
Abstract

A new x-ray computed tomography (CT) system is
being developed at Oak Ridge National Laboratory to image
laboratory mice for the purpose of rapid phenotype screening
and identification. One implementation of this CT system
allows simultaneous capture of several sets of sinogram data,
each having a unique x-ray energy distribution. The goals of
this paper are to (1) identify issues associated with the recon-
struction of this energy-dependent data and (2) suggest pre-
liminary approaches to address these issues. Due to varying
numbers of photon counts within each set, both traditional
(filtered backprojection, or FBP) and statistical (maximum
likelihood, or ML) tomographic image reconstruction tech-
niques have been applied to the energy-dependent sinogram
data. Results of reconstructed images using both algorithms
on sinogram data (high- and low-count) are presented. Also,
tissue contrast within the energy-dependent images is com-
pared to known x-ray attenuation coefficients of soft tissue
(e.g. muscle, bone, and fat).

I. INTRODUCTION

The Oak Ridge National Laboratory (ORNL) has a
world class Mammalian Genetics Research Facility that
houses more than 70,000 mice representing about 400
mutant lines. Mutagenesis experiments are performed on the
mice, and it is important to then determine the physical man-
ifestations (phenotypes) of these induced mutations. These
phenotypes are often difficult to find, especially when only a
few researchers are available to screen a large number of
mice. A large percentage of these phenotypes are expressed
as internal abnormalities that cannot be seen without sacri-
ficing the mouse. Examples of these phenotypes include
skeletal deformities (e.g. scoliosis) and deformed or diseased
organs (e.g. polycystic kidney disease).

A Laboratory-Directed Research and Development
(LDRD) program was recently started at ORNL with the
objective of accelerating the process of screening these mice
for internal abnormalities. A new high-resolution, x-ray CT
instrument called MicroCAT is under development as a part
of this new program. A complete description of the Micro-
CAT hardware is given in [1] along with a few sets of exam-
ple images, the majority of which were captured using a
CCD-based mammography-type sensor. This paper focuses
strictly on the implementation of this instrument that
employs a cadmium zinc telluride (CZT) sensor and is capa-
ble of simultaneously capturing several sets of sinogram
data, each containing a specific band, or bin, of x-ray ener-
gies. These individual energy-dependent sinograms contain
varying number of photon counts depending on the x-ray
source energy spectrum. 

The cumulative x-ray sinogram (sum of all energy bins)
typically has a reasonable number of counts (thousands) and
images can be reconstructed with relatively good quality via
FBP [2] (see Fig. 1). The energy bins at the ends of the
source spectrum, however, typically have very low photon
counts (60-100), and are therefore good candidates for statis-
tical or probabilistic reconstruction techniques. Statistical
techniques for x-ray transmission tomography have not
received as much attention as statistical techniques for emis-
sion tomography applications such as PET and SPECT.
There are, however, several promising approaches that have
been developed for transmission imaging in cases where low
statistics are common [3-6].

This paper first discusses the characteristics of the
energy-dependent sinogram data. It then presents examples
of images reconstructed at each energy level using FBP and
a variation of the maximum likelihood algorithm [5]. In
addition, it compares the relative tissue intensities within
reconstructed images to published x-ray attenuation coeffi-
cients of bone, soft tissue, and fat [7] (see Fig. 2). Finally, it
introduces some future research topics in tomographic image
reconstruction that utilize the multi-energy capability of this
new CT scanner to further enhance the information content
of the reconstructed images.
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II. MULTI-ENERGY CT

When configured for energy-dependent data acquisition,
the MicroCAT employs a single-element CZT detector with
a 100 µm diameter collimator. The read-out electronics for
this detector are described in [1]. We have recently pur-
chased a new custom 2-sided CZT strip detector and are
completing the design of the custom read-out electronics.
This CZT array will then be used in a cone beam configura-
tion to perform energy-dependent scans at a much faster rate
than currently possible.

X-ray Source

The x-ray source is a 50W mini-focus (<200 µm spot)
tungsten-anode tube with variable anode voltage (10-50
kVp) and current (0.1 - 1 mA). The measured energy spec-
trum for the incident polychromatic x-ray source is shown in
Fig. 3. As discussed in more detail in [1], the spectra were
measured using the single-element CZT detector and a 1024
channel multi-channel analyzer (MCA). The MCA was cali-
brated using Cd-109 and Am-241 test sources.

Energy-Dependent Data Collection

Before the subject is scanned, the user can select up to
ten x-ray energy bins in which to collect the x-ray photons.
As the subject is scanned, the individual x-rays are counted
and put into the proper bin depending on their energy level.
As shown in Fig. 2, different tissue types in the body have
significantly varied x-ray attenuation coefficients for low-
energy x-rays [7]. Note that the largest difference between
attenuation coefficients of the tissues occurs in the lower
energy range (10 - 30 keV). When scanning the human chest,
these low-energy x rays are not used exclusively because
they would be entirely absorbed within the body. Mice, on
the other hand, are small enough that an adequate number of
these low-energy x rays can pass through the body of the
mouse and subsequently be detected on the other side.

By reconstructing images from sinogram data within a
specific energy band, one can accomplish certain computer-
aided diagnostic tasks that may otherwise be difficult and/or
time consuming. For example, if one is trying to differentiate
two tissue types with similar mass density, standard energy-
integrating x-ray scans will not provide adequate contrast. If,

Figure 1. Cumulative energy image of mouse thorax recon-
structed using FBP. The heart, thymus, lungs, spinal column,
spinal cord, sternum, and several ribs are visible.

Figure 2. Plot showing how attenuation coefficients vary according
to x-ray energy for three different tissue types.
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Figure 3. The measured source spectra for the MicroCAT tungsten
x-ray source. Bias voltages of 10-50 kVp are shown. Note that the
noise floor is around 7-8 keV.
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however, the two tissues have different chemical composi-
tions (i.e. breast tissue and microcalcifications), then multi-
energy data can be used to determine Compton scattering
and photoelectric effects separately. These effects can be
used to provide contrast between the tissue types of interest
for diagnostic purposes. This is addressed in more detail in
Section IV. The next section describes two reconstruction
approaches and presents example images reconstructed with
energy-dependent sinogram data.

Limited Statistics

The implementation of the MicroCAT scanner used in
this study has certain characteristics that cause it to suffer
from limited statistics. First, the single-element CZT detec-
tor had to be mechanically translated to every position within
the sinogram space. Because of scanning time constraints,
the detector was stationary for only 0.1 seconds at each posi-
tion, and this limited the number of x rays that could be
counted. Second, a 100 µm collimator reduced the solid
angle of collection significantly, reducing the number of x
rays incident on the detector during that 0.1 sec. exposure.
Finally, the x-ray photon counts were divided into energy-
dependent bins. Each bin, of course, has only a fraction of
the total collected x-ray counts, further limiting the signal
statistics. These limitations can be overcome in future ver-
sions of the scanner through, for example, the use of a
higher-powered x-ray source. As is the case for nuclear
modalities such as PET or SPECT, the limited-count,
energy-dependent sinograms are good candidates for statisti-
cal or probabilistic image reconstruction approaches, as
described in the following section.

It has been shown by Kak et al. [8] that the variance of
the noise in an FBP-reconstructed image is inversely propor-
tional to both the number of projections taken during a scan
and the number of detected x-ray photons exiting the object
being scanned. This is one reason that textured noise
becomes prominent when reconstructing low-count projec-
tion data via FBP (see Fig. 5, 30 - 45 keV). Also, poor statis-
tics are a significant problem for transmission imaging
because the data undergo a nonlinear transformation before
reconstruction. As noted by Ollinger [4], this can introduce
both singularities and systematic bias in the estimated line
integrals through the subject being scanned. Although the
mathematically exact FBP is the method of choice for recon-
structing projection data with good statistics, iterative recon-
struction approaches such as ML-EM will eliminate these
undefined (singular) and biased line integrals. Finally, in
ML-based reconstruction techniques, the use of a Poisson
model for the source and detector is an accurate one and
helps to constrain the final reconstruction solution to achieve
reasonable results when confronted with limited statistics. 

III. RECONSTRUCTION ALGORITHMS

This section briefly describes the two image reconstruc-
tion approaches used to generate the CT slice images pre-
sented herein. Both FBP and an iterative ML algorithm
called the convex algorithm [5] were implemented and tested
on the energy-dependent sinograms.

The 200 x 200 image shown in Fig. 1 was reconstructed
using FBP with a standard ramp filter. No additional filtering
was applied. The sinogram data passed to the reconstruction
algorithm were the cumulative sums of all energies detected.
The sinogram was composed of 225 projections, 0.8 degrees
apart, with 200 samples per projection. Typical photon
counts per detector were in the thousands. The x-ray source
is a fan-beam, and the sinogram data were resorted into a
parallel beam configuration before submitting them to the
parallel FBP reconstruction algorithm. The resolution of the
resultant image is approximately 250 µm per pixel. This
image took approximately 12 seconds to reconstruct on a
266 MHz PC using standard, but unoptimized, FBP routines.

The ML reconstruction method published in [5] was
also implemented in anticipation of x-ray sinograms with
poor statistics. For ML reconstruction in transmission
tomography a Poisson model is used for the source and the
detector to formulate a log-likelihood function as follows:

 , (1)

where µ is the vector of attenuation coefficients for the
reconstructed image, di is the expected number of photon
counts leaving the source along projection path i, Yi repre-
sents the observed photon counts, and c represents terms that
are independent of µ. Also,  denotes the inner product
of  and , and l is a matrix of intersection lengths, where lij
is the intersection length of projection i with pixel j. Direct
maximization of  is difficult, so, using the convex prop-
erties of L, one can re-pose the likelihood function as a new
function  that maximizes at the same value of µ as does

. The iterative solution is:

 . (2)

Fig. 4 shows the result of 30 iterations of the convex
algorithm on the same sinogram data used to generate the
FBP image in Fig. 1. The convex algorithm took about 15
minutes to run on a 266 MHz PC. Because image appear-
ance, not execution time, was the primary objective in this
work, the convex algorithm was implemented accurately, but
not efficiently. There are several implementation changes
that could be made to speed up the algorithm by an order of
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magnitude (see results presented in [5]). The overall quality
of the images in Fig. 1 and Fig. 4 is reasonable in terms of
visible detail and contrast between structures. The FBP
image has slightly more textured noise than the convex
image, but also has more crisply defined edges between
organs. Because the statistics of the cumulative-count sino-
gram are good, both reconstruction algorithms generate rea-
sonable results. We now turn our attention to energy-
dependent sinograms.

Fig. 5 shows six images reconstructed using FBP on
energy-dependent sinograms. The two most interesting
aspects of the images in Fig. 5 are: (1) the increased noise
level and (2) the varying tissue contrasts across the energy-
dependent images. Because of the limited x-ray photon
counts within each energy band, the FBP algorithm gener-
ates significant textured noise in the reconstructed image. 

The ring artifacts within the image are most likely the
result of a non-optimal calibration procedure that introduced
small offset errors into the photon counts recorded at particu-
lar detector positions. The calibration data set (I0) was
recorded for a single projection, and then used to normalize
every projection (225 in this case) captured during the scan
of a subject. Although this is standard practice, it is believed
that projection-dependent electronic noise may have intro-
duced these small offset errors that lead to ring artifacts in
the reconstructed image. With large photon counts, the rings
are almost imperceptible, but when the statistics are
extremely poor, the ring artifacts are quite prominent (e.g.

see Fig. 5, 30 - 45 keV). If one can “look through” the tex-
tured noise, there are visible anatomical details within each
of the six energy bands. 

It is interesting to compare the x-ray energy range of
each image to the attenuation coefficient plot shown in Fig.
2. For example, the first image in Fig. 5 (0 - 7.5 keV) shows
little difference in attenuation coefficient between bone and
soft tissue (e.g. heart muscle). This corresponds well to the
attenuation coefficients within the corresponding energy
range in Fig. 2. Note that below 5 keV, the attenuation coef-
ficients of bone, soft tissue and fat begin to converge. The
next four energy bands (7.5 - 15, 15 - 22.5, 22.5 - 30, and 30
- 37.5 keV) all correspond to areas in Fig. 2 where the
respective attenuation coefficients are significantly different.
In the last image of Fig. 5 (energy band 37.5 - 45 keV), one
can see that the attenuation values are again beginning to
converge. This also agrees with the attenuation curves in Fig.
2.

To illustrate the utility of an iterative reconstruction
algorithm on low-count, x-ray sinogram data, the convex
algorithm was applied to the same sinogram data sets. The
result of 30 iterations of the convex algorithm on these six
data sets is shown in Fig. 6. There is an advantage in using
the convex algorithm in terms of textured noise reduction
that leads to a more homogeneous intensity within the indi-
vidual organs. On the other hand, edges between structures
are clearer in the FBP images. In the highest energy bins (30
- 45 keV) the convex algorithm reconstructs images in which
the heart, lungs, thymus, and spinal column are discernible,
yet blurry. In the corresponding FBP images, the textured
noise pattern overwhelms the organ contrast, and, in particu-
lar, the heart, thymus, and right lung become very difficult to
differentiate. This is not surprising, given that iterative
reconstruction techniques are often used successfully to
reconstruct low-resolution images using data with poor sta-
tistics [9-11]. Finally, similar to the FBP images, the images
reconstructed via the convex algorithm show a good corre-
spondence between tissue intensity differences and the atten-
uation coefficients plotted in Fig. 2.

IV. FUTURE RESEARCH

Reconstruction of energy-dependent sinogram data
could be further exploited in several conceivable ways. The
simplest approach is the one presented in this paper, that is,
to generate separate images at different x-ray energies with
the expectation that subtle differences in tissue types or
abnormalities could be enhanced at different energies. This
idea could be extended by selecting, for example, a linear
combination of the images reconstructed at different ener-
gies to enhance the contrast between two specific tissue
types of interest (e.g., fat and soft tissue). More sophisticated

Figure 4. Result after 30 iterations of the ML-based convex recon-
struction algorithm.



image fusion techniques should be investigated to make bet-
ter use of the energy-dependent image data. 

Another possibility was proposed by Alvarez and
Macovski [12], but was implemented only on simulated data
due to the unavailability of energy-dependent CT machines.
Their idea was to exploit the different energy dependencies
of the two primary x-ray interaction mechanisms, Compton
scattering and photoelectric absorption, to display separate
images of these interactions. That is, the energy-dependence
of the attenuation coefficient may be written:

 , (3)

where  and  are known functions of energy
associated with the photoelectric and Compton scattering
interactions, respectively. With a CT system capable of

energy resolution, separate images of  and
 can be reconstructed. The importance of display-

ing such images stems from the fact that the photoelectric
interaction, conveyed by , is a strongly increasing
function of atomic number and thus reflects the molecular
composition of the tissue type. Compton scattering, con-
veyed by , depends on the electron density, which
is related to the mass density of the tissue. Separate images
of these interaction mechanisms would almost certainly pro-
vide information of new diagnostic value. A potentially
important example is breast cancer detection, wherein a
purely photoelectric image should enhance the contrast
between the soft tissue in the breast and the microcalcifica-
tions that are the precursors to cancer. We intend to imple-
ment and evaluate the method described above using the
CZT-based, CT system. Because of the potentially poor sta-

Figure 5. FBP-reconstructed images from energy-dependent sino-
gram data. X-ray energies within each band are listed under the cor-
responding image.
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Figure 6. Images reconstructed using the convex algorithm from
energy-dependent sinogram data. X-ray energies within each band
are listed under the corresponding image.
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tistics (i.e., low x-ray photon counts) experienced to-date
using the CZT-based system, it will also be necessary to
derive a novel solution for this new reconstruction method
that employs probabilistic techniques based on the ML tech-
nique.

V. CONCLUSION

This paper has presented the results of performing
multi-energy, x-ray computed tomography with a unique
instrument employing a CZT x-ray detector. The energy-
dependent sinograms generated by this system were recon-
structed using both the FBP and ML-based, convex recon-
struction algorithms. As anticipated, the convex
reconstruction algorithm proved useful when the x-ray pho-
ton statistics within an energy band were limited. Also, in
energy bands where a reasonable number of photon counts
were available, FBP generated quality images with crisp
delineation between internal structures (bone and soft tis-
sues). The intensity variation between tissue types within all
of the energy-dependent images corresponds well with the
expected energy-dependent attenuation coefficients for bone
and soft tissues. 

There are many opportunities for further research in
terms of both energy-dependent image analysis as well as
energy-dependent image reconstruction techniques. Current
efforts are underway to more effectively use energy-depen-
dent data sets to reconstruct separate images of photoelectric
absorption and Compton scatter interactions. These images
will allow the end user to better discriminate between tissue
types for the purposes of, for example, phenotype identifica-
tion.
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