option as the discontinuity
introduced thereby will be amplified by the filtering step of the
Feldkamp algorithm to the point where the reconstructed image
is distorted beyond recognition. A better approach is to recover
the missing data. This can be achieved using rotational symmetry.
That is,

P(®,Y,Z) = P(n 4 & 4 2tan” '(Y/D'),-Y, Z)

where D' = /D2 + Z2 and D is the distance from the x-ray
source to the center of the detector array. Strictly speaking, this re-
lationship is true only for midplane data (for which Z = 0) but we
have found it to be a reasonable approximation for off-midplane
data (for which Z # 0). An important implication is that we can
use bilinear interpolation to recover missing data from data that has
been sampled. See Fig. 1b. Prior to backprojection, we multiply
the filtered (acquired and recovered) projection data by a smooth
weight function similar to the one proposed by Parker [8] in con-
nection with his work on short-scan imaging, namely,

1 Oy <Y <—o*
2 (m Y-§* *
w(®,Y7) = sin (Z 5**) —-6"<Y< 0
cos? (% Y(st‘s ) 0 <Y <+4*
0 +0* <Y <+dyv

where §* < dy. See Fig. 1c. Following weighting, the data is
backprojected as usual except that data which has been set to zero
is ignored.

3. FOCUSOF ATTENTION (FOA)

The idea behind focus of attention can be described as follows.
Consider shining a light at an animal from a number of different
view angles. When backprojecting the resulting shadowgrams into
the image space, the intersection thereof ideally forms a convex
hull. Only the projection and image data that pertain to this hull
need be considered for the reconstruction, reducing the amount of
computation needed. The theory of support functions [9] provides
the mathematical criteria for ensuring that the two spaces are con-
sistent with one another.
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Fig. 1. Imaging using an offset detector array. (a) Projection data is only sampled for the white region for each plane (arbitrary Z). The
dashed line indicates the projection center (Y = 0). (b) Rotational symmetry is used to obtain the missing data represented by the gray
region. (c) Smooth weighting is applied to data in the outlined central window (|Y| < §*). Data in the light gray region to the right is not

considered during backprojection.
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Fig. 2. Cross-section of focus of attention based reconstruction hull. (a) Example of fg, the image that results from backprojecting the
thresholded projections. (b) Point set Q' which exhibits several concavities. (c) Derived convex hull Q on basis of which background voxels

are eliminated from the reconstruction.

As it is impractical (and unnecessary) to compute the tightest
possible 3D convex hull that envelops an animal, we aim instead to
compute the tightest fitting axial cylinder that has a convex cross-
section. We solve the associated 2D support function estimation
problem by means of the following shape-based algorithm. We
first apply moving average based thresholding to determine the
projection boundaries, i.e. minimum and maximum Y values, as-
sociated with a given view angle. We then create and backproject
a corresponding thresholded version of the projection data. Let
fB denote the cross-section of the image volume that results af-
ter having processed all the projections. Furthermore, let fqr be
a thresholded version of fg with Q' denoting the set of non-zero
pixels. We then compute the support vector for €’ and use it to de-
termine the (small number of) pixels that potentially must be added
in order to obtain 2, the desired 2D convex hull. This concludes
the preprocessing step. See Fig. 2 for an illustration.

During image reconstruction, we only consider the voxels for
which the (z, y) sub-coordinates lie within the € point set. Since

we do not alter the original projection data in any way, the values
of the reconstructed image are identically the same for the Feld-
kamp algorithm whether we apply focus of attention or not. The
integrity of interior object voxels is thus not compromised even if
we were to exclude some of the peripheral object voxels. Back-
ground voxels may, of course, be assigned different values in the
two cases.

Focus of attention lends itself well to iterative methods since
it allows equations and unknowns to be eliminated in an alge-
braically consistent manner. When used for this purpose, the sup-
port vector for  is used to specify the subset of projection data to
be considered. This support vector is identical to the one computed
for ' and is thus readily available at no extra cost.

4. DISTRIBUTED COMPUTING

The XFOV and FOA support algorithms have been incorporated
into a parallelized version of the Feldkamp algorithm [7]. With



respect to the latter, then each node is made responsible for recon-
structing a particular image subvolume, the axial width of which
is determined by the node’s rank in the computation. The corners
of the image subvolume are projected out to the detector space to
determine the subset of the projection data needed locally. This
data is then processed without the need for communicating with
the other nodes. The cost incurred by having the same projection
data be corrected and filtered on several nodes is to a great extent
offset by not having the nodes exchange large projection data sets.
Furthermore, the implementation is straightforward.

The LAM version of MPI is used to initialize the overall com-
putation (including getting remote processes started and assigning
rank to the nodes) as well as to implement the reduction operation
needed when determining the global FOA projection boundaries
for each view angle. Standard POSIX threads are used to facili-
tate shared-memory based multi-processor computations on each
node.

5. EXPERIMENTAL RESULTS

This section serves to illustrate the quality and computational effi-
ciency of the XFOV and FOA support algorithms. The computing
environment consists of twenty-four PCs, each equipped with two
2.4GHz Pentium 4 processors and 2 Ghytes of shared-memory.
The operating system is Linux. The PCs are interconnected via
Gigabit ethernet.

Our first set of results are in regard to XFOV. This work is
based on the Shepp-Logan 3D head phantom [6]. Data is simu-
lated for 360 view angles. Each 256 x 256 (Y X Z) projection
is truncated to 138 x 256 to make the data appear as if it were
obtained using an offset detector array. We use a 10 pixel wide
window for the smooth weighting. The conebeam angle is 12 de-
grees. Figure 3 shows transaxial slice 99 of the reconstructed 256
X 256 X 256 image volume together with a line attenuation plot
and the results of a region-of-interest (ROI) analysis. The recon-
structed slice looks almost identical to the phantom itself. The line
attenuation plot shows that the reconstructed values are in close
agreement with the true values; the exception being with respect
to values at or near steep edges but that is typical also for a full (un-
truncated) reconstruction. Other transaxial slices behave similarly.
The ROI analysis, which consists of a slice-by-slice comparison
of the mean, minimum, and maximum ROI values associated with
the XFOV reconstruction and a full reconstruction, gives further
support. The provided plot, for example, shows that the ratios of
these three statistics are close to one across all slices for the dark
gray background ellipse. Other ROIs exhibit similar or better be-
havior. The overall quality of an XFOV phantom reconstruction is
thus comparable with that of a regular full reconstruction.

Our second set of results illustrates FOA used in connection
with mouse data obtained with the MicroCAT (ImTek Inc., TN).
Here P = —log(Ie — Ip)/(Io — Ip) where Iy is the photon
flux recorded with an animal present, and Ip and Ip are blank and
dark current projections used for normalization purposes. We have
configured this system to have a conebeam angle of approximately
18 degrees. Projections are again acquired for every 1 degree up to
a full 360 degree rotation of the gantry. Each projection is down-
sampled to 512 x 1022. We reconstruct a 512 x 512 x 1022 im-
age volume with cubic 120 um voxels. Higher resolution images
are possible by not downsampling the projection data as was done
here. Figure 4 shows transaxial slice 580. The cross-section of the
reconstruction hull covers 76,487 pixels or 62 percent less than the

205,887 pixels covered by the inscribed circle normally used to de-
fine the computational region-of-interest. Compared with a regu-
lar full reconstruction we observe no differences other than for the
background voxels; thus, as stated above, FOA does not compro-
mise the internal anatomical structure revealed by the Feldkamp
algorithm. Figure 4 also shows the result of reconstructing using
both XFOV and FOA. The projection data was first truncated to
276 x 1022 to simulate the detector array being offset. The only
difference between the pure FOA image and the one for which
XFOV has also been applied is that the latter appears slightly more
grainy due to being based on reduced count statistics. There are no
visible structural differences.

We close by commenting on the computational efficiency of
XFOV and FOA. See Table 1. Data handling, which includes pro-
jection loading and normalization, takes longer in both cases but
the added overhead is small compared with the overall time spent
on a reconstruction. The data recovery associated with XFOV
takes an insignificant amount of time. Likewise, the time required
to establish the convex FOA reconstruction hull is negligible (partly
because the preprocessing here is based on every twelfth projec-
tion as opposed to all of them). Filtering takes the same time in all
cases. Finally, XFOV and FOA reduce the otherwise time consum-
ing backprojection computation by 45 and 60 percent, respectively,
which translates into similar overall time savings. The combined
time savings of XFOV and FOA are on the order of 75 percent.
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Fig. 3. Shepp-Logan XFOV example. Reconstructed transaxial slice 99 (left) with graylevels compressed from [0.00; 2.00] to [0.95; 1.05]
for improved contrast. Attenuation across a line through the slice (top, right): solid lines are reconstruction results while dashed lines
indicate ground truth. Region-of-interest analysis for large gray background ellipse (bottom, right): ratios of mean (middle solid line),
minimum (lower dashed line) and maximum (upper dashed line) values for an XFOV versus a regular full reconstruction.

Fig. 4. Mouse example. Reconstructed transaxial slice 580 obtained using FOA (left) and XFOV+FOA (right). Graylevels are compressed
for improved contrast. The light gray regions surrounding the mouse data indicate voxels not considered during reconstruction. The dashed
line indicates the inscribed circle normally used to define the computational region-of-interest. The mouse received an intraperitoneal
injection of a water-soluble iodinated contrast agent prior to being scanned.

Data handling Data recovery Convex hull Filtering Backprojection
Regular recon. 0.15 - - 0.08 8.14
w/XFOV 0.23 0.11 - 0.08 4.50
w/FOA 0.16 - 0.02 0.08 3.14
W/XFOV+FOA 0.24 0.11 0.02 0.08 1.73

Table 1. Average per-node timing results (in minutes) for volumetric mouse reconstructions. Data handling includes projection loading
and normalization. Data recovery and convex hull computations refer to XFOV and FOA preprocessing, respectively. Filtering and
backprojection make up the Feldkamp computations.



