
Abstract
Effective image segmentation of a digitized scene into

a set of recognizable objects requires the development of
sophisticated scene analysis algorithms. Progress in this
area has been made through the development of a statisti-
cal-based deformable model that improves upon existing
point distribution models (PDMs) for boundary-based
object segmentation. Existing PDM boundary finding tech-
niques often suffer from the shortcoming that global shape
and gray-level information are treated independently dur-
ing boundary optimization. A new deformable model algo-
rithm is under development in which the objective function
used during optimization of the boundary encompasses
several important characteristics. Most importantly the
objective function includes both shape and gray-level char-
acteristics, so optimization occurs with respect to both
pieces of information simultaneously. This new algorithm
has been applied to geometric test images and a simple
industrial-type scene for which results are presented.

1. Introduction
One of the most challenging tasks in computer vision

is scene segmentation, that is, breaking up the image of
some environment into its constituent parts. This is a task
that is necessary in a variety of applications, including
autonomous robot guidance. There are a variety of bound-
ary- or surface-based scene segmentation approaches,
including those that employ some type of deformable
model such as simplex meshes [1] or deformable super-
quadrics [2]. These approaches are quite effective for
object representation and object recognition in data-driven
applications where object edges are fairly well-defined. By
their nature data-driven approaches have more difficulty in
segmentation applications where object edges are very
noisy, faint, or obstructed. Hence, a new statistical-based
deformable model algorithm for image analysis is being
developed that is motivated by the need for an algorithm to
perform automatic segmentation and recognition of objects
with faint, missing, or obstructed edges within a complex
background. An example of this type of application pre-
sented in this paper is the segmentation/recognition of
objects within intensity images of an industrial-type scene. 

The active shape model (ASM) developed by Cootes,
et al. [3], was chosen as an appropriate starting point
because of its ability to incorporate a priori information
extracted from a training set to build a gray-level model
(GLM) and a global shape model (GSM). These models are
used during an iterative contour deformation process that
adjusts the position and shape of the contour to match the
boundary of the object within the image. Although ASM is
an excellent starting point for the motivating application, it
has a shortcoming in a key area: global shape and gray-
level information are treated independently during optimi-
zation of the boundary position. This shortcoming limits
ASM’s robustness and accuracy in some applications. A
new approach, the probabilistic shape and appearance
(PSAM) algorithm has been developed to address this and
other ASM shortcomings.

A few researchers have recently developed new statis-
tical-based deformable models based on ASM. Wang, et al.
[4] have developed a probabilistic based optimization
scheme that uses Cootes’ PDM and integrates Canny-edge
information into the maximum a posteriori (MAP) objec-
tive function as the underlying image attraction force.
Kervrann, et al. [5] have developed similar probabilistic
techniques, but include Markov modeling on the local scale
to promote boundary smoothness. Both of these ASM
adaptations rely on edge information in the target image as
the external attraction force, rather than the gray-level gra-
dients proposed by Cootes. Duta, et al. [6] have also refined
the ASM technique in terms of the image attraction force as
well as the optimization approach to fit the boundary to the
underlying image data. Consideration of boundary-point
outliers is an important consideration in their work. Glea-
son, et al [7] have improved upon the original ASM by
including more comprehensive gray-level information and
have added constraints to the shape model to improve con-
vergence. Even with the considerable research that has
been performed, none of the resulting approaches address
the shortcomings of existing PDMs outlined previously.

2. Shape and Gray-level Objective Function
First, we will define the boundary we are searching for

as an  coordinate matrix, , of size , where N is
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the number of landmark points (LPs) needed to represent
the boundary. Each row of  corresponds to the 
coordinate of an LP:

, (1)

where the N LPs are defined by the coordinate pairs

. (2)

Defining the boundary this way accommodates some flexi-
bility in how the boundary is represented. The points in 
are typically LPs that lie directly on the boundary (as used
in PSAM), but in addition, other  coordinate locations
could be included that lie in image regions that are on the
interior or exterior of the object boundary, for example.
These points could be used to capture other internal object
characteristics that are located at off-boundary positions.

Next, we will define a feature vector matrix, G. In this
formulation, the feature vectors (rows of G) contain fea-
tures extracted from the neighborhood of each LP on the
boundary. If the length of each feature vector is m, then the
size of G will be . These feature vectors may contain
any image information that is relevant to the given applica-
tion, such as gray-level intensities in the neighborhood of
each pixel, local texture measurements, or gray-level gradi-
ent information (as used in ASM and PSAM). We can write
G as

, (3)

where

, . (4)

In Eq. 4,  is a vector containing raw gray-level values
sampled from the neighborhood of the  LP in the test
image, and h is an operator (e.g. a gradient) that transforms
these raw gray-level values into the feature vector, . Now
that we have defined our parameters, we can formulate the
probabilistic objective function.

In the PSAM boundary-finding application, the goal is
to maximize the a posteriori probability of the boundary

, given the measured image features in G. Using the

compound version of Bayes rule [12], we can write the a
posteriori probability expression for the boundary, ,
given a collection of feature vectors, G, as

, (5)

where  is the prior probability of a boundary instance,
;  is the conditional density of G given the

boundary instance, ; and  is the prior probability
density for G. The goal is then to optimize Eq. 5 by search-
ing over all possible values of  to find the one, , that
corresponds to the MAP value as given by

. (6)

Finding  can be further simplified without losing
the generality that we wish to maintain for a variety of
boundary-finding applications. First, because the logarithm
is a monotonically increasing function, optimizing the loga-
rithm of a function yields the same result as optimizing the
original function. Therefore, the objective function [we will
now call it ] can be written as

, (7)

where we have dropped the term  since it is inde-
pendent of  and is therefore a constant. 

Depending on the application at hand, the term
 may be difficult to calculate. The level of diffi-

culty is contingent in large part on the level of indepen-
dence that can be assumed for the current problem. If
independence is assumed between the feature vectors in G,
and if it is also assumed that each feature vector, , is
dependent only on it corresponding location,  (i.e.,
jth row of ), then the conditional density of G given 
can be rewritten as [12]

. (8)

Plugging this expression back into Eq. 7, we can write

. (9)

It is useful to note that the first term is the “data-driven”
term of the objective function in that it depends on image
characteristics (external energy term), while the second
term is “model-driven” in that it is independent of the
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image, depending only on prior distributions of boundary
shape and location (internal energy term). 

Note how this formulation can accommodate several
important goals. First, this objective function allows simul-
taneous optimization with respect to image-derived gray-
scale information (first term) and shape information (sec-
ond term). Secondly, because this objective function is
based on a probabilistic framework, we can interpret its
value as a measure of how well the final boundary fits the
distribution approximated by those contained in the train-
ing set. This measure can broken down into two pieces: (1)
the first term measures how well the final gray-level infor-
mation matches that which was extracted from the training
data, and (2) the second term measures how well the overall
shape and location of the boundary matches that which was
extracted from the training set.

Optimizing  over all possible boundary vectors,
, can be a daunting task for several reasons. First,

depending on the number of LPs used to represent the
boundary,  could be a very long vector, and finding the
maximum of J with respect to each of the 2N elements of

 can be computationally demanding. Applying principal
component analysis (PCA) and then using only the signifi-
cant modes of variation reduces the dimensionality of  to
resolve this problem. The boundary  can be approxi-
mated in the PCA subspace as a vector, v, with fewer
dimensions. As detailed in [8], v is constructed to be a com-
bination of the boundary coordinates in PCA subspace, b,
and the pose of the boundary, z, relative to the mean shape
calculated during the shape training process (see next sec-
tion) as follows:

, (10)

where . Here, s is scale,  is rotation, and
Tx, Ty are the x- and y-translations required to align the
boundary with the mean shape. Also we define the length
of the PCA shape vector, b, to be ts, the length of z is

, and the overall length of v is then .

Hence, optimizing the objective function in the PCA
sub-space with respect to the more compact vector, v, is a
simpler task. If we substitute the new boundary representa-
tion, v, into Eq. 7, the objective function then takes the form

, (11)

where

, (12)

and ,  are functions that map v from the PCA
subspace back into the image -coordinate space. 

To use this objective function in practice, we must
know all of the individual conditional probability densities,

, . In the PSAM approach, these con-
ditional densities can be straightforwardly measured from
the training data as described later. Finally, the prior proba-
bility of the PCA boundary vector, , must also be
known. Once again, this can be easily estimated from the
training data.

Shape Model Training
Although it was convenient to represent the boundary

as a matrix, , during the compound Bayesian description
of the objective function, it is simpler for implementation
to represent the entire collection of  coordinates as
one long vector, p. Let the manually selected boundary for
the ith image in an M-image training set be represented by a
collection of landmark points (LPs),  as

, , (13)

where the N LPs that make up the boundary for the ith sam-
ple are defined by the coordinate pairs

. (14)

These training boundaries are manually delineated by a
qualified person that understands the characteristics of the
object in the scene that must be segmented and recognized.

Prior to building the shape model, the alignment of the
sets of LPs to a common coordinate frame is done via Pro-
crustes analysis [11] to form the aligned sets of LPs:

, . (15)

Using this training data set of aligned LPs, , we can
straightforwardly create a GSM based on v by applying
PCA as described in [8].

Gray-Level Model Training
Recall that  is a vector of the gray-level values along

a profile that passes through the jth LP and is normal to the
current boundary estimate. We can write the raw pixel
intensity elements of the normal profile, ij, as

 and , (16)
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ŷi2

… ŷiN
= i 1 … M, ,=

p̂traini

gj

ijk
I xj

Ng 1–( )
2

-------------------- k 1+– 
  αjcos– yj

Ng 1–( )
2

-------------------- k 1+– 
  αjsin–, 

 =

k 1 … Ng, ,= j 1 … N, ,=



where I is the image under test, Ng is the number of gray-
level samples in each profile, and αj is the angle of the pro-
file through the jth LP normal to the boundary. As noted in
Eq. 4, the final feature vectors are given as ,
where h is the gradient operator. Once we have extracted
the gray level profile vectors for each LP on the boundary
for all M images in the training set, we can (similar to the
GSM) create a GLM using PCA as described in [8].

Objective Function Parameterization and Opti-
mization

Once the formulation of the GSM and GLM is com-
plete, all of the required information is available to parame-
terize and optimize the objective function in Eq. 11. We can
rewrite Eq. 11 as functions of J1 and J2 as follows:

(17)

where  and . By design, J
has one term for each of the trained model components:
GSM (J1) and GLM (J2). 

For parameterization purposes, the distributions of
both the shape vectors ( ) and the gray-level vectors
for each LP ( ) are assumed to be Gaussian. As detailed in
[8] and [9], these assumptions are not only valid, but they
simplify both the parameterization and optimization of the
objective function.

Gradient descent was chosen as the initial approach for
optimizing the objective function because of its simplicity
and the fact that the calculation of the gradient of Eq. 11 is
straightforward. The gradient can be written as:

. (18)

Because we assume Gaussian distributions for the GSM
and GLM, the gradient of each can be straightforwardly
calculated. The gradient of the shape term, J1 is given by:

. (19)

where  is the variance of  as measured from the train-
ing set. 

The gray-level model term is more complex. The gra-
dient of J2 is given by

. (20)

Note that , the mean-centered profile (see Eq. 21) is
being written as  to indicate that it is a function of v,
the PCA-based boundary. The partial derivative term in Eq.
20 is given by

, (21)

where  is the mean gray-level profile through the jth LP.
The partial derivative of  depends, of course, on how the
gray-level profiles are defined during training, as well as on
the operator, . The profile samples here are calculated
as edge profiles based on a first-forward difference gradi-
ent:

, 

, (22)

Here,  and  are vectors that contain the values of the
 coordinate locations of the samples along the jth nor-

mal profile and are defined as (see Eq. 16)

, , (23)

, . (24)

where  is the angle of the jth profile. Also note that I is
the image under test and that  is the pose-corrected
coordinate pair indicating the location of the jth LP within
the image. The profile is also normalized by the sum of the
absolute values of the profile elements as:

.

The expression for the profile in this case is

, (25)

for . The gradient of the normalized profile in
Eq. 25 results in a lengthy but straightforwardly imple-
mented result. The final expression still requires one to cal-
culate the gradient of the image along the profile points—
that is,
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Applying the chain rule, we can write this partial derivative
as follows:

, (26)

We do not have an analytical form of the image, I, so we
calculate its partial derivatives via a finite-difference opera-
tion. Also, we can write the partials of  and  as fol-
lows:

(27)

. (28)

The partials of  and  (the scaled and rotated coordinates
of the jth LP) and  (the angle of the jth profile) have a
straightforward analytic solution. This completes the calcu-
lation of the gradient terms in the objective function, J. The
next section presents some results using PSAM.

3. Results
The PSAM algorithm was applied to images of a

mock-up industrial scene. Ten different views were cap-
tured of the scene in Fig. 1 by varying the horizontal per-
spective by +/- 30 degrees and the distance from the scene
by +/- 5 feet. The varied viewpoints create object orienta-
tion variations and scale variations that must be modeled by
the GSM. LPs were manually placed on object boundaries
in the 10 views and used as the training set. In the examples
shown the test image was left out of the training set used
for segmentation.

One result of a segmented cylinder is shown in Fig. 1.
A similar result of the same object from a visually
obstructed viewpoint is shown in Fig. 2. Note that although
a substantial part of the cylinder is occluded, the object was
still recognized and segmented successfully with only a
slight deformation of the left edge of the cylinder. Also
note that the edges of the segmented cylinder are not
clearly visible against the dark floor in either example. In
these regions the lack of clear edge detail forces the seg-
mentation to be more dependent on the shape model than
the gray-level model. In both cases the average LP error (as
compared to the ground truth training data) was < 2 pixels.
It took ~1-2 seconds to run the algorithm for each case on a
300MHz PC platform.

4. Conclusions and Future Work
A theoretical formulation for PSAM has been pre-

sented that has several improvements over similar tech-
niques. Most notable is the formulation of an objective
function that allows simultaneous optimization of the GSM
and GLM. The algorithm has been demonstrated success-
fully on a simple industrial-type scene.

There is work to be done to validate this new approach
on more complex scenes and objects. An earlier version of
the PSAM approach has been tested extensively on medical
image data with a high degree of complexity [9], so it is
quite reasonable to predict that much more complex indus-
trial scenes could be successfully segmented using this
approach. This earlier work also provides a detailed com-
parison of the PSAM and ASM approaches in terms of
PSAM’s superior performance on medical image data.
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Figure 1. Preliminary segmentation results using the new
shape modeling approach. The initial model position is
shown in (a) and (b) shows the final boundary position.

(a)

(b)



In terms of future enhancements to PSAM, optimiza-
tion strategies other than gradient descent will be explored.
Other approaches may be less susceptible to getting trapped
in local minima due to spurious edges in a complex scene,
for example. Finally, extension of the approach to 2.5-
dimensional (e.g. range) and 3-dimensional (volumetric)
data is underway. Successful segmentation of 3D synthetic
volumetric data has been demonstrated, and segmentation
of real-world 3D structures will follow.
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Figure 2. Initial model position (a) and segmentation result
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