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Abstract

This dissertation presents the development, implementation, and application of a uni-

fied probabilistic shape and appearance model (PSAM) algorithm for boundary-based

segmentation and recognition of semirigid objects on complex backgrounds. The tech-

nique assumes that the boundary is represented by a collection of individual landmark

points (LPs). These LPs are iteratively adjusted to fit the boundary of a new object based

on a priori information gathered from a training set of similar objects. The theory behind

this technique is based on compound Bayesian decision theory, and the formulation is

general enough that it can be used as a starting point to derive a variety of other probabilis-

tic boundary-finding techniques. The motivation for developing this new PSAM algorithm

arose from a need to segment and recognize semirigid anatomic structures within medical

images [particularly X-ray computed tomography (CT) images] that have faint and/or

missing edge information.

The starting point for this research was the active shape model (ASM) boundary-find-

ing algorithm. The ASM theory and its implementation are described in detail, along with

a collection of practical improvements that were made to the published algorithm. These

practical improvements are demonstrated on synthetic and real data. ASM was tested on a

a set of 2D medical images of kidneys within X-ray CT images of laboratory mice.

Although ASM performance was improved because of the practical enhancements, some

remaining fundamental problems led to poor segmentation accuracy in many cases. These

fundamental problems inspired the development of the PSAM algorithm.
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The PSAM algorithm contains three specific model components: (1) a global shape

model (GSM), (2) local shape model (LSM), and (3) a gray-level model (GLM). The

GLM formulation is based on gradient gray-level profiles normal to the object boundary

through each LP. All three of the PSAM components are optimized simultaneously when

boundary searches are performed within new images. PSAM is formulated in a convenient

manner so that the influence of each of these components on the final boundary position

can be controlled by the system operator via the adjustments of individual model compo-

nent weight parameters. This allows the same PSAM algorithm to be used in applications

with predictable global shape and relatively poor object edge strength, as well as in other

applications where global shape is unpredictable but object edges are prominent and/or

local shape models are applicable.

The new PSAM algorithm formulation provides confidence metrics for each of the

three model components that give the operator feedback on the boundary segmentation

result. These confidence metrics indicate how well each PSAM component (GSM, LSM,

and GLM) of the final boundary fits within the distribution of each component as derived

from the training data. These confidence metrics can be monitored to alert an operator to

any boundary results where one or more model components were found to be “out of

bounds” relative to the training data. Furthermore, it was demonstrated that for some

applications, the GLM confidence metric can be used as a predictor of segmentation accu-

racy.

The performance of the PSAM algorithm is summarized on both synthetic and real-

world data. The results of three cases of real medical image data segmentations are pre-

sented. These cases include X-ray tomographic images of anatomic structures within labo-
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ratory mice. Specifically, the skull, the heart and lungs, and the kidneys are segmented

using PSAM and ASM; and the results of the two algorithms are directly compared. In all

cases the PSAM algorithm performed well and in fact, outperformed ASM by a substan-

tial margin. It is shown that PSAM has a much larger degree of success than ASM on the

most difficult segmentation cases.

This dissertation concludes by summarizing the PSAM development and performance,

and then suggests a variety of future research topics that could lead to a PSAM algorithm

with improved performance and even broader applicability.
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CHAPTER 1

INTRODUCTION

This document is a Ph.D. dissertation in the field of probabilistic, statistical-based

deformable shape models for object segmentation and recognition in digital images. This

introductory chapter first presents the motivation for the research. It then introduces the

general field of deformable models for image analysis. It goes on to justify the choice of

one deformable model-based analysis technique— the active shape model (ASM) [22]— as

a starting point for the proposed research. It then summarizes the completed objectives of

this research, which include the development of a new unified probabilistic framework for

segmentation and recognition of semirigid objects in complex backgrounds via deform-

able shape models. Finally, the organization of the remainder of this document is outlined

at the end of the chapter so that the reader can explore in more detail any aspect of the

completed research.

1.1 The Motivation for This Research

The motivation for this work is the need for an algorithm that performs automatic seg-

mentation and recognition of semirigid objects within complex backgrounds. A semirigid

object is one that exhibits controlled shape variability across multiple instances of that

object. In a statistical sense, controlled variability implies that the intraclass variation of

object shape is less than the interclass shape variation. The algorithm must handle cases in

which the object’s boundary may be faint, obscured, or partially missing due to the com-
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plexity of the background on which the object lies. A complex background can either

obscure edges of the object and/or can introduce other confusing edge information that

does not belong to the object of interest. The algorithm should also take full advantage of

available a priori information regarding the appearance (e.g., shape and intensity charac-

teristics) of the object. Finally, to ensure the practical utility of the algorithm in an auto-

mated application, it should generate some measure of confidence associated with the

segmentation result. In summary, we seek a segmentation/recognition algorithm capable

of handling

• semi-rigid objects

• complex backgrounds

• faint, obscured, or partially missing object boundaries

• open and/or closed boundaries

• available a priori information on object appearance

• a need for segmentation confidence metric

To parallel this description with an application example, consider the field of medical

imaging, where anatomical structures may be somewhat predictable in terms of appear-

ance (e.g., organ shape and location), but where variations are always encountered from

subject to subject and within the same subject over time. Also, there are areas of the anat-
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omy (e.g. the abdominal cavity) where the appearance, location, and background of struc-

tures are quite unpredictable, making the segmentation task even more difficult. The

difficulties created by these variations in the organ and its background are, at least in part,

why semi-rigid organ segmentation is not as well studied as rigid-organ (or rigidly

enclosed organ, i.e., brain) segmentation. Also, in many cases of medical image analysis

there is an abundance of a priori information available in the form of the patient’s own his-

torical records as well as imagery from a potentially large population of other patients that

could be used for algorithm training. Finally, for automated medical image analysis to be

used in a clinical setting, there needs to be a confidence measure generated by the algo-

rithm to provide an opportunity for a clinician to intervene in the event of questionable

cases or unexpected results. 

1.2 Segmentation Methods

This section briefly describes the categorization of segmentation approaches into top-

down and bottom-up categories. Deformable models are then introduced, and a statistical-

based deformable model approach, ASM, is described as the starting methodology for the

proposed work.

1.2.1 Top-down versus Bottom-up Methods

Segmentation algorithms can generally be categorized into three classes: bottom-up,

top-down, and hybrid approaches. Bottom-up segmentation techniques are data-driven

and, hence, rely on little or no a priori information about the object of interest. The data

within the image drives the algorithm to a solution. On the other hand, top-down

approaches are model-based and rely heavily on a priori information to preconstruct an
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object model. Because the top-down model is defined to locate specific objects, it actually

combines the steps of segmentation and recognition into one. The data in the image,

though critical to the top-down algorithm’s success, play a smaller role in determining the

form of the final solution. Some techniques are a hybrid of bottom-up and top-down

approaches in that they rely heavily on both the image data and an object model when

searching for a segmentation solution. Depending on the specificity of the model, these

hybrid techniques may also combine the segmentation and recognition steps into a single

one. It is this class of hybrid techniques that is most applicable to the semirigid object seg-

mentation problem outlined previously. While the data must play an important role in

defining the actual shape of the semirigid object, the preconstructed model needs to ensure

that the resulting segmentation falls within acceptable shape limits. Some techniques

within the class of segmentation algorithms known as deformable models fall into this

hybrid category and are described next. 

1.2.2 Deformable Models

Deformable models belong to a class of algorithms that typically use a boundary rep-

resentation (2D deformable contour) or a surface representation (3D deformable surface)

of an object for segmentation purposes. The deformable contour is typically initialized by

placing a contour on the image and then iteratively adjusting its position and shape to best

fit the object’s boundary. The characteristics of the contour (e.g., local roughness, overall

shape) depend on a set of parameters that is adjusted and tuned via an optimization pro-

cess to best fit the information about the object as represented by the image data. These

parameters that control the general form of the resultant contour are typically referred to
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as internal constraints. The image data generate forces, referred to as external forces, that

attract or repel the model. In their foundational work on active contours, or snakes, Kass et

al. [57] formulated the internal constraints and external forces as internal and external

energy terms in an objective function that, when minimized, corresponds to the best fit of

the model to the image data.

1.2.3 Active Shape Models

Within the class of deformable models, ASM is one of the algorithms best-suited for

applications where a priori information is available for incorporation into the segmenta-

tion process. ASM uses a training set of images that have been manually segmented via

the placement of a collection of landmark points (LPs) along the boundary of an object.

Information is extracted from this training data to create two distinct models, a shape

model (SM) and a gray-level model (GLM), that together constitute the overall model in

this hybrid segmentation approach. SM is created using the spatial location and the inter-

relationship of LPs across the training images, while GLM is created using local gray-

scale gradient characteristics of sampled profiles within the training images. ASM is a

multi resolution search technique, so GLMs and SMs are created during training (and

applied during testing) at each of the predefined image resolutions.

To put the optimization of ASM in the general context of deformable contours,

described earlier, SM imposes the internal shape constraints on the final solution, and

GLM is influenced by the external forces created by the image data. ASM is initialized by

placing an “average” contour on a test image. The shape and position of this initial contour

is then iteratively updated to optimize its fit to the underlying image information. As in
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other deformable contour algorithms, the optimization of ASM achieves a compromise

between the internal constraints imposed by SM and the external forces influencing GLM.

An iterative scheme is employed whereby GLM finds a new set of LPs based on the best

fit to the image data and passes that LP set to SM. SM then constrains the shape of those

LPs to fall within the range of allowable shapes as defined by the training set and passes

this constrained set of LPs back to GLM. This process repeats until the constrained set of

LPs generated by SM stops changing. Because the SM and GLM are quite specific to a

particular type of object, their application also combines the segmentation and recognition

steps into one.

1.3 Active Shape Models: Strengths and Shortcomings

As is demonstrated by the initial segmentation results presented later in Sec. 3.2, ASM

is an excellent starting point to solve the type of problem described earlier as the motivat-

ing application for the proposed research. ASM does make substantial use of a priori

information through the creation of the GLM and SM components. The knowledge built

into these components during the training process allows ASM to segment objects with

faint and/or missing boundaries with remarkable accuracy. Another important advantage

that the ASM approach has over other deformable model algorithms is its intrinsic ability

to simultaneously handle multiple boundaries, both open and closed. Acknowledging the

strengths of the ASM technique is important; however, there are some critical shortcom-

ings of ASM that render it practically useless in the motivating application of automated

semirigid object segmentation.
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Recall that one of the characteristics of the motivating application was the possibility

of objects in a complex background. Such a background can in many cases generate spuri-

ous edge information that will confound most segmentation techniques, including ASM.

Because the GLM component matches gradient profile information, spurious edges can

generate multiple possible matches and, hence, an erroneous boundary position. If the

shape of this erroneous boundary happens to fall within the acceptable global shape con-

straints as indicated by the training set, SM has no chance of correcting the erroneous

decision. This shortfall can be attributed to at least two problems with the ASM approach:

(1) a reliance on only gradient information during GLM optimization and, more impor-

tantly, (2) the completely independent optimization of GLM and SM. 

Another important characteristic of the segmentation algorithm needed for the moti-

vating application is the ability to generate a confidence measure that can be used to set

flags for manual intervention. If there is no reliable means for the algorithm to flag anom-

alous results, then the algorithm becomes useless in an automated application. These

shortcomings of ASM demonstrate the need for a new statistical-based deformable shape

model and are the foundation for the research objectives and tasks outlined in the next sec-

tion.

Other researchers are currently exploring techniques that improve upon the foundation

provided by ASM. Two of the most notable developments have been by Wang and Staib

[96] [97], and Kervrann and Heitz [61]. Wang and Staib propose a Bayesian formulation

for optimizing the ASM solution for a given image that results in a maximum a posteriori

probability (MAP) objective function containing (1) a prior term based on the expected

global shape characteristics and (2) a likelihood term that relies on a Canny edge-detected
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image. Although this formulation allows optimization of both internal constraints

(expected shape) and external forces (Canny edge information), it abandons the effective

GLM objective function. The introduction of the more complex Canny edge-detector fits

more cleanly into the analytical formulation but is difficult to justify from a performance

standpoint. Kervrann and Heitz also propose a similar Bayesian formulation where the

external forces are derived from an edge-detected image. Furthermore, these researchers

introduce a post processing step where the optimized global shape is fine-tuned on a local

scale using a first-order Markov model to promote boundary smoothness. My research dif-

fers from these approaches in that it is a new boundary-finding algorithm that (1) incorpo-

rates modeling of local and global shape characteristics, (2) simultaneously leverages the

strengths of SM and GLM during contour deformation, and (3) generates a confidence

metric that can be used to flag anomalous cases. The theoretical framework developed

here is a unified probabilistic framework within which the existing approaches mentioned

previously fit as special cases.

1.4 Research: A New Probabilistic Deformable Model

This section outlines the research opportunities in the field of shape-based deformable

models and then describes the completed objectives that take advantage of these opportu-

nities. The research can be broken into two main categories, the first of which is a practi-

cal improvement in the existing ASM technology. The second is the development of a

fundamentally new probabilistic boundary-finding algorithm that relies on image-derived

training data similar to that used by ASM. The advantages of this new algorithm are sum-

marized at the end of the section.
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1.4.1 Practical Improvements to Existing ASM

The following objectives were completed as part of this research. Further information

on these completed objectives can be found in Chap. 3 and Chap. 4 as well as in references

[43] and [44].

Custom Implementation of ASM
Before one can perform any detailed research into the effectiveness and shortcomings

of the ASM technique, a custom implementation is required. This implementation process

itself ensures a complete, detailed understanding of the technique and provides a tool by

which one can experiment with every module and parameter of the algorithm. 

The ASM tool implementation was completed using MATLAB. Furthermore, it was

compared to a commercially available version of ASM and was found to perform better

(qualitatively and quantitatively) on sets of synthetic and real-world images. This tool

became the foundation for the boundary-based segmentation technique outlined in this

document.

Performance Enhancement of ASM
There were opportunities to make a significantly positive impact on the published

ASM algorithm’s performance by making three practical improvements. These three

improvements, described below, involved both the SM and GLM components.

1. Create Resolution-Dependent Shape Model: ASM is a multiresolution search tech-

nique. Typically, the shape constraints imposed by SM are identical at every resolution,

and this can lead to problems, especially during the low-resolution image search. The

large pixels used in low-resolution images allow ASM to cover a larger search area, but
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naturally lead to more significant variations in LP position. For this reason, an important

objective was to create a shape constraint that was a function of the current search resolu-

tion.

Resolution dependence was incorporated into SM to provide more stringent shape

constraints at lower image resolutions and more shape flexibility at higher resolutions.

This has led to much-improved segmentation results over the standard, resolution-inde-

pendent shape constraints (see Fig. 3.7).

2. Improve Numerical Stability of GLM: The published form of the GLM objective

function can lead to a numerical instability during GLM optimization. This occurs when

the gray-level gradient profiles for a given LP are relatively consistent across all of the

images within the training set. This leads to a situation in which a training set with little or

no variation in object edge characteristics causes the GLM objective function to become

indeterminate. The objective was to reformulate the GLM objective function to more ele-

gantly handle this potentially common circumstance.

Principal component analysis (PCA) was performed on the gray-level gradient profiles

for each LP across the training images. The PCA is used to construct a transformation

matrix that, when applied to new profiles, in effect removes those profile elements that

have little variation across the training set. The new GLM objective function acts on these

transformed profiles and therefore does not encounter numerical instabilities.

3. Incorporate Absolute Intensity into GLM: ASM uses image gradient profiles as a

basis for optimizing the position of individual LPs. It became clear through the initial test-

ing of ASM that some benefit could be derived by including absolute intensity informa-
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tion in GLM. There are a variety of segmentation tasks in which the absolute intensity of

the object can be characterized. The objective here was to incorporate this information

into the GLM search process.

An additional term based on absolute intensity profiles was added to the GLM objec-

tive function. Recall that one of the motivations for this work was to handle segmentation

in complex, unpredictable backgrounds. For this reason the absolute intensity profiles

included here are sampled only within the interior of the object. This has also led to

improved segmentation results (see Fig. 3.9 and Fig. 3.10).

Development of a New Probabilistic Deformable Shape Model
The ASM approach can be roughly broken down into two main concepts that make it a

unique tool for object segmentation/recognition applications. First is the incorporation of a

priori information in the form of training data that is acquired and used to develop shape

and gray-level models. This concept of ASM has been demonstrated to be quite effective.

The second, equally important ASM concept is the optimization process that is employed

to deform these shape models to fit objects in new images. The noted shortcomings of the

ASM optimization process motivated the development of a new optimization scheme and,

hence, a new probabilistic deformable shape model. The following three subobjectives

encompass the overall objective of developing this new deformable shape model.

1. Reformulate the Shape-Model Deformation Scheme: The published ASM approach

separately optimizes the SM and the GLM components of the ASM. GLM searches the

image gradient profiles and updates the LP positions with no regard as to how well they

will fit the global constraints imposed by SM. Similarly, SM fits a new (model-generated)
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set of LPs to the GLM-suggested LPs with no regard as to how this new set matches the

gradient profile information contained in the GLM. Clearly, this is not the best approach

for optimizing the ASM boundary. The probabilistic reformulation improved upon the

ASM approach by using the gray-level and global shape information captured in the train-

ing set in a more robust and efficient way that simultaneously considers the effects of both

during the deformation process. 

2. Incorporate Local Shape Characteristics. In addition, local shape characteristics

were incorporated into the formulation to improve the optimization of critical LP position

movements. Modeling local shape characteristics for more accurate local LP updates is a

unique approach that has not been pursued in any of the most recent ASM research litera-

ture.

3. Develop a Segmentation Confidence Metric: The lack of interaction between the

GLM and SM creates another unfortunate situation in that no confidence measure is avail-

able to approximate how well the ASM segmentation algorithm has performed on any

given image. In some fully automated applications, this renders the ASM technique use-

less. The reformulation of the optimization scheme provided a means to generate a perfor-

mance confidence metric that makes possible the use of this new probabilistic deformable

shape model in a fully automated application.

1.5 Document Organization

A thorough background of the published deformable model research is presented in

Chap. 2. This background information includes the foundational research in the field, var-
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ious algorithmic approaches that have grown out of this foundation, and a collection of

applications in which deformable model algorithms have been used. 

Chap. 3 presents the theory behind the development and application of ASM. The

strengths and shortcomings of ASM are also outlined. Chap. 3 proceeds to describe the

practical improvements made to the ASM algorithm and validates these improvements

through various examples. It concludes by describing the fundamental shortcomings of

ASM that limit its applicability.

Chap. 4 presents the theoretical development of the new probabilistic shape and

appearance boundary-finding algorithm. This includes the compound Bayesian formula-

tion of the objective function, followed by the derivation of the objective function, its gra-

dient, and a description of the optimization of that function.

Experimental results for a variety of synthetic and real data are presented in Chap. 5,

followed by conclusions and suggestions for future work in Chap. 6.



14

CHAPTER 2

BACKGROUND: SEGMENTATION METHODS

This section opens with a general discussion of the segmentation problem, then pre-

sents a convenient categorization of segmentation techniques. This categorization leads to

a discussion of deformable models, followed by a detailed literature review of deformable

model research.

2.1 The Significance and Difficulty of Segmentation

Image segmentation in computer vision applications can generally be described as the

process of differentiating the object of interest in an image or a volume from its back-

ground. Computer vision researchers generally agree that segmentation is one of the most

challenging and important tasks in the field of computer vision. Historically, many com-

puter vision problems have been roughly broken down into a three-step process: (1) seg-

mentation, (2) feature extraction and analysis, and (3) recognition (or classification).

Segmentation, being the first step in the process in this serialized approach, has direct

impact on all tasks that follow. If an object is not accurately segmented from its back-

ground, the subsequent tasks of feature extraction and classification may become mean-

ingless or, even worse, inaccurate. Hence, the segmentation task is critical to the success

of the entire analysis. To compound matters further, it is often the most difficult task of the

three.
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The difficulty of the segmentation task depends on many factors, including the pre-

dictability of the object of interest. If the object can be described uniquely within an image

using features like intensity, texture, and shape, then the likelihood of successful segmen-

tation is generally high. Two main problems can dramatically increase the difficulty of

segmentation, and hence decrease the potential for success: (1) inconsistencies in the

appearance of the object from image to image, and (2) background clutter and noise in the

image. An object whose appearance varies wildly will confound a technique that makes

narrowly defined assumptions about object appearance. In addition, background clutter

and noise in an image may both obscure the object of interest and may confuse the seg-

mentation technique by “distracting” the algorithm away from the object of interest.

All segmentation algorithms are constructed so as to incorporate some assumptions

about the appearance or structure of an object. These assumptions may be very simple—

e.g., the object has detectable boundaries or a particular internal intensity/texture— or they

may be quite complex such as in the case of highly parameterized, model-based segmenta-

tion algorithms. For any given segmentation technique, these underlying assumptions

drive the algorithm to a solution. If these assumptions are invalid for a given image, the

algorithm is doomed to fail. As an example, thresholding, one of the simplest forms of

segmentation, makes the assumption that the object of interest will have a unique range of

intensity values within the image. If this assumption is violated, thresholding the image

will result in a poor segmentation. Some of the most challenging segmentation tasks

involve objects that have significant, but controlled variations in appearance. These tasks

require a segmentation algorithm that makes specific assumptions about the object of
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interest but at the same time has the flexibility to accommodate all of the acceptable object

variations.

2.1.1 Medical Image Analysis

Medical image analysis is a good example of a field in which the appearance of

objects, although somewhat predictable, may vary widely. The assumptions built into a

segmentation algorithm must be able to accommodate this variation. Healthy organs will

vary in shape, size, and position from subject to subject as well as within the same subject

at different times. This is especially true of organs within the abdomen of the body such as

the stomach, liver, kidneys, and intestines. Human beings have remarkable ability to seg-

ment an object from the background in an image, even when the object is partially

obscured or has an inconsistent appearance. Although the exact sequence of events that

occur within the human brain during such tasks is unknown, it is clear that a person’s abil-

ity to perform a task improves with practice. This is due, at least in part, to the ability of

the brain to recall knowledge from previous experiences and then apply that knowledge to

subsequent tasks. If an untrained person looks at 100 labeled images of healthy kidneys,

for example, that person will learn the acceptable variations of kidney shape, size, loca-

tion, intensity, etc., and will likely be able to quickly identify healthy kidneys in subse-

quent images. It is precisely this type of a priori information that many developers of

advanced segmentation techniques attempt to encapsulate into their algorithms. 

2.1.2 Segmentation and Object Recognition

With a segmentation algorithm that incorporates significant amounts of a priori infor-

mation, there is a point at which this algorithm can be considered both a segmentation and
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an object recognition technique. If, for example, strict circular shape constraints are placed

on the analysis result so that only objects that are circular are segmented within the image,

then the algorithm accomplishes two tasks. First, it separates the object of interest from

the background (segmentation), and second, it automatically, by default, identifies it as a

circle (recognition). Both of these tasks together fall into the broader computer vision task

of scene analysis. This leads directly to a discussion of one way to categorize scene analy-

sis techniques.

2.2 Bottom-up versus Top-down Methods for Scene Analysis

One useful way to categorize the variety of different scene analysis techniques is by

considering the main driving force behind the algorithm that leads to the final result. Some

algorithms rely more on the data in the image to influence the solution, while other algo-

rithms make up-front assumptions about the analysis problem that strongly influence the

final form of the solution. In addition, a third class of algorithms use a compromise

between the data and the model. These three classes of algorithms are sometimes referred

to as (1) bottom-up, (2) top-down, and (3) hybrid analysis techniques [17].

At one end of the spectrum, bottom-up analysis algorithms are completely data-driven

in that they rely entirely on the data within the target image to come to a conclusion. In

purely data-driven strategies, no other sources of information are used as guides and/or

constraints to arrive at a solution. Bottom-up approaches have the advantages of being

flexible (e.g., they are applicable to a variety of object shapes and sizes) and requiring lit-

tle or no a priori information to perform their task. If, however, the data are corrupted by

noise, clutter, occlusions, etc., then bottom-up strategies will not perform well because
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they have no other source of information to rely upon. Examples of data-driven analysis

strategies are adaptive thresholding and region-growing. Generally, bottom-up approaches

are simpler in theory and implementation than their counterparts in the top-down analysis

category. Bottom-up techniques cannot be relied upon for object recognition because post-

processing of the result is necessary to identify the object.

At the other end of the spectrum are top-down analysis algorithms that start with very

specific assumptions about the characteristics of the target image, the object of interest,

and, hence, the final solution. These assumptions are based upon a priori information

about the particular analysis problem at hand. These assumptions might include expected

object characteristics (e.g., shape, color, texture) as well as background characteristics

(e.g., consistency, homogeneity, intensity). These assumptions are used in many cases to

preconstruct some type of image model with characteristics and constraints that corre-

spond to the up-front assumptions. In top-down strategies, the data are examined to deter-

mine how to perturb the model in an attempt to fit it to the object(s) of interest.

Very few scene analysis algorithms are purely bottom-up or top-down. Most fall on a

continuum of hybrid approaches between these two ends of the spectrum. The next section

reviews a class of analysis techniques called deformable models made up of a varying

hybrid of bottom-up and top-down approaches.

2.3 Deformable Models for Image Analysis

Deformable model-based analysis techniques belong to a class of algorithms that use a

priori information to preconstruct a model of the object of interest. Deformable model

techniques are actually composed of a significant mix of top-down and bottom-up strate-
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gies and, hence, fall into the hybrid category mentioned in the previous section. Fig. 2.1

illustrates the relationship between deformable models and the top-down/bottom-up scene

analysis techniques. Most deformable models accomplish both tasks of object segmenta-

tion and object recognition simultaneously. This is a result of the a priori information that

is used to constrain the deformable model and, hence, the final solution. The algorithm

will segment only the objects allowed by the preconstructed model. This is a tremendous

advantage of these techniques because it prevents the propagation of error throughout the

computer vision system that follows the traditional serialized approach of segmentation,

feature extraction, and recognition (or classification). In the context of deformable model

discussions, when the term segmentation is used in this document, it will imply object rec-

ognition as well. 

Fig. 2.1 Illustration of top-down vs bottom-up scene analysis techniques. Note 
that deformable models fall under the “hybrid’ category of techniques 
that rely on a combination of data-driven and model-driven strategies.

Bottom-Up Top-Down

Scene Analysis Strategies

Deformable Models

Low-Level Mid-Level High-Level
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Specific
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Data-Driven Data & Model-Driven

General & Specific
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In most cases deformable model approaches use a model that is a representation of

either the boundary of an object in a 2D image or the surface of an object in a 3D volume.

The shape of the model depends on a set of parameters that are adjusted and tuned via an

optimization process to be compatible with the information about the object as defined by

the current image data. These predetermined parameters control the general form of the

resultant model and are typically referred to as internal constraints (or internal energy).

The image data typically generate forces, referred to as external constraints (or external

energy), that somehow attract or repel the model to a state that optimizes the combination

of internal (model-driven) and external (data-driven) forces. The goal of a deformable

model-based algorithm is to find a good compromise between these internal and external

forces.

The remainder of this section introduces three classes of deformable models, provides

background on past and current research in the field, and finally addresses the topic of

what types of data within an image drive a deformable model to a particular segmentation

solution. For additional reviews of deformable model research consult references [56] and

[71].

2.3.1 Low-, Medium-, and High-Level Models

The deformable model may range from the simple to the complex depending on the

type and amount of a priori information available about the object. Deformable models

can be loosely categorized into low-level, mid-level, and high-level classes depending on

the level of control that the model imposes on the segmentation result. As illustrated in

Fig. 2.1 low-level models are used in more bottom-up segmentation strategies in that the
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information in the current image has the most significant control over the result. Alterna-

tively, high-level models are used in more top-down segmentation strategies. The precon-

structed model has the most significant control over the segmentation result, and the

image data only accounts for slight perturbations in the model. Mid-level models are used

in several deformable model segmentation algorithms where there is varying trade-off

between the amount of data-driven versus model-driven control.

2.3.2 Research in Deformable Models

This section presents the significant highlights in deformable model research over the

past 12 years. While not comprehensive, this summary does cover the major subject areas

and highlights many of the important contributors to the field.

Low-Level Models
Although deformable model research dates back to 1973 ([99], [100]) the original

research on piece-wise splines by Kass, Witkin, and Terzopoulos [57] is considered by

most to be the foundational work in the field of deformable models. Better known as

“snakes,” or active contours, these deformable models are considered low-level because

they are constrained only by local smoothness parameters and have no overall shape con-

straints. These researchers coined the internal and external energy concepts that are still

widely used in current algorithm development strategies for deformable models. Prior to

this Gritton and Parrish introduced a form of snake called a bead chain [49], but the opti-
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mization of this chain was not as sophisticated as that by Kass and colleagues. Their

energy function is modeled by internal and external energy forces as follows:

, 2.1

where

, 2.2

 is the parametrized contour ,  represents the internal energy of the

spline due to bending,  represents forces imposed by the target image, and 

represents external constraint forces that the user may impose. For snakes, the internal

energy is related to the smoothness of the active contour, and the external energy is based

on edge information in the target image. 

Because snakes are more of a bottom-up, data-driven concept, they are very useful and

flexible in images with “clean” data (noncluttered images with well-defined objects and

continuous borders). They were designed to be interactive and require good initial guesses

to converge to the correct solution. The more corrupt and unpredictable the data, the better

the initial guess must be for success. They tend to become trapped in local minima, espe-

cially when the image is cluttered with spurious edges. If the global shape of the object is

known a priori, then there is not a convenient way to include this knowledge in the snake

deformation process. 
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The internal and external energy concepts for snakes are important to almost every

other deformable model approach. The internal energy term can be represented by

, 2.3

where  and  are the first- and second-order derivatives of v. From this energy

equation one can see that the values of α and β control the first- and second-order smooth-

ness of the spline v(s).

If we assume the external energy force is composed only of image forces with no addi-

tional user-imposed constraints (Econ = 0), then the only contribution is by Eimage. In fact,

in most snake implementations, the image is the only contributor to the external energy

terms. In practice, a variety of image-derived forces are used, but the most common form

of image energy is given by edge content

, 2.4

where  is the image of interest.

Snakes and their derivative works have been successfully applied to a wide variety of

segmentation problems. Some examples are mouth detection [57], object tracking ([4],

[7], [8], [29], [42], [53], [65], [93]), image retrieval [27], medical image segmentation

([35], [72]), and more specifically, brain image segmentation [3] and ultrasound imagery

[64].

Much work has been done to improve upon this original active contour model. Tagare

[91] employs an orthogonal curve constraint for better control of snake motion and, hence,

better controls the global shape of the object. This strategy also reduces the search space
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so that optimization can be achieved more quickly. Terzopolous and Metaxas [92] take

this idea a step further and employ a superquadric ellipsoid model on a global scale along

with membrane splines at the local level. The result is a model with flexibility similar to

snakes to capture detail, but with an overall global shape constraint. Chandran and Potty

[15] use dynamic programming to improve the snake-fitting optimization process in terms

of speed and accuracy. Other notable alternative formulations of the snake energy can be

found in references [2], [37], [40], [76], and [101]. In addition, snakes have been general-

ized to 3D in references [9], [19], [20], [21], [74], [92], and [94]. Although some promis-

ing results are reported, a comprehensive analysis of their effectiveness on 3D

segmentation problems has yet to be reported.

The classical active contours are topologically limited in that they cannot split, merge,

fold over on themselves, etc., so work has been done by McInerney and Terzopoulos [72]

and by DeCarlo and Metaxas [26] to develop a topologically adaptable snake. In this

approach, a decomposition grid is iteratively re-parameterized to allow topological

changes of the contours. O’Donnell, M. Dubuisson-Jolly, and Gupta [77] have adapted

snakes for application to branching cylindrical structures. Theoretically, the development

of snakes is not conducive to topological variation, and published approaches are “add-

on” adaptations that attempt to overcome this limitation. 

The deformable models known as geodesic snakes lend themselves better to handling

topological changes. This category of low-level approaches to boundary-based image seg-

mentation (Casselles et al. [10], [11], [12]; Malladi, Sethian, and Vemuri [68]; and Sapiro

[84]) evolved out of the field of differential geometry, where curve evolution and geomet-

ric flow theory are well-characterized mathematically but had not been adapted and
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applied to the field of image segmentation until recently. As described by Whitaker [98],

these 2D geodesic snakes can be characterized as a level set (contour) of an image (or an

isosurface of a volume) and therefore can take on any shape allowed by the discrete pixel

(voxel) grid in the image. A geodesic snake can split and merge to allow detection of mul-

tiple objects simultaneously. Also, these level sets can be extended directly to 3D [58]

because the math supports this without any additional theoretical development. 

Geodesic snakes are very flexible in terms of overall shape and are good at capturing

the details of complex objects but, like other more bottom-up approaches, are less accurate

in the presence of noise and image clutter. Also, incorporation of a priori information (e.g.

global shape constraints) to limit variability has not been actively researched and/or

reported. Most implementations are data-driven, with some simple smoothness con-

straints. Because geodesic snakes are non-parameterized, they have topological flexibility,

but the results are also more difficult to interpret. Although one is likely to know the gen-

eral form of the objects delineated by geodesic snakes based on the current application,

their nonparameterized form requires additional postsegmentation analysis to complete

the task of object recognition.

A detailed description of geodesic snakes is beyond the scope of this work, but Nies-

sen, Romeny, and Viergever [75] present a good summary of the research in this field

along with a comparison of implicit models (geodesic snakes) versus explicit models

(classical snakes) as applied to medical imagery. Application of geodesic snakes to brain

anatomy analysis [6] and bone segmentation [67] have been reported in the literature.
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Mid-Level Models
Many deformable model algorithms rely heavily on both the model and the image data

to converge to a segmentation solution. These models are used in algorithms that would be

considered a substantial mix of bottom-up and top-down approaches. These mid-level

models tend to be more generally applicable to various segmentation problems. They lack

the flexibility and ability to capture the minute details that the low-level models do, but

they are more flexible than the well-constrained, high-level models. All of the well-known

mid-level model approaches allow the user to somehow define the degree of flexibility the

model will possess. This model flexibility may be characterized by either a user-created

training set of manually segmented objects or a collection of user-selectable model param-

eters that must be valued based on a priori knowledge of object characteristics.

Staib and Duncan [87] proposed a model parameterized by an orthonormal basis of

sinusoids. The parameters of the model are Fourier coefficients that provide a convenient

and theoretically elegant way to control boundary smoothness. Including higher-order

coefficients in the model allows for higher-frequency components and, hence, increased

local boundary roughness. Allowable variations of these coefficients are determined via

analysis of a training set and are used to constrain the final state of the contour. A couple

of limitations noted about this approach are that sinusoidal basis functions are inefficient

in approximating discontinuities such as corners, and they also lack the straightforward

relationship between Fourier parameters and object shape. A Fourier representation has

also been used for segmenting magnetic resonance imaging (MRI) images and volumes in

[90].
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Pentland and Sclaroff ([79], [85]) use a finite-element model of a base shape (e.g., an

ellipsoid) and mathematically derive the modes of shape vibration where low-order modes

control global shape and high-order modes control local shape variations. Although a

training set is not needed for this method, it does require the user to impose knowledge

about the application by setting model parameters. Depending on the application, the user

must choose the number of vibration modes allowed during the deformation process.

These modes must be determined and set manually before application of this technique

can be successful. For example, to model the human head the authors use the first 30

modes of vibration.

Discrete, or point-based, shape representations are commonly used in shape models

because of their convenience and their simple, yet effective ability to characterize shapes.

Points are easy to keep track of, and shape measurements can be made simply and quickly

using a point representation. It was not until the work of Cootes et al. ([22], [28]) that a

mid-level deformable model approach was introduced that made extensive use of training

data in the form of user-defined LPs that delineate significant shape features. The authors

coined the term “active shape model” (ASM) to describe these contours. ASM is shape-

constrained by the measured shape variations within the training set and, at the same time,

are attracted to edges in the target image. An optimization strategy is used to balance the

shape constraints imposed by the model and the attraction force generated by object edges

within the target image. The optimization strategy used in ASM is a brute-force iterative

scheme. 

ASM has been successfully applied to face recognition, knee cartilage segmentation

[22], human vertebra segmentation [86], heart ultrasound imagery [52], and brain MRI
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segmentation [51]. Extension of ASMs to 3D is straightforward but currently impractical

due to the difficulty of generating a sufficient 3D training set. Given that ASMs are part of

the foundation for the work proposed here, a more detailed account of their advantages

and disadvantages and the theory behind them is given in Chap. 3.

As mentioned in the Introduction, only two substantial adaptations of the ASM

approach have been reported in the literature. First, Kervrann and Heitz [59][60][61]

present an ASM segmentation approach that models global shape characteristics com-

bined with Markov modeling on the local scale that promotes boundary smoothness. A

joint Bayesian estimation function is created and optimized, leading to a MAP solution.

The focus of Kervrann and Heitz’s work is on motion-tracking applications. The second

ASM adaptation, by Wang and Staib [96] [97], also uses the ASM approach for segmenta-

tion but performs the ASM fitting procedure using a MAP approach similar to the theory

behind the Fourier boundary model representation [87] discussed previously. Another dif-

ference between Wang and Staib’s approach and ASM is that Wang and Staib include the

pose parameters (translation, scale, and rotation) as part of the parameter set that is opti-

mized. In the approach of Cootes et al., pose parameters are calculated separately from the

shape parameters. Both of these ASM adaptations rely solely on edge information in the

target image as the external attraction force. Duta and Sonka ([33], [34]) have also adapted

the original ASM approach and have slightly modified the optimization scheme. Fritsch et

al. [39] also use a statistical model of shape, but extend the boundary representation from

a collection of LPs to slightly more complex geometric representations. Finally, noting

that ASM is a statistical approach, Grenander [46] and Grenander and Keenan [47] have

published useful information on the role of statistical approaches for image understanding.
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High-Level Models
High-level models (also referred to as deformable templates) incorporate stringent

constraints on the final shape of the object, both globally and locally. There is little flexi-

bility in how the data can influence the model parameters. High-level models can be

extremely useful in applications where one knows precisely what object is to be seg-

mented, and the shape characteristics of that object are well understood. As one would

expect, since the high-level algorithms rely heavily on model characteristics and rely less

upon the actual data, they are claimed to work well in the presence of noise, clutter, and

occlusions. An example of a high-level technique not typically grouped in the category of

deformable models is the generalized Hough transform [5], [32]. In fact, the generalized

Hough transform is commonly used in other low-, mid-, or high-level deformable model

approaches to initialize the first instance of the model (e.g., in [62]). 

Examples of high-level models used in segmentation algorithms are parameterized

analytic functions (e.g., polynomials) whose coefficients are allowed to vary within

imposed constraints [54]. Yuille, Hallinan, and Cohen [102] used these parameterized

templates to address the problem of face recognition. Mirhosseini, Yan, and Lam [73] also

employed a deformable template approach for mouth boundary detection. Deformable

templates have also been used for image restoration [1], robot vision [16], character recog-

nition [55], general occluded object detection [69], and vehicle segmentation [30]. What

each of these approaches has in common is that the template is strongly based on the shape

of the object of interest, and they are therefore very application specific. New templates

must be developed for new applications. Because these templates are highly constrained,

their optimization is relatively straightforward and very fast.
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2.3.3 Boundary versus Region-based Deformable Models

To this point, not much attention has been given here as to specifically what data

within the image drive deformable models to a particular solution. In the vast majority of

cases, deformable model algorithms are developed and implemented so that the external

attraction force is generated by edge information within the target image. Although edge

information is an essential component for many segmentation problems, relying solely on

edge information will likely lead to problems in at least the following three situations: 

• Blurred and/or faint edges will lead to a weak attraction force for the deformable 

contour.

• Occluded or partially missing edges can be troublesome in that parts of the 

deformable contour will lock in on the strong edge information while the rest of the 

contour may to “wander” aimlessly in search of the missing edges. This can distort 

the final result.

• Spurious edges generated by clutter within an image will attract the deformable 

contour away from the desired edge.

These situations motivate the inclusion of additional external energy forces that can help

attract a deformable model to the desired solution.

Surprisingly, the research into this notion of incorporating new external energy forces

has been quite limited compared to purely boundary-based solutions. Poon et al. [80] and

Ronfard [82] have extended the active contour model to allow inclusion of additional

object features that can contribute to the discriminant function. Region-based information
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is used to generate an energy term that is included in the energy objective function given

by Eqn. 2.1 [25]. Chakraborty, Staib, and Duncan [13] have extended the Fourier-parame-

ter, MAP approach in reference [87] to include regional intensity information within the

object. Gauch, Pien, and Shah [41] present a two-phase approach of region-based segmen-

tation to initialize a deformable boundary, followed by optimization of that boundary

using traditional active contour methods. Zhu and Yuille [104] have also integrated region

information by combining aspects of both region-growing and active contour models with

a balloon inflation force. In the field of ASM, Cootes, Edwards, and Taylor [23] have

modified their original approach to include gray-level information sampled from the inte-

rior of the target object. Shape and gray-level intensity parameters are all grouped

together, and a principal component analysis (PCA) is performed on data extracted from a

training set to identify the most significant modes of variation. The resulting model is

called an active appearance model (AAM). AAMs are optimized in a manner similar to

the ASM optimization approach. This technique has been recently applied to face recogni-

tion [63] and general object localization [103].
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CHAPTER 3

THE ACTIVE SHAPE MODEL AND PRACTICAL IMPROVE-
MENTS

Recall (from Sec. 1.1) that the motivation for this work is the need for an algorithm

that performs automatic segmentation and recognition of semirigid objects within com-

plex backgrounds. ASM has been identified as a good starting point for this research, so

this chapter outlines the theory behind its development. It then presents some of the

strengths and shortcomings of the approach, followed by a description of several practical

improvements that were designed and implemented. The chapter ends with some exam-

ples and a discussion of the need for fundamental changes in the existing ASM boundary-

finding algorithm.

3.1 ASM Theory

It was not until the work of Cootes et al. [22] that a deformable model approach was

introduced that made extensive use of training data in the form of user-defined LPs that

delineate significant shape features. These authors coined the term ASM, or “smart

snakes,” to describe these contours because of the a priori knowledge that is built into

them via a training procedure. ASM is shape-constrained by the measured shape varia-

tions within the training set and, at the same time, is attracted to edges in the target image.

An optimization strategy is used to balance the shape constraints imposed by the model

and the attraction force generated by object edges within the target image.
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A simplified view of the ASM training and optimization process is shown in Fig. 3.1

to illustrate the main components of the algorithm. The remainder of this section breaks

the theory down into more detail. The training process consists of two separate tasks: (1)

training the shape model (SM) and (2) training the gray-level model (GLM). Together,

SM and GLM constitute the complete ASM. Both of these training processes require a set

of training images with manually labelled LPs that define the boundary of the object(s) to

be segmented. SM constrains the final shape of the resulting ASM boundaries to look like

those represented by the training set. Comparing this technique to the original work in

active contours by Kass, Witkin, and Terzopoulos [57], we see that SM represents the

internal forces. Optimizing the fit of SM to a test image is comparable to minimizing the

internal energy term in Eq. 2.1. The GLM is used to update the position of the ASM

boundary under the influence of the data within the image. Optimizing the GLM can be

compared to minimizing the external energy term of Eq. 2.1. Note that fitting the ASM to

a new image is an iterative process in which the GLM and SM are independently applied

to the current set of LPs. This independence of GLM and SM is important to note because

it leads to some problems with the ASM technique that can be solved by improving the

level of communication between these two models. This is an important motivation for the

proposed research to be presented later in Sec. 4.1, but it is important to first outline the

current ASM theory.

3.1.1 Training via Landmark Points (LPs)

The training process for the model consists of gathering a substantial collection of

sample images and manually placing LPs in the image that define the location of impor-
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(a) ASM Training Procedure

(b) ASM Optimization Procedure

Fig. 3.1 Simplified ASM flow diagram. Shown are (a) the ASM train-
ing procedure and (b) the ASM optimization procedure

LPs

of ASM of ASM
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tant and/or unique points of the object of interest. Appropriate choices for these LPs are

typically along the boundary of the object of interest and should capture unique features of

the boundary such as corners, points, and high-contrast areas. It is also appropriate to mark

additional, equally spaced points along the border between these unique features. The

image in Fig. 3.2 shows a sample training image labelled with LPs.

For a 2D application, the N LPs for the ith training image can be written as a vector,

, of length 2N:

3.1

One of these vectors is created for each image in the training set to form a set of training

vectors. There must be correspondence between the LPs from one training image to

Fig. 3.2 Example of a mouse kidney training image. Pictured is an X-ray 
CT cross-section image with the manually placed landmark points 
(LPs) along the kidneys and spine borders

ptrain i( )

ptrain i( ) x1 x2 … xN y1 y2 … yN, , , , , , ,( )T=
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another. That is, a given landmark point, , should be placed on the same image fea-

ture across all images in the training set. This is important for the next step in the training

process: alignment of the set of LP vectors within the training set.

3.1.2 Training Set Alignment via Procrustes Analysis 

Before a statistical analysis can be performed on a set of training vectors, they must be

aligned to a common coordinate frame. Cootes and associates [22] accomplish this using

an iterative process with the key step being Procrustes analysis [45]. Procrustes analysis is

a technique used to find the pose parameters (translation, scale, and rotation) that align

two sets of corresponding LPs. This technique first translates one set of LPs such that its

center of gravity is aligned with that of the first set. Then the same set of LPs is rotated

and scaled using parameters that minimize the sum of squared distances between corre-

sponding LPs in each set. Cootes et al. embed this alignment procedure within an iterative

framework as follows:

1. Align the centers of gravity by translating the center of gravity for each LP training set 

to the origin.

2. Choose one training sample (e.g., the first one) as initial mean shape, , and 

normalize it so that .

3. Call this current estimate of the mean  to define the default orientation.

4. Align all training samples, , to the current mean, , for all i = 1… M (M = num-

ber of samples in training set). The aligned set of training samples is defined as . 

xi yi,( )

p ptrain i
=

p 1=

pdef

ptrain i
p

p̂train i
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Minimize sum of point-to-point distances to the mean, D, via Procrustes analysis.

5. Reestimate  from the aligned training samples.

6. Align  with  and normalize.

7. Check for convergence. If convergence has not occurred (i.e.,  continues to change), 

return to step 4.

This procedure typically converges after a few iterations. The aligned shapes can then be

analyzed statistically to determine the significant modes of variation in the training set as

described in the following section. An example of a set of shapes for the kidney images

before and after Procrustes alignment is shown in Fig. 3.3.

3.1.3 Creating ASM via Principal Component Analysis (PCA)

The ASM must capture the significant variations in shape represented in the collection

of manually labelled training samples. This variation can be represented in a convenient

way by performing a principal component analysis (PCA) on the aligned training samples.

PCA (also known as the Karhunen-Loeve transform [31]) transforms the original data into

a new space in which the significant modes of variation in the training data occur along

the orthogonal axes. The orientation of the axes is given by the eigenvectors of the covari-

ance matrix of the original training samples, and the corresponding eigenvalues provide a

value for the variance of the training data in the direction of those eigenvectors. This rep-

resentation is very useful because one can quickly and easily identify the direction and

extent of the variation in the training data set. As a result, one can put constraints on ASM

p

p pdef

p
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Fig. 3.3 An example showing a set of kidney and spine LPs:  (a) with aligned cen-
ters-of-gravity and (b) after complete alignment via Procrustes Analysis

(a)

(b)
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based on the significant modes of variation in the training data. PCA is carried out via the

following steps:

1. Compute the mean of the aligned training samples,

. 3.2

2. Compute the covariance, C, of the training samples,

. 3.3

3. Determine the eigenvectors, φi, and eigenvalues, λi, of C. Sort the eigenvalues and 

eigenvectors from largest to smallest eigenvalue.

4. Compute the total variance (sum of eigenvalues),

. 3.4

5. Choose the first t eigenvalues such that their sum captures at least a large fraction, fv, 

of the total variation in the training set,

, 3.5

where fv would typically be a number like 0.98 (i.e., captures 98% of the variation in 

the training set).

6. Model any new sample  as

, 3.6

p 1
M
----- p̂train i

i 1=

M

∑=

C 1
M 1–
-------------- p̂train i

p–( ) p̂train i
p–( )'

i 1=

M

∑=

VT λi
i 1=

2N

∑=

λi fvVT≥
i 1=

t

∑

p̂

p̂ p Φ b+=
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where the columns of Φ  are the first t eigenvectors corresponding to the largest t 

eigenvalues.

The eigenvectors within the matrix Φ  define the axes of a new t-dimensional vector

space to which we can transform our aligned training vectors, . The elements of b

define the extent of the shape along the axes formed by the corresponding eigenvectors.

Hence, these elements of b define the parameters of the ASM, so that fitting the ASM to a

new set of LPs is optimizing its parameters, the vector elements of b. The process of find-

ing this new set of candidate LPs is described in the following section.

3.1.4 Training the GLM

To find a new set of candidate LPs to submit to the ASM, one first has to create GLM

for all of the LPs. This GLM takes the form of an objective function that is minimized to

find new LPs in new test images. The GLM training process is as follows:

1. For each LP, sample the gray-level profile (k pixels on either side of the LP) along the 

normal to the boundary that passes through that LP. Take the derivative of the profile 

and normalize it by the absolute sum of the element values. This results in a 2k + 1 

length vector, , for each LP.

2. Calculate the covariance, , of all derivative profiles, , for a given LP across all 

images in the training set.

3. Calculate the mean derivative profile, , by averaging all the profiles for an LP 

across all images in the training set.

p̂train i

gd

Sd gd

gd
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4. Create the GLM component for the LP as an objective function of the form

, 3.7

where  is, in a testing (not training) mode, the derivative profile from a candidate 

LP in a new test image.

3.1.5 Finding a New Set of LPs

The objective function in Eq. 3.7 is the squared Mahalanobis distance from the mean

gray-level profile, , to the new derivative profile, . To allow for a multiresolution

search for candidate LPs, the GLMs is created at several resolutions of the training

images. This leads to the creation of one objective function for each LP at every search

resolution. The images and overlaid LP normal profiles in Fig. 3.4 illustrate the process of

creating the GLMs for multiple resolutions. When searching for new candidate LPs, these

objective functions must be minimized. This search process is accomplished as described

in the following pseudo-code:

1. For each resolution of search

2. For each LP defined by the training set:

3. Sample gray-level profile, gsamp, of length l, where l > 2k + 1, at the current LP along 

normal to shape boundary.

4. For each possible subvector, , of gsamp (total of  subvectors) take the deriva-

tive and normalize .

5. Evaluate the GLM objective function, , for the current sub-vector.

f gd( ) gd gd–( )TSd
1– gd gd–( )=

gd

gd gd

gd l 2k–

gd

f gd( )
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Fig. 3.4 Images with overlaid normal profiles. The images illustrate how grey-level 
profiles are sampled around landmark points at multiple resolutions of the 
input image (three resolutions in this case)

Full resolution

Half resolution

Quarter resolution
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6. Next subvector.

7. Record the minimum value of the GLM across all subvectors. The location of this 

minimum will be the location of the new candidate LP.

8. Next LP.

9. Next resolution.

After this process is complete, we have a new set of candidate LPs that must be sub-

mitted to a modeling procedure (SM) that attempts to find an instance of SM that most

closely fits, within the constraints identified by PCA, this new set of LPs. This procedure

is outlined in the following section.

3.1.6 Fitting a Model Instance to a New Set of Points

We call our new set of candidate LPs . The goal of the following procedure to is

minimize the difference between the set of LPs suggested by the GLMs, , and an

instance of ASM by adjusting the ASM parameters contained in the vector b. We can rep-

resent the difference between these two as the sum of square differences between them

and, hence, minimize the following expression:

, 3.8

where the second term on the right-hand side is an instance of ASM translated, scaled, and

rotated back into the image coordinate frame. The steps to fit the model are as follows:

1. Initialize the ASM parameters, b, to zero.

p̂

p̂

D p̂ TXt Yt s θ, , ,
1– p Φ b+( )–=



44

2. Generate instance of ASM, 

. 3.9

3. Find pose parameters (Xt, Yt, s, θ) that best map  to p via Procrustes analysis, where s 

is the scale factor and θ is the rotation angle.

4. Project  into ASM coordinate frame,

. 3.10

5. Update the ASM parameters—  i.e, project the current set of candidate LPs into the 

PCA subspace,

. 3.11

6. If convergence has not yet occurred (ASM parameters b, s, and θ continue to change), 

return to step 2.

7. If convergence has occurred, then apply the limits to b as determined from the training 

data such that

, . 3.12

where s is the number of standard deviations away from the mean that each parameter is

allowed to vary. The limits imposed by Eq. 3.12 can be thought of as “box limits” because

they confine the shape parameters, b, to a t-dimensional hypercube, centered at the origin,

with dimensions equal to . Typically, a value of  (includes 98% of training set

p̂ p Φ b+=

p̂

p̂

p TXt Yt s θ, , , p̂( )=

b Φ T p̂ p–( )=

s λi– bi s λi≤ ≤ i∀ 1 … t, ,=

2s λt s 3≅



45

shape variability for Gaussian data) works reasonably well. Alternatively, one can impose

shape constraints such that

; 3.13

which constrains the shape vector, b, to fall within a hyperellipsoid whose size is deter-

mined by the Mahalanobis distance, Mt. An example of a b vector and the constrained ver-

sion, , as limited by Eq. 3.12 is shown in Fig. 3.5.

Applying the box limits as described above can be viewed as concatenating the varia-

tion of the shape along each eigenvector to make sure it fits within the limits imposed by

the training set. This concatenation is performed with no regard to what the underlying

image data looks like. Clearly, a more continuous penalty for global shape variation would

be more appropriate. These are potential problems with the ASM approach and will be

addressed later in Chap. 4 during the development of the new statistical SM.

Once we have converged upon a set of ASM parameters and then shape-constrained it

as just described, we generate an instance of ASM. This instance of the model is then

translated, scaled, and rotated back to the image coordinate frame as follows:

. 3.14

This new set of LPs, , is, in a sense, a compromise between the set of LPs generated

using GLM and the constraints imposed by SM on that set of LPs. 

3.1.7 ASM Iterative, Multiresolution Search

The two model optimization procedures (GLM and SM) described in the previous sec-

tion alternate in finding new sets of LPs. The SM procedure generates  and passes it

bi
2

λi
-----

i 1=

t

∑ Mt≤

bc

pnew TXt Yt s θ, , ,
1– p Φ b+( )=

pnew
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Fig. 3.5 Plot showing the mean shape vector. Also shown are the allowable shape 
envelope, a calculated shape vector, and the constrained version of that 
shape vector

b

3 λi

3– λi

b
bc

correction of b4

correction of b3

i
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to the LP search routine, where the GLM is optimized once again to find the next set of

candidate LPs. These new points (still called ) are passed back to the SM routine to

find the model that best fits . This process of “ping-ponging” back and forth between

GLM and SM optimization routines continues until the set of points generated by SM does

not change significantly from one iteration to the next.

Recall that we created the GLM for multiple resolutions during training. When opti-

mizing the ASM, we start at the lowest resolution so that the gray-level profiles in the test

image cover a large area in the test image. This concept can be seen by noting the area

covered by the profiles in Fig. 3.4. It appears that the profiles get longer at lower resolu-

tion, but in reality the profiles stay the same length (number of pixels), and the pixels are

getting larger. Of course, the low-resolution image leads to a very rough estimate of the

LP position, but this rough estimate is refined by using it as the initial guess for the next,

higher-resolution search. This search process continues all the way up to the native resolu-

tion of the test image. Two examples showing the final result of the ASM segmentation

are shown in Fig. 3.6.

3.2 Strengths and Shortcomings of ASM

There are several powerful features of ASM that make it advantageous for certain seg-

mentation tasks and also provide many opportunities for research in the field. Of all of the

deformable model techniques described to this point, none are better suited than ASM for

applications in which substantial a priori information is available for incorporation into

the segmentation process. This built-in a priori knowledge of the object’s shape and

boundary characteristics acquired from the training data set allows ASM to segment

pnew

pnew
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Fig. 3.6 Result of using ASM to segment shapes. A synthetic image and 
an X-ray CT image of a mouse are shown. The images on the left 
show the initial ASM position, those on the right show the final 
segmentation result
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objects with very faint and/or missing boundaries with remarkable accuracy. In addition,

the ability to simultaneously optimize ASM to segment multiple objects with open and/or

closed boundaries provides a useful flexibility in one’s approach to a particular image

analysis problem. In the examples to be shown later, some image objects are included

when training ASM simply to provide a context for other, more difficult-to-segment

objects. 

Although ASM is a powerful tool for image segmentation applications, there are a tre-

mendous number of opportunities for research to improve its robustness, accuracy, and

applicability to a larger class of problems. For example, the GLM component of the ASM

currently uses only edge information in the image to adjust the boundary LPs. This pre-

sents opportunities to include other information describing the characteristics of interior

objects and the object’s context (background). GLM also can get trapped in local minima,

in part because it does not consider any prior shape knowledge (local or global) during

optimization. In addition, the SM and GLM components of ASM are completely discon-

nected in that they do not share any useful information with one another during the con-

tour deformation process. An example of this is the truncation of the global shape

parameters in b to force-fit them into the limits imposed by the training set with no regard

to the underlying image data. In many cases, this leads to poor segmentation results. And

finally, the optimization strategy employed by ASM is not rigorous in that it lacks some

key components necessary for a truly automatic analysis technique. For example, cur-

rently there is not a confidence measure that gives the user an idea of how well the seg-

mentation performed. These shortcomings are addressed in Chap. 4.
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3.3 An Improved ASM

Some of the shortcomings of ASM can be addressed by making practical improve-

ments to the existing ASM technique. This section describes the implementation of the

ASM algorithm and these practical ASM enhancements. Several changes that I made to

the SM and GLM components led to substantial improvements in performance for which

some examples are shown. The practical improvements described in this chapter are

important because they are carried forward into the new statistical shape model derived in

Chap. 4. Further information on these enhancements can be found in [43] and [44].

3.3.1 ASM Implementation

I implemented the published ASM technique using the MATLAB programming lan-

guage. This implementation was invaluable in that it required a thorough understanding of

the entire algorithm. The process of implementation also helped reveal the problematic

aspects of the ASM approach, which generated a collection of ideas for improvement.

This ASM implementation has been, and will continue to be, the platform for my research

into statistical-based deformable models.

3.3.2 Resolution-Dependent Shape-Model

The first change in the ASM approach was to the shape constraint procedure used to

control the final ASM boundary shape. Recall that the condition given by Eq. 3.12 is

applied to the final shape parameter vector, b, to constrain shapes that vary significantly

from those in the training set. The challenge is to select a value of s that is small enough to

keep the final shape within the bounds defined by the training set, yet large enough to

allow the ASM to deform to fit the semi-rigid object in the image.
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Typically, the SM shape constraint parameter, s, is held constant for each resolution of

the multiresolution search. It was discovered that this can lead to undesirable segmenta-

tion results, especially in low-resolution images. Because the pixels are so large in low-

resolution images, an error in the GLM fit of only a pixel or two can result in a large shape

variation. As an example, see the images in the left-hand column of Fig. 3.7. The GLM

has a difficult time with the low-resolution image because of some competing edges

below the right kidney. Note how the shape is deformed (right kidney larger and lower

than the left), and this error propagates through the mid- and full-resolution images. In the

final result (bottom left, Fig. 3.7) ASM has missed the right kidney as well as the spine. 

To prevent this significant shape deformation at low resolution, a resolution-depen-

dent scaling term, r, was added to Eq. 3.12 as follows

, , 3.15

where r is equal to the image resolution (e.g., 0.25, 0.5, or 1.0 for Fig. 3.7). This tightens

the constraints on the shape at low resolution and leads to the results shown in the right-

hand column of Fig. 3.7. This same approach has also been applied with successful results

to the ellipsoid constraint given in Eq. 3.13 as

. 3.16

Because of the inherent instability of GLM at low resolution, a more strict shape con-

straint (box or ellipsoid constraint) leads to better overall segmentation results.

rs λi– bi rs λi≤ ≤ i∀ 1 … t, ,=

bi
2
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Fig. 3.7 Example of multiresolution ASM search. Results shown with standard, reso-
lution-independent shape constraint (constant s) (left column) and with reso-
lution-dependent shape constraint (varying s) (right column). Images are 
quarter resolution (top), half resolution (middle), and full resolution (bot-
tom).
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3.3.3 Improved GLM Objective Function

I improved the GLM objective function in two ways. First, a new objective function

was developed to achieve better numerical stability. Second, both gray-level derivative

(edge) information and absolute gray-level intensity information were incorporated into

this new form of the objective function. The details are described in this section.

Numerically Stable GLM
The objective function presented to optimize the GLM at each LP (see Eq. 3.7) works

well except when the gray-level profiles for a given LP do not vary much across all of the

images within the image training set. The reason for this lies in the covariance matrix

term, . If any of the values within the gray-level profiles do not vary, then the corre-

sponding variance term(s) (diagonal elements of ) will approach zero. This makes the

covariance matrix singular, and inverting it during the evaluation of Eq. 3.7 is an ill-condi-

tioned problem. This was first discovered during tests of the implemented ASM on a set of

synthetic images with consistent gray-level profiles across all images in the training set.

The algorithm used to invert the covariance matrix was reporting large condition numbers

indicative of a very nearly singular matrix.

To solve this numerical problem, I adopted a new approach that resulted in a more sta-

ble objective function. With the same technique used to build the shape component of the

ASM (see Sec. 3.1 for details), a PCA was performed on the set of gray-level profiles for

each LP across all images in the training set. This was followed by the construction of the

transformation matrix, , whose columns are the tg eigenvectors corresponding to the tg

largest eigenvalues of the covariance matrix, . Now when a new image is being ana-

Sd

Sd

Φ d

Sd
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lyzed, the gray-level derivative profile, , for each LP is transformed into the PCA-

derived subspace using Eq. 3.17:

, 3.17

where  is the mean gray-level derivative profile for the current LP across all of the

training images. The new objective function for the GLM to be minimized then becomes

, 3.18

where  is a t-dimensional diagonal matrix whose diagonal elements are ,

, and  is the variance of the residual given by

, 3.19

where ng is the number of elements in the gray-level profile, . The improved objective

function given by Eq. 3.18 is well-conditioned and attains its minimum at acceptable can-

didate LP positions.1

Incorporation of Absolute Intensity into GLM
Recall that GLM is created by measuring intensity gradient profiles through each LP

normal to the object boundary. The derivative of these intensity profiles is taken before

creating GLM so that only intensity changes, or edges, in the image are used as key fea-

tures during GLM optimization. It became clear through the initial testing of ASM that

some benefit could be derived by including some absolute intensity information in GLM.

1. The PCA-based GLM objective function that was developed included only the first term of Eq. 
3.18, and the second term (the residual) is credited to Dr. T. Cootes.
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In a variety of segmentation tasks the absolute intensity of the object is consistent and can

be characterized, and this information can be incorporated into the search process. 

For example, note the segmentation result in Fig. 3.8 (an enlarged version of the result

shown in Fig. 3.7). The left kidney segmentation is nearly perfect, but the boundary

around the right kidney has included some additional structure at the right and bottom-

right. When optimizing GLM, the relatively weak edge of the kidney was overpowered by

the strength of some spurious edges between the collections of high-intensity contrast

agent (white spots) and the lower-intensity abdominal structures. It is clear from looking

at the images in the training set that kidney boundaries should not enclose high-intensity

groups of pixels, but because GLM was using only edge information, this knowledge

about absolute intensity values was not encapsulated in the model.

To provide a means of encompassing this knowledge into GLM, an additional profile

is captured during GLM training. This second profile is also composed of sampled inten-

sity values along the normal line to the LP, but differs from the original profile in two

important ways. First the absolute intensities (not the derivative values) are used when

building the GLM; second, the image is sampled only on the inside of the object bound-

ary. The reason for this is that in many segmentation applications, including the ones pre-

sented here, the object has a more predictable appearance than the background. Hence, the

gray-level appearance of the object (excluding the background) can be effectively mod-

eled by sampling only the interior of the object’s boundary. Cootes, Edwards, and Taylor

have published work [23] on an active appearance model (AAM) that incorporates abso-

lute gray-level intensities of objects in a quite different manner. AAM actually uses the
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values of all pixel intensity values within an object during training, not just profiles. Also,

AAM uses only gray-level information, not a combination of gray-level and derivative

information as presented here.

The GLM objective function, , was modified to include this new information as

follows:

, 3.20

where α and β are constants (range 0 to 1) that determine the relative contribution of the

derivative and intensity model terms;  is the new absolute intensity profile;  is the

same as the objective function, , in Eq. 3.18; and  is similarly defined as 

. 3.21

Fig. 3.8 ASM segmentation result showing inclusion of contrast agent. Other abdom-
inal structure is also shown within the right kidney boundary.
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To determine the effect of this new GLM objective function, it was used to segment

both synthetic and real-world images. A set of synthetic images was created by placing a

white square and an ellipse on a black background as shown at the top of Fig. 3.9. A train-

ing set of eight synthetic images was created where each image in the set contained the

same two shapes with small affine transformations individually applied to each one. LPs

were manually placed on the borders of the square and ellipse in each of the eight training

images, and the ASM was trained. A test image was created that had the same two shapes,

but a black band was included at the interior edge of the ellipse (see middle image in Fig.

3.9) to introduce competing edges. The ASM was then used to segment the square and

ellipse using only the derivative-based GLM (α = 1, β = 0). This generated the result

shown in the middle of Fig. 3.9. Note that the square segmentation looks reasonable, but

the elliptical ASM boundary has locked partially onto the exterior edge and partially onto

the interior edge of the ellipse. If, however, the intensity-based GLM is also incorporated

into the GLM objective function (α = 1, β = 1), the ASM locks onto the interior edge only.

A couple of points do not quite reach the edge because the shape component of the ASM

prevents the boundary from getting too small. The same type of effect can be seen in the

kidney-image result shown in Fig. 3.10 as compared to the derivative-based GLM result in

Fig. 3.8.

3.4 Segmentation Results Using Enhanced ASM

This section presents the results of training and applying the improved ASM to a set of

mouse kidney images. To build a training set, a collection of 16 axial CT images of mouse
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Fig. 3.9 Example of ASM segmentation. Shown are an image in training set (top), 
result of ASM segmentation on a new image using standard gradient-based 
GLM (middle), and result of ASM segmentation using the combination gra-
dient- and intensity-based GLM.
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kidneys were captured using a micro-CT scanner at Oak Ridge National Laboratory [78].

The kidneys and spine were then manually segmented in each of the 16 images by placing

a collection of LPs on the spine and kidney borders (see Fig. 3.2). ASM was trained and

then applied to each of the 16 images to segment both kidneys and the spine of the mouse.

The accuracy of the segmentation was analyzed using a hold-one-out approach. Some

results of the segmentation are shown in Fig. 3.11 and Fig. 3.12

Overall, the ASM segmentation results for the kidneys and spine was fairly good. One

must note, however, a couple of problems. First, the ASM parameters were finely tuned

before the results shown here were achieved. Some of the parameters are quite sensitive

and, if slightly changed, lead to poorer result for some of the images. Second, even with

the finely tuned ASM, a few results are suboptimal. In particular, note the result on subject

Fig. 3.10 ASM segmentation using the derivative and intensity GLM. The image 
is an X-ray CT image of mouse kidneys.
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Fig. 3.11 ASM results on three mouse kidney CT images. From top to 
bottom these are subjects #2, #5, and #8. The images on the left 
are the initial ASM position, and the images on the right show 
the final position of the ASM after convergence.
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Fig. 3.12 ASM results on three mouse kidney CT images. From top to 
bottom these are subjects #9, #13, and #16. The images on the 
left are the initial ASM position, and the images on the right 
show the final position of the ASM after convergence.
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#13. The right kidney is well-segmented, but the left kidney boundary has missed the left

edge of the kidney by quite a few pixels. A potentially larger problem is that there are cur-

rently no measures in the ASM algorithm that provide an indication of the quality of the

final result of the ASM segmentation. In a truly automated ASM analysis system, it is

imperative to have some type of “confidence” measure for the segmentation results. 

3.5 The Need for a New Statistical Shape Model

The remaining problems with ASM motivated the development of a new statistical-

based deformable shape model. The goal of developing this new algorithm was achieved

through the accomplishment of the three objectives described below. The description is

followed by a brief introduction to the research approach employed to meet these objec-

tives.

3.5.1 Objective 1: Combining the SM and GLM Optimization Processes

As noted earlier, the published ASM approach employs a GLM optimization process

that uses only the local gray-level gradient profiles from the training set to determine LP

movements. The presence of spurious edge information can create multiple, erroneous

matches (due to multiple local minima in the objective function) during the GLM search.

If the GLM optimization process considers both gradient profiles and shape characteris-

tics when determining LP movements, a more optimal decision may be possible in the

presence of multiple edges.

The following example clearly demonstrates this problem with the existing ASM opti-

mization scheme. When the GLM objective function for each individual LP is being eval-

uated, the location corresponding to the absolute minimum of that objective function is
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chosen as the new location for the LP. There may be several local minima that indicate a

variety of possible locations to move the LP, but only the absolute minimum is chosen. To

illustrate why this might be problematic, see the plot of the GLM objective function for a

single LP (#17) shown in Fig. 3.13. The data were acquired during iteration #5 of an ASM

optimization on mouse subject #13. This LP happens to be the left-most LP on the left kid-

ney of the mouse. The absolute minimum of this objective function occurs at profile posi-

tion 1, but there is another local minimum at profile position 4. Fig. 3.14(a) shows the

original LP position (red dot) and the updated LP position (yellow dot) if the absolute

minimum (profile position 1) is chosen. The GLM objective function plot for LP #17

looks very similar over several subsequent iterations of ASM optimization as well (i.e., it

has two local minima separated by several pixels). If the absolute minimum is chosen at

every iteration of the ASM fit, the final segmentation result is that shown in Fig. 3.15.

Note that the left edge of the left kidney is quite faint and was missed by the ASM bound-

ary.

As an experiment, the ASM optimization procedure was forced to select not the abso-

lute minimum, but the second local minimum for LP #17 at profile position 4. The effect

of this at a single iteration of ASM optimization can be seen in Fig. 3.14(b). This was sim-

ilarly done in subsequent iterations of the ASM optimization as well and resulted in the

final segmentation shown in Fig. 3.16. Obviously this result is an improvement over that

in Fig. 3.15 and was achieved by manual selection of a different local minimum for a sin-

gle LP. The question then becomes how to automatically determine which local minimum

is the correct one for any given LP. An answer to the question appears to lie in the devel-
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Fig. 3.13 Plot of the GLM objective function. This plot shows subject #13, LP #17, 
iteration #5. Note that there are two local minima at profile position 1 and 
profile position 4. The absolute minimum is at position 1, but better segmen-
tation results are achieved using the local minimum at profile position 4.

Profile position

f

Absolute

“Correct”
local minimum

minimum
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(a)

(b)
Fig. 3.14 Results of GLM fit before (a) and after (b) correction of LP 17.  The green 

‘x’s indicate the profile sample positions for all LPs, the red dots are the pre-
vious LP positions, and the yellow dots are the new candidate LP positions 
suggested by the GLM. Note that LP #17 [left-most yellow dot in (a)] has 
been pushed in to the right by 3 pixels.

Updated

Updated

LP #17

LP #17
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opment of a new boundary optimization approach that considers the SM and GLM com-

ponents simultaneously.

3.5.2 Objective 2: Employing a Continuous Penalty for Shape Variation

Recall that in the current ASM optimization scheme, if any of the shape modes varies

outside of the limits dictated by the training set, a discontinuous adjustment is made to the

out-of-bounds mode to move it back within the bounds defined by Eq. 3.12. This discon-

tinuous penalty will affect the overall shape and cause movement of all LPs in the bound-

ary. Smaller corrections to the shape that are made on a regular basis would avoid this

step-wise disruption of the overall shape. Another goal of this research was to employ a

continuous penalty for shape variations of the boundary as dictated by the training set.

Fig. 3.15 Poor ASM result due to ambiguity in GLM fit at individual LPs. 



67

3.5.3 Objective 3: Including Local Shape Characteristics in Optimization

In published descriptions of the ASM training procedure, authors commonly describe

the LP labelling process in two steps. First, “critical” LPs are placed on key features of the

object such as corners and high curvature features. Second, additional “interpolation” LPs

are distributed along the boundary between the critical LPs. Although this distinction is

made between the two types of LPs during manual boundary placement, both sets of LPs

are treated identically throughout the remainder of the training and optimization pro-

cesses. Hence, the important local shape information the user is attempting to preserve

around the critical LPs is de-emphasized when all LPs (both critical and interpolated) are

lumped into a single global model of shape, the GSM. The introduction of local shape

Fig. 3.16 ASM segmentation of subject 13 after adjustment of LP 17. 
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models (LSMs) to preserve the local shape information around each user-defined critical

LP was a goal of this research.

3.5.4 Objective 4: Developing a Segmentation Confidence Metric

The lack of interaction between the GLM and the SM creates another unfortunate situ-

ation in that no confidence measure is available that approximates how well the ASM seg-

mentation algorithm has performed on any given image. In fully automated applications,

the lack of a confidence metric renders the ASM technique useless. The reformulation of

the optimization scheme will provide a means to generate a performance confidence met-

ric that will allow the use of this new statistical-based deformable model in a fully auto-

mated application. Chap. 4 presents the development of a new statistical shape model that

addresses this and the other three previously mentioned objectives.
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CHAPTER 4

DEVELOPMENT OF A PROBABILISTIC FRAMEWORK FOR 
MODEL-BASED SEGMENTATION

This chapter presents the development of a new probabilistic deformable shape model

based on compound Bayes decision theory [31]. This new model-based technique formu-

lates the segmentation process as a maximum a posteriori probability (MAP) problem in

which candidate image regions are evaluated as to whether they are likely (in a probabilis-

tic sense) to lie along the ideal segmentation boundary. The prior probabilities are mod-

eled on the basis of prior knowledge of both boundary shape/location and gray-level

appearance near the boundary as determined from a training set of manually segmented

images. A compound Bayesian objective function is formulated and then optimized to find

the optimal segmentation boundary for the object of interest. This new approach, referred

to as a probabilistic shape and appearance model (PSAM), is general enough to accommo-

date a variety of segmentation approaches but was formulated with the intention of

accommodating the image measurement techniques described for ASM. Boundary finding

research presented in [59], [70], [87], [89], and [96] is related to this work in that a proba-

bilistic framework is formulated, but the compound Bayesian approach developed here

results in a more general formulation into which these previous approaches fit as special

cases.

This chapter develops the theory behind the formulation of this general probabilistic

technique, and presents the derivation and optimization of an objective function based on
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object shape and gray-level appearance that allows application of this new PSAM algo-

rithm to objects within new images.

4.1 A New Probabilistic Shape and Appearance Model

As described in Chap. 3, some important practical enhancements were made to the

existing ASM approach: (1) resolution dependence was incorporated into the shape

model, (2) the numerical stability of the GLM was improved, and (3) additional intensity

information was incorporated into the GLM. Despite these improvements, additional,

more fundamental changes to ASM are needed to make it a more useful tool. In summary,

the goals for this new PSAM are to

1. reformulate the statistical model objective function so that it considers both the gray-

level and shape information simultaneously during contour deformation,

2. employ a continuous penalty for shape variations of the boundary as dictated by the 

training set,

3. formulate models of local shape characteristics to provide better control of relative 

local movement around critical LPs, and

4. develop a segmentation confidence metric.

The formulation of a probabilistic objective function that can be optimized to achieve

these goals is now presented.
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4.1.1 Compound Bayesian Approach

Whenever a priori information is available for an application and can be used to for-

mulate probabilistic functions, a Bayesian approach to solving the problem is a reasonable

consideration. The PSAM approach takes the shape and gray-level training data, formu-

lates the boundary-finding problem as probabilistic one, and then incorporates this infor-

mation into an a posteriori probability objective function. To meet the aforementioned

goals, this objective function must contain terms dependent on global shape, local shape,

and local gray-scale profile information. Once formulated, this function is optimized to

find the boundary that corresponds to the MAP. 

Before the writing of the objective function, some new variables must be introduced.

First, we will define the boundary we are searching for as an  coordinate matrix, ,

of size , where N is the number of LPs needed to represent the boundary. (See Chap.

3 for the discussion of an LP-based boundary.) Each row of  corresponds to the 

coordinate of a boundary point as follows:

4.1

The subscript v is used to foreshadow the relationship of the boundary with a com-

bined shape-pose parameter vector, v, to be described later in this chapter. Defining the

boundary this way accommodates some flexibility in how the boundary is represented.

The points in  are typically LPs that lie directly on the boundary (as used in PSAM), but

in addition, other  coordinate locations could be included that lie in image regions
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that are on the interior or exterior of the object boundary, for example. These points could

be used to capture other object characteristics that are located at off-boundary positions.

Next, we will define our feature vector matrix, G, to be used later in the compound for-

mulation of Bayes rule. In this formulation, the feature vectors (rows of G) contain fea-

tures extracted from the neighborhood of each LP on the boundary. If the length of each

feature vector is m, then the size of G will be . These feature vectors may contain

any image information that is relevant to the given application, such as gray-level intensi-

ties in the neighborhood of each pixel, local texture measurements, or gray-level gradient

information (as used in ASM and PSAM). We can write G as

, 4.2

where

, . 4.3

In Eq. 4.3,  is a vector containing raw gray-level values sampled from the neighborhood

of the  LP in the test image, and h is an operator (e.g., a gradient) that transforms

these raw gray-level values into the feature vector, . Now that we have defined our

parameters, we can formulate the probabilistic objective function.

Bayes decision theory is a fundamental approach to solving probabilistic problems. A

typical application of Bayesian theory is calculation of the probability of an event given

that a different, but related, event has already occurred (and can be measured). Compound

Bayes decision theory is an extension of this idea that allows the prediction of the proba-
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bility of multiple simultaneous events, given that several different, but related, simulta-

neous events have already occurred (and can be simultaneously measured). The

compound form of Bayes rule [31] can be written as

, 4.4

where  is the vector of the events one wishes to predict. The rows of the matrix X repre-

sent the measured events (e.g., feature vectors) that have already occurred.  is the a

priori probability for the vector, ;  is the conditional probability density func-

tion for X, given the event vector, ; and  is the prior probability density of the mea-

sured event matrix, X. Finally,  is the a posteriori probability of . 

In the PSAM boundary-finding application, the goal is to maximize the a posteriori

probability of the boundary , given the measured image features in G. Using the com-

pound version of Bayes rule in Eq. 4.4, we can write the a posteriori probability expres-

sion for the boundary, , given a collection of feature vectors, G, as

, 4.5

where  is the prior probability of a boundary instance, ;  is the condi-

tional density of G given the boundary instance, ; and  is the prior probability

density for G. The goal is then to optimize Eq. 4.5 by searching over all possible values of

 to find the one, , that corresponds to the MAP value as given by

. 4.6
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Finding  can be further simplified without losing the generality that we wish to main-

tain for a variety of boundary-finding applications. First, because the logarithm is a mono-

tonically increasing function, optimizing the logarithm of a function yields the same result

as optimizing the original function. Therefore, the objective function [we will now call it

] can be written as

, 4.7

where we have dropped the term  since it is independent of  and is therefore a

constant. 

Depending on the application at hand, the term  may be difficult to calcu-

late. The level of difficulty is contingent in large part on the level of independence that can

be assumed for the current problem. If independence is assumed between the feature vec-

tors in G, and if it is also assumed that each feature vector, , is dependent only on it cor-

responding location,  (i.e., jth row of ), then the conditional density of G given

 can be rewritten as [31]

. 4.8

Plugging this expression back into Eq. 4.7, we can write

. 4.9

It is useful to note that the first term is the “data-driven” term of the objective function in

that it depends on image characteristics (external energy term), while the second term is
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more “model-driven” in that it is independent of the image, depending only on prior distri-

butions of boundary shape and location (internal energy term). 

Note how this formulation can potentially accommodate all of the goals outlined at the

start of the chapter. First, this objective function allows simultaneous optimization with

respect to image-derived gray-scale information (first term) and shape information (sec-

ond term). Secondly, because this objective function is based on a probabilistic frame-

work, we can interpret its value as a measure of how well the final boundary fits the

distribution approximated by those contained in the training set. This measure can broken

down into two pieces: (1) the first term measures how well the final gray-level informa-

tion matches that which was extracted from the training data, and (2) the second term mea-

sures how well the overall shape and location of the boundary matches that which was

extracted from the training set. The third and final goal of the formulation is to allow for

incorporation of local shape characteristics. The term that can accommodate this is the

prior boundary instance probability, , but the details of this will be explained later

in the chapter.

Optimizing  over all possible boundary vectors, , can be a daunting task for

several reasons. First, depending on the number of LPs used to represent the boundary, 

could be a very long vector, and finding the maximum of J with respect to each of the 2N

elements of  can be computationally demanding. As will be detailed later, PCA can be

used to reduce the dimensionality of  to resolve this problem. The boundary  can be

approximated in the PCA subspace as a vector, v, with fewer dimensions. Hence, optimiz-

ing the objective function in the PCA sub-space with respect to the more compact vector,
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v, is a simpler task. If we substitute the new boundary representation, v, into Eq. 4.7, the

objective function then takes the form

, 4.10

where

, 4.11

or

, 4.12

where  and  are functions that map v from the PCA subspace back into the

image -coordinate space. 

To use this objective function in practice, we must know all of the individual condi-

tional probability densities, , . In the PSAM approach, these

conditional densities can be straightforwardly measured from the training data. Finally,

the prior probability of the PCA boundary vector, , must also be known. Once again,

this can be estimated from the training data, as will be seen later in this chapter.

As mentioned at the beginning of the chapter, previous research into probabilistic

boundary-finding fits into this formulation. For example, Kervrann and Heitz [59], Staib

and Duncan [87], and Wang and Staib [96] all use the values of individual pixels in an

edge-detected image as the external energy force to attract the boundary. Relating their

approach to the formulation presented in Eq. 4.9, the value of the pixel at each LP in the

edge-detected image can be interpreted as the image-derived feature vector (containing
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only a single element). Also, in previous research ([87],[96]) the conditional probability

densities are interpreted as correlations of a noise-corrupted template (i.e., the image

under test) with an ideal template (the current template estimate in an iterative update

scheme). In this research, the conditional densities are not modeled, as is proposed here,

using a corresponding collection of boundary-derived feature vectors within the training

set.

4.1.2 Employing the Compound Bayesian Approach for PSAM

We will now explore the specific application of this compound Bayesian formulation

to boundary-finding using the image measurement concepts employed by ASM (i.e., using

LPs and normal gray-level profiles). Recall that the boundary is defined as a set of LPs

that are positioned at pixel locations within the image that correspond to the boundary of

the object of interest. The number (N) and density of LPs along the object’s boundary (and

therefore the number of image-derived feature vectors) is determined by the N manually

placed LPs in the training set. 

Before describing the details of the implementation, we will summarize how this

approach accomplishes the goals laid out at the start of the chapter. We now have a refor-

mulation of the shape model objective function (Eq. 4.10) that simultaneously considers

information both on shape (the internal energy term) and local gradient profile (the exter-

nal energy term) during the deformation process. Next, we need to formulate the probabi-

listic models for the individual components of this objective function: the shape model

and the gray-level model. 
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Global Shape Model
The formulation of the shape model term,  (see Eq. 4.10), is presented here.

Because this term incorporates the influence of all LPs along the boundary, it is called the

global shape model term. Before specifying a model for , we must first describe the

process of forming the PCA-based global shape vector, v. 

Although it was convenient to represent the boundary as a matrix, , during the com-

pound Bayesian description of the objective function, it is simpler for implementation to

represent the entire collection of  coordinates as one long vector, p, as was originally

described in Sec. 3.1.1. Reiterating the description in Sec. 3.1.1 for the sake for clarity, let

the manually selected boundary for the ith image in an M-image training set be represented

by a collection of landmark points (LPs),  as

, , 4.13

where the N LPs that make up the boundary for the ith sample are defined by the coordi-

nate pairs

. 4.14

Recall that the alignment of the sets of LPs to a common coordinate frame is done via Pro-

crustes analysis [45] to form the aligned sets of LPs:

, . 4.15

Using this training data set of aligned LPs, , we can create a GSM using PCA

[31]. Although previous work in this area almost always employs the PCA transform, its

purpose has not been clearly described. Performing PCA on the training data samples

serves three primary purposes. In order of least to most significant, these are as follows:
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1. Reduces computation: Applying PCA to a set of vectors will allow a reduction in the 

dimensionality of the problem, if desired. This reduction is accomplished by disre-

garding the insignificant modes of variation (i.e., those modes with relatively small 

eigenvalues). Reducing the dimensionality of the problem reduces computation time.

2. Provides numerical stability for the model: Multivariate Gaussian distributions are 

commonly used to model multidimensional data samples. Evaluating the equation for 

the Gaussian distribution always involves taking the inverse of the covariance matrix 

for the sample data used to specify the model. This is evident when observing the form 

of a probabilistic multivariate Gaussian density function, , for an LP-based 

boundary vector

. 4.16

The Gaussian distribution is parameterized using the covariance, C, and mean, , cal-

culated from the training samples as follows:

. 4.17

As discussed in more detail in Sec. 3.3.3, if any single element of the multidimen-

sional data set does not vary across all of the samples, the resulting covariance matrix, 

C, will be singular, making its inversion impossible. PCA provides a straightforward 

means for removing those (near) zero modes of variation that cause the covariance 

matrix to be (nearly) singular so that numerical problems can be avoided during the 

covariance matrix inversion.

3. Places hard limits on solution variation: Once the PCA transform has been deter-
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mined and the insignificant modes of variation have been excluded, any vector to 

which this PCA transformation is applied will automatically lose those excluded 

modes of variation. For example, if an input vector, v, is PCA-transformed, and the 

result is then inverse PCA-transformed to form the vector, , the output vector, , will 

be the same as the input vector, v, minus the excluded modes of variation. Thus, the 

process of zeroing insignificant modes of variation has the desired effect of forcing 

new PCA-transformed vectors to look like those in the training set of data samples. 

To formulate the PCA transform, we start by calculating the mean, , and the covari-

ance, C, of the ,  as in Eq. 3.2 and Eq. 3.3, respectively. Next, we

calculate the eigenvectors, , , and the eigenvalues, ,

, of C. Recall from Sec. 3.1.3 that we choose the ts largest eigenvalues

(out of 2N total) that capture 98% of the total variation in the training set. One can now

calculate the forward PCA transform, b, for a new aligned global shape, ,1 as

, 4.18

where Φ  is a matrix whose columns are the eigenvectors, , , of the cova-

riance matrix, C, for the collection of , . This shape parameter vec-

tor, b, is an approximate representation of the LP-based global shape boundary, . It is

only approximate because we discarded the last  eigenvectors where the statistical

variation from the shapes the training set was insignificant.

1. Note that we have dropped the i subscript here because we are looking at new 
global shapes that are not part of the  training vectors.

ṽ ṽ
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The inverse-PCA transform can be written to generate a new shape, , from the PCA

shape vector, b, as follows

. 4.19

The elements of b govern the amount of shape variation from the mean, , along each

eigenvector, φk. 

It is important to understand that the PCA transform in Eq. 4.18 operates on shape vec-

tors that are aligned to the mean shape, , and to recall that  was created by first aligning

all of the original training vectors, , . Consequently, the inverse PCA

transform in Eq. 4.19 will generate a shape vector, , that is aligned to , but in the end

we wish for it to be aligned with the true boundary of the object of interest within the

image. We must also therefore determine pose parameters that will transform the current

boundary estimate, , so that it is aligned with the true boundary of the object of interest

in the test image. Let us introduce a vector, z, that contains these pose parameters,

, 4.20

where s is scale, θ is the rotation, and Tx, Ty are the x- and y-translations, respectively. We

can then combine the global shape parameter vector, b, and the pose parameter vector, z,

to form the combined shape-pose parameter vector, v, as

, 4.21
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where the length of z is  and the overall length of v is then . So, given an

aligned boundary, , we then apply the appropriate pose parameters to translate, rotate,

and scale the boundary to fit the object of interest within the image. This pose-corrected

boundary, p, is calculated using the following expressions:

, 4.22

where  is the pose transformation used to align the LPs to the object of interest

as dictated by the pose parameters, . Application of  to generate the

individual elements takes the following form:

,

4.23

and

,

. 4.24

Note that  in Eq. 4.23 and Eq. 4.24 is found by applying the inverse PCA transform for

each shape parameter contained in v as follows (as in Eq. 4.19):

, . 4.25

Now that we have gathered information on the statistical variation of the shape vectors

across the training set, we can formulate a probability density function that describes this

global shape variability in terms of the combined shape-pose parameter vector, v. Choos-

ing a computationally attractive and widely applicable model for varying data, we model

tp 4= t ts tp+=

p̂

p xTyT[ ] Hs θ Tx Ty, , , p̂( )= =

Hs θ Tx Ty, , ,

s θ Tx Ty, , , Hs θ Tx Ty, , ,

xj yj,( )

xj s p̂j( ) θcos p̂j N+( ) θsin–{ } Tx+=

j∀ 1 … N, ,=

yj s p̂j( ) θsin p̂j N+( ) θcos+{ } Ty+=

j∀ 1 … N, ,=

p̂j

p̂j pj Φ j k, vk
k 1=

ts

∑+= j∀ 1 … 2N, ,=
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the probability of the combined shape-pose parameter vector, v, using a multivariate

Gaussian function as follows:

, 4.26

where 

, 4.27

and

. 4.28

The average pose parameters, , , , and , are calculated by averaging the corre-

sponding pose parameters gathered for each training vector, ,  dur-

ing the Procrustes alignment procedure. Also note that because PCA was applied to the

shape vectors and the insignificant modes of variation were discarded, we can guarantee

that C will not be singular. 

We can substantially simplify Eq. 4.26 if we can show that the elements of v are inde-

pendent. We know that the elements  through  (i.e., the elements of the shape param-

eter vector, b) are independent because we constructed them to be so. They are a result of

the PCA transform given by Eq. 4.18. In addition, the elements  through  (i.e., ,

, , and , the parameters of the pose vector, z) are also assumed to be independent

because a change in any one of these pose parameters has no direct correlation on the

change in value of the other three. This independence leads to a diagonal covariance

P v( ) 1
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2
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matrix, C, where  and , otherwise. Given that C is diagonal,

Eq. 4.26 can be simplified to

, 4.29

where  is the standard deviation of the element . The standard deviations for the pose

parameters ( , , , ) are calculated from the distribution of pose parame-

ters measured during the Procrustes alignment of the training shapes. This completes the

derivation of the GSM term, , in Eq. 4.10.

Gray Level Model
The shape prior probability, , has now been completely specified, so we will now

address the formulation of the GLM conditional density term in Eq. 4.10, . This

term describes the probability of extracting a set of gray-level profiles, G, from an image,

given a boundary parameter vector, . 

Recall that  is a vector of the gray-level values along a profile that passes through

the jth LP and is normal to the current boundary estimate. Because the location and angle

of the gray-level profile, , is dependent on the LPs within the boundary, it is necessarily

a function of the current shape-pose parameter vector, v. The inverse PCA transform can

be applied to v to obtain p using Eq. 4.19 and Eq. 4.22. Recall that the elements of p are

the coordinate pair values of the LPs. 
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We can write the pixel intensity elements of the normal profile, ij, as

,

 and , 4.30

where I is the image under test, Ng is the number of gray-level samples in each profile, and

αj is the angle of the profile through the jth LP normal to the boundary. As noted in Eq.

4.3, the final feature vectors are given as , where h is the gradient operator. The

next step is to choose the form of the individual prior probability distribution functions,

, . A multivariate Gaussian distribution is assumed as a model

for the profiles and can be expressed as

, 4.31

where Qj is the covariance matrix measured from the collection of gray-level profile vec-

tors through the jth LP across all images in the training set, and , is the average gray-

level profile measured through the jth LP across all images in the training set. Like the

covariance matrix C in the shape model, the covariance matrix Q can in many instances

become singular, so that finding  is impossible. One effective way to avoid these sin-

gularities is to perform PCA on the collection of s for a given LP, and then exclude

those modes of variation that are small. The PCA transform for the vector gj is

, 4.32

where the columns of the matrix  are the eigenvectors [ ] corre-

sponding to the tg(j) largest eigenvalues [ ] of the covariance matrix
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for the collection of . The gray-level parameter vector, , is an

approximate representation of the gray-level profile, . The PCA-transformed vector, ,

is only approximate because we discarded the last  eigenvectors where the

variation from the gray-level profiles within the training set was insignificant.

The inverse-PCA transform can be written to generate a new gray-level profile, ,

from the PCA gray-level profile, dj, through the jth LP as follows:

. 4.33

The elements of  govern the amount of variation from the mean gray-level profile, ,

along each eigenvector. 

The PCA transform can be used to define an approximate expression for the exponen-

tial term in Eq. 4.31 as follows

, 4.34

where  is the variance of the GLM residual not captured by the PCA approximation

of the Mahalanobis distance (the first term). This residual variance is approximated by

. 4.35

An expression has been developed that does not require the calculation of the potentially

singular covariance matrix, . 
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For mathematical convenience, we can simplify and rewrite the exponential term on

the right-hand side of Eq. 4.34 as follows

, 4.36

where

, 4.37

, 4.38

and

. 4.39

Now Eq. 4.31 can be rewritten as

. 4.40

Substituting the individual gray-level profile probability back into the combined gray-

level profile likelihood probability (Eq. 4.12), we can write

. 4.41

This completes the derivation of the GLM term, , in Eq. 4.12.

Local Shape Model
In published descriptions of the ASM training procedure, authors commonly describe

the LP labelling process in two steps. First, “critical” LPs are placed on key features of the
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object such as corners and other high-curvature features. Second, additional “interpola-

tion” or “standard” LPs are manually distributed along the boundary between the critical

LPs. Although this distinction is made between the two types of LPs during manual

boundary placement, both types of LPs are treated identically throughout the remainder of

the training and optimization processes. Hence, the important local shape information the

user is attempting to preserve around the critical LPs is deemphasized when all LPs (both

critical and interpolated) are lumped into a single global model of shape, the GSM. Local

shape models (LSMs) are introduced to preserve the local shape information around each

user-defined critical LP. A probabilistic term that depends on LSMs is introduced to the

objective function in Eq. 4.12 to reward (add to) the objective function for boundaries

whose local shapes closely match those local shapes defined in the training set. This new

reward term is formulated as a joint probability of a collection of local shapes. 

Adding reward and/or penalty terms to probabilistic objective functions is quite com-

mon in other applications such as iterative tomographic image reconstruction [36] to

enforce some type of local constraint (e.g., smoothness). Although adding reward or pen-

alty terms will in many cases be effective in practice, they are sometime difficult to justify

theoretically. Adding a term to a probabilistic objective function mathematically implies

that the term is independent of the other terms in the objective function. Although this is

not always the case, positive results can sometimes still be obtained in practice.

The formulation of the LSMs is similar to the GSM formulation in that a vector of

LPs, , which is a subset of the global-shape training LPs, , is identified in the

neighborhood of the jth critical LP during training. These training local shapes are formed

ltrain i j,
ptrain i
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by extracting a subset of LPs from the global shape training vector  (defined in Eq.

4.13) as follows

 , 4.42

where M is the number of training images, Nc is the number of user-defined critical LPs,

h(j) defines the index of the first LP in  belonging to the jth local shape, and Nl is the

number of LPs in each local shape. Fig. 4.1 shows an example for  and .

Our goal now is to formulate the joint probability density for the local shapes to be

used during optimization. Assuming independence of local shapes, we can form the over-

all local shape probability as the product of the individual LSM probabilities as

, 4.43
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;=
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Fig. 4.1 Illustration of a shape boundary. The boundary model contains both a GSM 
and two LSMs around critical LPs.
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where  is an aligned local shape vector containing the coordinates of the local shape of

interest. The process of formulating  is described in detail later in the section, but note

here that the elements of the local shape vectors are simply the  coordinates of the

LP locations. Now if we take the log and add this joint probability as a reward term to the

existing a posteriori objective function (Eq. 4.10), we can write the new objective function

as

. 4.44

A standard multivariate Gaussian distribution for the jth aligned local shape, , can be

written as

, 4.45

where  is the mean local shape across the training set and  is the covariance of the

local shape vectors. Keeping the notation consistent with the GSM, recall that the aligned

local shapes are defined as . The mean local shape can be calculated as

, 4.46

and the covariance can be found using

. 4.47
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Note that we can write  as a function of v, since  is a subset of the current boundary

estimate that is computed on the basis of the current value of the combined shape-pose

vector, v.

We take a similar approach in establishing the GSM in that we will work with a PCA-

transformed version of the local shapes. Recall that in the GSM formulation, we enumer-

ated three reasons for using the PCA transform to model the data: (1) to reduce computa-

tion, (2) to provide numerical stability, and (3) to place hard limits on sample variation.

For the local shape models, we use the PCA transform only for the second reason— that is,

to provide numerical stability. The benefit of reduced computation is also achieved via

dimensionality reduction, but the reduction is insignificant compared to the computation

encountered during the entire model fitting process. 

We encounter the same problem as we did with the GSM in that there is no guarantee

that  will not be singular, so we will formulate the PCA transform to create a more

numerically stable form of the distribution. To formulate the PCA transform, we must first

align all of the local shapes and then calculate their mean and covariance. The local shapes

across all training images for a given critical LP are first aligned via Procrustes analysis,

as was described for the GSM in Chap. 3. 

As we did in the GSM formulation we can perform PCA on the collection of local

shape vectors, , and then write the forward PCA transform of a new aligned local

shape vector, 1. Just as it was in the case of the GSM, is important to understand here

that the PCA transform in Eq. 4.57 operates only on shape vectors that are aligned to 

1. Once again, we have dropped the i subscript here because we are looking at new 
local shapes that are not part of the  training vectors.

l̂j l̂j

Wj

l̂train i j,

l̂j

i 1 … M, ,=

lj
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and to recall that  was created by first aligning all of the training local shape vectors,

, by applying affine transformations to each training vector. Before the PCA trans-

form can be applied to a new candidate local shape vector, , we must also determine

pose parameters that align the local shape vector with the corresponding local shape mean,

. We can align it as follows:

1. First, recall that our ultimate goal is to formulate our PSAM with respect to the com-

bined shape-pose parameter vector, v, so we will need to define the current local shape 

vector in terms of the current estimate of v. Note that  is a collection of  coor-

dinates that is a subset of the current boundary vector, p (see Eq. 4.22), and can be 

written as

, 4.48

where  is a vector containing the indices of the LPs in p that belong to the jth local 

shape vector, . 

2. Center the new shape vector, , by subtracting the centroid of the local shape from 

each coordinate as follows:

, for , 4.49

and

, for . 4.50
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3. Calculate the scale, , and the rotation, , needed to align  to  as

4.51

and

, 4.52

where

4.53

and

. 4.54

4. Apply the transformation to form the aligned local shape vector, :

, 4.55

and

, . 4.56
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Now that we have the aligned version of our local shape vector, , we can formulate

the forward PCA transform for that vector as

, 4.57

where the columns of the matrix  are the eigenvectors [ ] corre-

sponding to the  largest eigenvalues [ ] of the covariance matrix,

, for the collection of . Similar to global shape parameter vector,

b, in the GSM, this local shape parameter vector, cj, is an approximate representation of

the aligned LP-based local shape, . It is only approximate because we discarded the last

 eigenvectors where the variation from the training set was insignificant.

The inverse-PCA transform can be written to generate a new local shape, , from the

PCA local shape vector, cj, as follows:

. 4.58

The elements of cj govern the amount of shape variation from the mean, , along each

eigenvector. 

As with the GLM development in the previous section, an alternative expression can

be used to approximate the exponential term in Eq. 4.45 as follows:

, 4.59
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where  is the variance of the LSM residual not captured by the PCA approximation of

the squared Mahalanobis distance (the first term). It is used to normalize, in a Mahalano-

bis sense, the difference of the distances from  to  (the  term) and from  to 

(the  term, since  is zero via PCA construction). This residual variance is approxi-

mated by taking a fraction of the last (smallest) eigenvalue used in the PCA representation

as indicated by the following expression:

. 4.60

The goal has been achieved in that an expression has been developed that does not require

the calculation of the potentially singular . 

Once again, for mathematical convenience, the exponential term on the right-hand

side of Eq. 4.59 can be simplified as follows:

, 4.61

where

, 4.62
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Now Eq. 4.45 can be rewritten as

. 4.65

Substituting this individual local shape model probability back into the combined local

shape model probability (Eq. 4.43), one can write

. 4.66

4.2 Objective Function Formulation

As mentioned previously, the original ASM boundary-finding scheme optimizes the

SM and the GLM independently. This leads to problems in that the optimal boundary

selection will be biased towards either the SM or the GLM, whichever is considered last,

instead of considering the contribution of both equally. Based on the probabilistic formu-

lations developed in Sec. 4.1, we can formulate an objective function that, when opti-

mized, will result in a boundary, v, that corresponds to the maximum a posteriori

probability of v, given a set of feature vectors, G, extracted from the image. This objective

function is rewritten here with the terms presented in a different order (see Eq. 4.44) for

convenience:

. 4.67

The first term is the GSM component, the second term is the LSM component, and the

third term is GLM component. This function now must be expanded before it can be opti-
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mized. The details of the objective function expansion for each component are presented

below.

4.2.1 Global Shape Objective Function

The global shape term, , is given by Eq. 4.29. Taking the logarithm of that func-

tion gives us the following expression:

. 4.68

Removing terms that are independent of v results in

. 4.69

The maximization problem can be turned into one of minimization by taking the negative

and, without changing the optimization result, multiplying by a constant (2) to form the

first component of the objective function in Eq. 4.67 as

. 4.70

Note that  is the squared Mahalanobis distance of the combined shape-pose parame-

ter vector, v, from the mean, . Minimizing the squared Mahalanobis distance from the

mean is a convenient way to describe the optimization process intuitively.
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4.2.2 Local Shape Objective Function

Now the optimization of the local shape term must be addressed. The local shape joint

probability term, , is given by Eq. 4.66. Taking the logarithm of that expres-

sion we have

. 4.71

Once again, removing terms independent of v results in

. 4.72

The second component of our objective function can be written as the sum of the squared

Mahalanobis distances from each local shape model to its corresponding mean:

. 4.73

4.2.3 Gray-Level Profile Objective Function

The third and final term of our objective function is needed that is dependent on the

gray level profile information in the image— that is, the likelihood term. The likelihood

term, , is given by Eq. 4.41. Taking the logarithm, we can write

. 4.74
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Once again, all terms that are independent of v can be removed to write

. 4.75

Again, the third component of the objective function can be written as the sum of the

squared Mahalanobis distances from each gray-level profile to its corresponding mean:

4.76

4.2.4 Objective Function Formulation Summary

With all three terms of the objective function, , formu-

lated, it can be optimized with respect to the combined shape-pose parameter vector, v. As

designed, J has one term for each of our model components: GSM (J1), LSM (J2), and

GLM (J3).

4.3 Objective Function Optimization

Next, the objective function, J, is optimized for the new PSAM algorithm. Because the

objective function is a probabilistic one, J will be maximized with respect to v to ensure

that the most likely boundary is found, given the constraints imposed by the GSM, the

LSM, and the GLM. The most effective optimization techniques are the gradient-based

approaches [18], but these come with the penalty of having to calculate the gradient of the

objective function. Also, whenever possible, the analytic form of the gradient will be cal-
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culated to ensure the highest accuracy of the gradient value. The gradient of each of the

three PSAM components will be calculated individually as

. 4.77

Since v is a multidimensional vector, it is convenient when computing the gradient to

rewrite the expression as

. 4.78

We now calculate the gradient of each component of the model, starting with the GSM.

4.3.1 GSM Gradient Formulation

We formulated the GSM component (J1) of the objective function in Eq. 4.70. If we

take the gradient of this component with respect to our combined shape-pose parameter

vector, v we can write

. 4.79

All of the terms go to zero except when , so that

, 4.80
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or

. 4.81

4.3.2 LSM Gradient Formulation

We formulated the LSM component (J2) of the objective function in Eq. 4.73. If we

take the gradient of this component with respect to our combined shape-pose parameter

vector, v, we can write

. 4.82

Note that  is being written as  to indicate that it is a function of v. We are now left

with the task of finding an expression for . Using Eq. 4.55, Eq. 4.56, and Eq.

4.62, we can write
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(since  is not a function of v) and, furthermore, 

,
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and 

,
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Note that , , and  are all dependent on the combined shape-pose vector, v. For con-

venience, we will drop the v when these terms are used during the rest of the derivation.

Using the chain rule, we can rewrite Eq. 4.84 and Eq. 4.85 as

 , 4.86

and

. 4.87

In each of the above equations, we are left with the task of finding the partial derivatives

of , , and . Starting with  and recalling Eq. 4.49 and Eq. 4.50 we can write

,
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,

. 4.89
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Note that in the two equations above for the partial of , we are now left with the task

of finding the partial of . If we look back to Eq. 4.48 where  is defined, we can write

the partial derivative as

, , 4.90

and

, . 4.91

Substituting the expressions for q and r in Eq. 4.23 and Eq. 4.24 and also using the expres-

sion for in Eq. 4.25, we can write

,

4.92

and

,

. 4.93

Recall that the variables s, θ, Tx, and Ty are the same as . We can simplify

the above two equations using the chain rule. Starting with Eq. 4.92, we wish to find the

individual partial derivatives of   with respect to
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. We can write a single expression for the first ts partial

derivatives as

 and . 4.94

The remaining partials for the  through  components are

. 4.95

Similarly, for Eq. 4.93, we write a single expression for the first ts partial derivatives as

, 

 and . 4.96
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The remaining partials for the  through  components are

. 4.97

Now, going back to Eq. 4.86 and Eq. 4.87, we have just completed the derivation of the

term , but we still need to derive the partials of  and .

Using the definition of  in Eq. 4.51, we can write the partial derivative of  as

, 4.98

where  and  are given by Eq. 4.53 and Eq. 4.54. We now must derive the partials on

the right-hand side. Calculating the partial derivative of , we find that

. 4.99
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We have derived an expression for  in Eq. 4.88 and Eq. 4.89, so we can move on

to the derivation of the partial derivative of  by writing

,

or

. 4.100

Now we have all of the terms derived for , and the only unknown quantity left in

Eq. 4.86 and Eq. 4.87 is the partial derivative of our local shape rotation term, . Refer-

ring back to Eq. 4.52, this can be found as follows:

4.101

This completes the derivation of the , the gradient of the LSM component of

our three-part objective function.
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ãj vn∂
∂ b̃j b̃j vn∂

∂ ãj–
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4.3.3 GLM Gradient Formulation

The final component of the objective function to be differentiated is the gray-level

model, . The equation for the gray-level component is given in Eq. 4.76. Note that

the form of this component (squared Mahalanobis distance from the mean) is similar to

that of the LSM given in Eq. 4.73. We can find the gradient of  as follows:

. 4.102

Note that  is being written as  to indicate that it is a function of v. Using Eq. 4.37,

we can the calculate the term  as follows:

. 4.103

The partial derivative of  depends, of course, on how the gray-level profiles are

defined during training, as well as on the operator, . This research accommodates six

possible types of gray level profile accommodated in this research. The profile samples

can be one of the following

(1) absolute image intensity values: 

, , 4.104

(2) edge profiles based on a first-forward difference gradient:

, , 4.105
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 (3) edge profiles based on a sobel gradient:

, 

. 4.106

Here,  and  are vectors that contain the values of the  coordinate locations of

the samples along the jth normal profile and are defined as (see Eq. 4.30)

, , 4.107

, . 4.108

where  is the angle of the jth profile. Also recall that I is the image under test and that

 is the pose-corrected coordinate pair indicating the location of the jth LP within the

image. Each of these three profile types can either be un-normalized or normalized by the

sum of the absolute values of the profile elements,

,

This results in six possible gray-level profile measurements. Here, we address the two

most commonly used profiles: normalized absolute intensity and normalized first-forward

difference gradient. 

For normalized absolute intensity, our profile is defined as

, . 4.109
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We can then write the partial derivative as

, . 4.110

We can expand, drop the absolute value (image pixels are always nonnegative), tempo-

rarily drop the v for convenience, and write

. 4.111

The only unknown term in the above expression is the partial derivative of the image

along the profile, . Applying the chain rule, we can write this partial derivative

as follows:
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and

4.114

We can derive the partials of  and  as follows:

4.115

and

. 4.116

Going back to Eq. 4.23, we can derive the partial of  as 
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Similarly, going back to Eq. 4.24, the partial derivative of  is

, , 4.122

and for the  partials with respect to v, we can write
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profile in this case is

, . 4.127

When deriving the gradient of this profile, one must be sure to treat the absolute value in

the normalization term (the denominator) in the above expression correctly. Recall that the

derivative of the absolute value of a function is as follows:

. 4.128

yj

vm∂
∂ yj s Φ j m, θsin Φ N j+ m, θcos+( )= m∀ 1 … ts, ,=

ts 1+ … ts 4+, ,

vts 1+∂
∂ yj s∂

∂yj L̂j( ) θsin L̂N j+( ) θcos+= =

vts 2+∂
∂ yj θ∂

∂yj s L̂j( ) θcos L̂N j+( ) θsin–{ }= =

vts 3+∂
∂ yj Tx∂

∂ yj 0= =

vts 4+∂
∂ yj Ty∂

∂ yj 1= =

gjk
v( )

I Qjk
Rjk

,( ) I Qjk 1+
Rjk 1+

,( )–

I Qjm
Rjm

,( ) I Qjm 1+
Rjm 1+

,( )–
m 1=

Ng

∑
----------------------------------------------------------------------------------= k∀ 1 … Ng, ,=

xd
d f x( ) f′x( ) x f x( ) 0≥;∀{ };

f′– x( ) x f x( ) 0<;∀{ };
=



112

The gradient of the normalized profile in Eq. 4.127 results in a lengthy but straightfor-

wardly implemented result. This final expression still requires one to calculate the gradi-

ent of the image along the profile points— that is, . The expressions derived

starting with Eq. 4.112 can be used in this case as well.

4.3.4 Optimization of the Objective Function

With the analytic gradient calculated, we can now apply a variety of gradient-based

optimization schemes to find the minimum of our objective function. This minimum value

occurs at a value of v that defines the boundary that simultaneously best fits all three com-

ponents of our model: global shape, local shape, and gray-level profile appearance.

Gradient descent was chosen as the optimization approach for this research because of

its simplicity. The use of other gradient-based optimization techniques such as the conju-

gate gradient technique can be explored in future research. The iterative update formula

for gradient descent in this case is

, 4.129

where r is the parameter that sets the length of the step size in the direction of the gradient.

We can monitor the value of the gradient norm at each iteration. When its value is close to

zero, we know we have found a minimum, and the process terminates.

Recall that we have found our optimal boundary (or set of LPs) as represented by the

shape-pose parameter vector, v, which exists in the PCA subspace (refer back to Sec. 3.1.3

and Sec. 4.1.1 for details). Recall that the first ts elements of v are defined as the global

shape parameter vector, b, and the last four elements of v are the pose elements (scale,

rotation, x-translation and y-translation). The two final steps to convert the PCA-based

vn∂
∂ I Qjk

Rjk
,( )

vnew vold r J v( )∇– vold r J1 v( )∇ J2 v( )∇ J3 v( )∇+ +[ ]–= =
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parameter vector, v, into our image-based LP vector, p, are (1) inverse-PCA-transform v to

generate the aligned (to the mean global shape) LP vector, , and (2) apply the pose trans-

formation, , to generate the final LP vector, p. The following formulas accom-

plish this final step:

, 4.130

. 4.131

4.3.5 Multi-Resolution PSAM Search

The PSAM algorithm is a multiresolution approach in that this optimization of the

objective function is performed at as many resolutions as indicated by the operator during

training (see Sec. 3.1.7). Typically, three resolutions (quarter, half, and full) are specified

in applications, so that this optimization procedure is performed at three different scales.

When the optimization terminates at one resolution, the resulting boundary is scaled up

(by a factor of 2) to the next highest resolution as the initial guess for that level.

4.3.6 Weight Parameters for PSAM Components

One advantage of having the update formula in the form of Eq. 4.129 is we can intro-

duce weighting factors for each of the components of our PSAM to emphasize one com-

ponent of the model over the others. Introducing weighting factors for each of our PSAM

components, we can rewrite our update formula in Eq. 4.129 as

, 4.132
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where w1, w2, and w3 are all scalars ranging from 0 to 1. A value of 1 for each of these

weighting factors allows them to have full influence on the optimization result. As the

value of the weighting factor decreases, the corresponding model component has less

influence on the result.

In the two simplest cases of the LSM and GLM (J2 and J3), the weighting factors w2

and w3 scale the contribution of the gradient; that is:

  4.133

and 

. 4.134

This has the effect of increasing or reducing the contribution of that model component to

the total gradient result. Note, however, that the formulation of the weighted GSM is

treated differently. The gradient of the GSM is not simply multiplied by the weighting fac-

tor, w1. This is because the purpose of the GSM is to influence the shape of the deforming

boundary to resemble, in a global sense, the shape of the boundaries as delineated in the

training set. The GSM accomplishes this goal, in part, via the last step of the optimization

process— that is, the inverse PCA transform in Eq. 4.130. The only modes of variation

(i.e., eigenvectors, , of the training covariance matrix, C) that were retained in

the PCA transform were the largest ones, which accounted for most of the training set

variation. Because the inverse PCA transformation contains only those modes, it will

transform any shape parameter vector into a set of LPs that resembles the global shape as

parametrized by the GSM. The key, as is described next, is to use the weighting factor, w1,

earlier in the process (during training) to reduce the influence of the GSM.

J1 v w1,( )∇ w1 J1 v( )∇=

J2 v w2,( )∇ w2 J2 v( )∇=

φ1 … φts
, ,
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The influence of the GSM on the final LP boundary is entirely determined during the

training process. More precisely, it depends on the form of the training set covariance

matrix, C, from which the modes of variation are extracted via an eigenvalue/eigenvector

computation. At one extreme, where the GSM has full influence, we can (as we have to

this point) depend completely on the measured covariance between all LPs within the

training set. In this scenario, the movement of one LP is dependent on every other LP’s

movement to a level proportional to the covariance between those two LPs. At the other

extreme, where the GSM has no influence, we can say a priori that all LPs are independent

of one another and can move freely. In this scenario, the covariance between all LPs is

zero, and the covariance matrix would be diagonal. This observation has also been noted

by Wang and Staib in [96]. This provides a clue into how one could control, via a weight-

ing factor, the influence of the GSM on the form of the final LP boundary.

The number of points in the LP boundary has been previously defined as N. Consider

the factor, w1N, to be the size of the LP boundary neighborhood within which the move-

ment of one LP can influence another. It is convenient to force the size of the neighbor-

hood to be an odd number so that it includes a current LP and an equal number of

neighbors on each side of the LP. If w1 = 1, then all N LPs can have influence on one

another as dictated by the covariance within the training set. If w1 = 0, then all LPs move

independently. All other values of w1 define a local neighborhood of a size less than N for

which LPs will have influence on one another. This can be implemented simply be zeroing

the appropriate diagonals of the training covariance matrix before performing the PCA.

For example, if an LP boundary contained six LPs, and w1 was equal to 0.5, this would
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define a neighborhood size of three LPs. The covariance matrix would then be defined to

have the following form:

. 4.135

Note that the only nonzero covariance values occur within the neighborhood size defined

by the product of w1 and N. This can also be thought of as building in a scale-based shape

similarity in which resulting LP boundaries will resemble the training set boundaries at a

scale defined by the value of w1. Note that if w1 = 0, then the covariance matrix becomes

diagonal so that all covariance values are zero, and boundary LPs are free to move inde-

pendently.

4.4 Confidence Metric Formulation

One of the goals of this research was to develop a confidence metric, or “goodness-of-

fit” measurement, that accompanies the LP boundary result. The purpose of this metric is

to quantify how well the final LP boundary fits within the shape and gray-level profile
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appearance parameters measured from the training set. Although the result of this metric

will not necessarily predict the accuracy of the segmentation result, it will indicate the

level to which the result resembles the boundaries defined in the training set. As will be

seen in Chap. 5, however, a correlation between one component of the developed metric

and the segmentation accuracy is identified, allowing the confidence metric to be used as

an approximate predictor of segmentation accuracy in some cases.

Recall that during the formulation of the three-component objective function in Sec.

4.2, the value of the objective function for each component (J1, J2, and J3) was the squared

Mahalanobis distance of that component’s value from the mean. We can use this value

straightforwardly to formulate a confidence metric. Immediately after the PSAM training

process, which results in the creation of the three-component PSAM, the values of J1, J2,

and J3 are computed and stored for every user-delineated LP boundary in the training set.

The maximum values of the squared Mahalanobis distances are saved for the GSM, LSM,

and GLM across all of the training samples. These maximum values (called , ,

and ) correspond to the most “ill-fitting” LP boundary in the training set relative to

each of the PSAM components. These maxima can then be used to set the bounds for each

component of the PSAM in terms of how far a new LP boundary measurement should

stray from the mean global shape, mean local shape, and mean gray-level profile appear-

ance. These maximum distances are used to normalize the measured squared Mahalanobis

distances for a newly computed LP boundary and result in a confidence metric. Confi-

J1max
J2max

J3max



118

dence metrics can then be computed for each individual model component using the fol-

lowing formulas:

, 4.136

, 4.137

. 4.138

If the value of these confidence metrics is equal to 1, the corresponding component of the

LP boundary is equal to the training set mean (Mahalanobis distance of zero). As the val-

ues of , , and  decrease, the LP boundary is moving farther away from the mean.

At zero, the LP boundary has moved as far away from the mean as the most “ill-fitting”

training sample. A negative value for the confidence metric indicates that the LP boundary

has fallen outside the bounds of the training set, while a value between 0 and 1 indicates

that the result fits within the bounds as determined by the training samples. It is conve-

nient to inspect the individual confidence metrics of , , and  to see how well the

current LP boundary satisfies the GSM, LSM, and GLM, respectively. In addition, note

that  represents the GSM confidence metric, which has two main components: the

shape and the pose. If desired, we can straightforwardly treat each component individually

and generate a confidence metric for each component and call them  and . This

allows us to check the shape and pose confidences individually.
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4.5 PSAM Development Summary

This concludes the theoretical development of the PSAM. Sec. 4.1 outlined four major

goals that this new PSAM formulation would satisfy. Let us examine those goals here to

summarize how they have been met.

1. Reformulate the statistical model objective function so that it considers both the 

gray-level and shape information simultaneously during contour deformation.

This new PSAM objective function combines the a priori information contained in the

training set with regard to boundary shape and gray-level profile appearance. These

two components of the model are no longer optimized independently, but simulta-

neously. This increases the overall probability that a global minimum will be found

during optimization.

2. Employ a continuous penalty for global shape variations as dictated by the train-

ing set.

We have a formulated a continuous, probabilistic objective function that, during the

optimization process, penalizes a boundary whose shape and gray-level profiles vary

from those dictated by the training set. 

3. Formulate models of local shape characteristics to provide better control of the 

relative local movement of LPs.

A local shape modeling scheme was developed and incorporated into the overall

PSAM objective function. This local modeling is done in a manner that is very similar

to the global shape modeling scheme.
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4. Develop a PSAM confidence metric.

The Gaussian-based formulation of each of the model components allows a straight-

forward measure of the goodness-of-fit of the final boundary with regard to the train-

ing data. This confidence metric is based on the Mahalanobis distance of the final

boundary’s characteristic (shape and gray-level profile appearance) from the corre-

sponding mean characteristic.

The following chapter discusses the implementation of this technique and presents

experimental results that demonstrate the useful characteristics of the PSAM boundary-

finding formulation.
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CHAPTER 5

EXPERIMENTAL RESULTS

This chapter presents the results of the application of the new PSAM algorithm on a

variety of data sets, including both synthetic and real images. The chapter first presents

some results on synthetic data to illustrate the effect of the three PSAM weighting param-

eters formulated in Sec. 4.3.6 that allow the operator to control the influence of each of the

three model components (GSM, LSM, and GLM). Then three medical-image data sets

taken from high-resolution X-ray CT volumes of laboratory mice are segmented via

PSAM and ASM, and the accuracy of the segmentation results are compared. Other

boundary-finding researchers have used ASM as a starting point ([87], [59], and [96]), but

none have done a direct comparison of performance between their segmentation technique

and ASM. Finally, this chapter explores the specific interaction of the global and local

shape components of the model through experiments on medical images and some ivy-

leaf-image data. 

5.1 Weight Parameter Experiment on Synthetic Data

Recall from Sec. 4.3.6 that three separate weight components— w1, w2, and w3— were

formulated to control the relative influence of the GSM, the LSM, and the GLM, respec-

tively, during the contour optimization. This section presents some results on synthetic

data that clearly illustrate how these weighting parameters can be used to achieve applica-
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tion-specific results. Also presented here are the confidence metric values that indicate

how well the resulting boundaries fit within the distribution defined by the training data.

The synthetic data used for this experiment consisted of a collection of star images

such as the one shown in Fig. 5.1. For simplicity, the background is black and the star is

white. The training set consisted of a set of seven images created by translating and scal-

ing the original star image to seven different positions and sizes. The LP boundary of each

star in the training set was manually delineated.

In the first weight parameter test the first star image was held out, the remaining six

examples were used for training, and the PSAM algorithm was run the GSM influence

was changing. The LSM influence was set to zero for this test. The result of this experi-

ment is shown in Fig. 5.2. Note that even with the global and local shape parameters w1

and w2 set to zero [Fig. 5.2(b), no shape influence], the strong edge information in this

synthetic image allows PSAM to accurately find the boundary of the star relying only on

Fig. 5.1 Example of synthetic image used for weight parameter testing. 
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gray-level information. All of the confidence metrics fall between 0 and 1 for both cases,

indicating that the boundary result fits well within the distribution of training examples.

The next experiment introduces a new test image containing a star that has had its

points cut off. The resulting star does not look like the images in the training set, and,

hence, is useful for illustration purposes. Again, we start with a GSM weight of 1 and then

reduce the influence of the GSM over several steps. As can be seen in Fig. 5.3, with a

GSM weight of 1, the final boundary is forced to look like the stars in the training set and,

hence, does not fit this deformed star very well. The large negative value of the GLM con-

fidence metric (c3 = -16.17) indicates that the final gray-level profiles do not match those

defined during training. In practice, a large negative value for any of the three confidence

metrics should indicate the occurrence of an unusual result. Though the resulting bound-

Fig. 5.2 Segmentation results on star image. Parameter settings: (a) w1 = 1, w2 = 0, 
and w3 = 1 and (b) w1 = 0, w2 = 0, and w3 = 1. The resulting confidence val-
ues for (a) are c1 = 0.85, c2 = 0.97, and c3 = 0.53 and for (b) are c1 = 0.85, c2 
= 0.87, and c3 = 0.53.

(a) (b)
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ary may represent a reasonable segmentation, the fact that it looks different from the train-

ing set promotes manual intervention by the operator.

 If we reduce the influence of the GSM, this increases the relative influence of the

GLM, and the final boundary begins to fit the image edges more closely. Note that this

happens to a small degree when the GSM weight is reduced to 0.5 in Fig. 5.3. The images

in Fig. 5.4 show the results of reducing the GSM weight further, to 0.25 and then to zero.

Note that when the GSM influence is reduced to zero, all of the LPs on the boundary fall

very to close image edges. This is because the GLM has all of the control in the PSAM

objective function, so the boundary will move to edge information independent of prior

boundary shape. Finally, note that, in general, the confidence metrics for the GSM and

LSM become more negative, indicating a poor fit to the shape-training data. Alternatively,

(a) (b)

Fig. 5.3 New segmentation results on star image. Parameter settings: (a) w1 = 1, w2 
= 0, and w3 = 1 and (b) w1 = 0.5, w2 = 0, and w3 = 1. The resulting confi-
dence values for (a) are c1 = -0.14, c2 = 0.71, and c3 = -16.17 and for (b) are 
c1 = -0.42, c2 = -0.07, and c3 = -14.92.
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the relative value of the GLM confidence metric increases, indicating a trend toward a bet-

ter fit to the gray-level profile training data.

We can perform a similar experiment to analyze the impact of changing the LSM

weighting factor, w2. For this experiment we leave the GSM weight equal to zero so that

we can isolate the influence of the LSM and GLM on final boundary shape. Starting with

an LSM weight of 0 and a GLM weight of 1, the value of the LSM weight relative to the

GLM weight is increased. This is accomplished both by increasing w2 and decreasing w1.

The results in Fig. 5.5 and Fig. 5.6 show how the LSM gains more control of the final

boundary shape. In Fig. 5.5 there is little visible change, but note that the GSM and the

GLM confidence metrics increase slightly. In Fig. 5.6, note that the LSM confidence met-

(a) (b)

Fig. 5.4 Segmentation results on star image. Weight parameters are: (a) w1 = 0.25, 
w2 = 0, and w3 = 1 and (b) w1 = 0, w2 = 0, and w3 = 1. The resulting confi-
dence values for (a) are c1 = -0.70, c2 = -0.56, and c3 = -10.24 and for (b) 
are c1 = -0.60, c2 = -4.14, and c3 = -6.28.
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(a) (b)

Fig. 5.5 Segmentation results on modified star. Weight parameters are: (a) w1=0, 
w2=0, and w3=1 and (b) w1=0, w2=1, and w3=1. The resulting confidence 
values for (a) are c1=-0.60, c2=-4.14, and c3=-6.28 and for (b) are c1=-0.54, 
c2=-3.85, and c3=-6.82

(a) (b)

Fig. 5.6 New segmentation results on modified star. Parameters are: (a) w1=0, w2=1, 
and w3=0.5 and (b) w1=0, w2=1, and w3=0.1. The resulting confidence values 
for (a) are c1=-0.24, c2=-2.04, and c3=-10.94 and for (b) are c1=-0.67, 
c2=0.24, and c3=-17.13
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ric, c2, continues to improve (eventually becoming positive), while the GLM confidence

metric decreases.

This experiment illustrates the impact of the PSAM weighting factors on the final

boundary shape and position. It also illustrates how the individual confidence metrics can

be used as a tool to possibly predict the segmentation result. As will be seen later in this

chapter the confidence metrics do not always allow a prediction of the segmentation accu-

racy, but they can be used to alert the operator to the fact that something unusual has

occurred.

5.2 PSAM Results on Synthetic Medical Data

For analysis of the robustness of the PSAM algorithm in the presence of both geomet-

ric deformation and noise, a set of synthetic image data was generated. A simulated image

of kidney cross sections was created, and then fourteen different geometric distortion were

applied to the original image. In addition, different levels of uniform noise were added to

each of the original and geometrically distorted images (see Fig. 5.7). The levels define

the maximum value of the uniformly distributed noise that is added to each pixel, where

each level is set as a percentage of the image depth (256 gray-scale values). In these exper-

iments, four levels of uniform noise distributed over +/-25%, +/-50%, +/-75%, and +/-

100% of the image dynamic range (255 levels of gray) were added to each image. The

PSAM algorithm was trained only on the noise-free images; the images being tested were

held out of the training set to make the results more realistic. The corresponding segmen-

tation results for a subset of these synthetic images are shown in Fig. 5.8. In general, the
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original

hcyl

hpers2

pinch

Fig. 5.7 Simulated kidney image with geometric distortion and noise. A variety 
of distortions (top to bottom) and uniform additive noise (50% middle 
column, 100% right column) are shown.
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Fig. 5.8 PSAM results with geometric distortion and additive noise. PSAM per-
formed well at noise levels up to 50% and 75% (not pictured) and had 
some trouble at 100%, particularly with the horizontal perspective trans-
formation image.
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PSAM algorithm performed well in the presence of noise and geometric distortion. Only

at noise levels of 100% did PSAM begin to have significant problems with segmentation.

5.3 PSAM Results on Medical Image Data

PSAM was evaluated in a real-world situation by using it to segment three sets of

medical-image data. All three sets of data were acquired using a micro X-ray CT system

built for scanning laboratory mice [78]. The three data sets contained increasingly diffi-

cult-to-segment objects and are a good test of the PSAM capabilities. This researcher gen-

erated ground truth data for PSAM training by manually placing LPs along the boundaries

of the anatomic objects of interest in each training image.1 PSAM was trained and then

applied to all three cases with the weighting parameters set as follows: w1 = 1, w2 = 0, and

w3 = 1. In other words, the GSM and the GLM components were weighted with full

strength, while the LSM component was not included in the optimization. The effect of

the LSM component is addressed in Sec. 5.4. The standard ASM approach was also

applied to the same data sets for comparison purposes. For all test cases on both algo-

rithms, a leave-one-out approach was adopted for segmentation performance testing; in

other words, the image under test was left out of the training set.

Boundary error information is given for all of the sample data. Boundary error is deter-

mined by calculating the distance from each LP in the final boundary result with its corre-

sponding ground truth LP in the training set. The total error is calculated by summing the

1. Although this researcher has substantial experience in accurately delineating 
anatomic structures within X-ray CT images, future experiments will be per-
formed using ground truth data created by an experienced veterinarian radiolo-
gist. 
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individual error at each LP, and the average error is found by dividing the total error by the

number of LPs. This gives the average error on a per-LP basis.

5.3.1 Mouse Skull and Trachea Segmentation

The first data set consisted of 12 transaxial slices through an X-ray CT volume of the

skulls of twelve mice. Four of the twelve images are shown in Fig. 5.9. Note the large

variation in the pose of each of the animals. This pose variation can make segmentation

difficult. One sample image is more clearly illustrated in Fig. 5.10. This particular slice

through the skull shows the ear canals and trachea of the animal. A two-boundary model

was used during training to delineate the skull and ear canals (open boundary) and the tra-

chea (closed boundary). The same training data were used to train both the PSAM and the

ASM algorithms.

This data set is considered to be moderately difficult because the pose of the animal in

the training data is changing substantially. The edge information provided by the skull and

trachea is fairly strong, however, making the segmentation problem manageable. The plot

in Fig. 5.11 shows the total boundary error for each of the twelve images tested. The

PSAM algorithm outperforms ASM in 9 of the 12 images and is significantly outper-

formed by ASM in only one case (image 7). A comparison of the PSAM and ASM seg-

mentation results for image 10 are shown in Fig. 5.12. In this example the average pixel

boundary error per LP is 2.3 pixels for PSAM segmentation, compared to 4.2 pixels for

ASM segmentation. Comparing the sum of the total boundary error across all LPs for all

of the 12 test images, the total error for ASM was 790 pixels versus 632 pixels for PSAM.

The ASM total boundary error on this test set was 25% higher than the PSAM error.
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Fig. 5.9 Sample mouse skull images from first training set.  
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Fig. 5.10 Transaxial slice through an X-ray CT volume of a mouse skull.  The inden-
tations are where the ear canal enters the skull. A cross section of the trachea 
is also visible.

ear canal

trachea

skull
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Fig. 5.11 Average boundary error for the skull images. Note that the PSAM algorithm 
outperforms ASM in 9 out of the 12 images, and is outperformed signifi-
cantly by ASM in only 1 case (image #7).
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(b) (c)

Fig. 5.12 Skull sample #10 segmentation: (a) initial position of model; (b) result 
obtained using PSAM; (c) result obtained using ASM. Note in particular the 
improved PSAM segmentation of the trachea and left ear canal.

(a)
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Note, in Fig. 5.11, the PSAM segmentation was outperformed by ASM on image 7.

The PSAM segmentation error was due to a variation in the shape of the skull on the left

side of image 7. The left side of the skull does not extend out as far as it does in the other

11 images in the training set (see Fig. 5.13). This error was corrected by reducing the

GSM weight, w1, for the PSAM algorithm from 1.0 to 0.3. Note how the weaker GSM

allowed the boundary to move in and capture the left side of the skull in Fig. 5.13(b).

Finally, it is also interesting to analyze the relationship between the boundary error

and the confidence metrics. The most potentially useful relationship appears to be between

the GLM confidence metric, c3, and the average boundary error. Recall that the GLM con-

fidence metric indicates how well the final gray-level profiles normal to each LP fit within

the corresponding distribution of LP gray-level profiles as defined by the training set. If

Fig. 5.13 PSAM segmentation result for image 7. Note in image (a) that the left side of 
the skull boundary was missed. The improved result in (b) was obtained after 
reducing the influence of the GSM weight, w1, from 1.0 to 0.3.

(a) (b)
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for example, there are strong edges in the training set, there will be strong gradients in the

training profiles. If the final boundary profiles do not contain strong gradients, then the

value of c3 will be low, indicating the possibility of poor segmentation. The plot in Fig.

5.14 shows a potential negative correlation between the average LP boundary error and

the GLM confidence metric, c3. Based on this plot, a lower GLM confidence roughly cor-

responds to higher segmentation error. GLM confidence could be monitored in this case

so that a low value could flag a potential problem with the segmentation result.

5.3.2 Mouse Heart and Lung Segmentation

The second data set consisted of 12 transaxial X-ray CT slices through the chest of 12

mice revealing a view of the heart and lung anatomy. Four of the 12 images are shown in

Fig. 5.14 Plot of average boundary error vs GLM confidence for skull images. Note 
the approximate negative correlation between the two.
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Fig. 5.15. Note the large variation in the pose of each of the animals as well as the varia-

tion in lung size and appearance. The two lower images contain lungs that have a larger

amount of tissue and/or fluid within them, causing them to appear lighter in color (air is

black on an X-ray image). These pose, size, and appearance variations make this a more

difficult segmentation problem than the previous case. One sample image is more clearly

illustrated in Fig. 5.16, which shows the lungs and heart of the animal. A three-boundary

model was used during training to delineate the lungs (two closed boundaries) and the

lower heart (an open boundary). As with the skull data experiment, the same training data

was used to train both the PSAM and ASM algorithms.

The plot in Fig. 5.17 shows the average boundary error for each of the twelve images

tested. With this data set, the PSAM algorithm outperformed ASM in 9 of the 12 cases

(with a slightly lower error for images 4 and 12), and was outperformed by ASM in three

cases (images 8, 9, and 11).The PSAM and ASM segmentation results for image 3 are

shown in Fig. 5.18. In the example shown, PSAM generated a more accurate segmentation

of both lungs. In addition, the lower boundary of the heart was more accurately delineated.

Although ASM had a lower error for 3 of the 12 images, a qualitative comparison of the

segmentation results reveals comparable performance. For example, compare the PSAM

versus ASM segmentation of image 8 as shown in Fig. 5.19. Qualitatively, the PSAM

result appears to be nearly as good as, if not better than, the ASM result. Comparing the

sum of the total boundary error across all LPs for all of the 12 test images, the total error

for ASM was 1612 pixels versus 1322 pixels for PSAM. The ASM total boundary error on

this test set was 22% higher than the PSAM error.
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Fig. 5.15 Example heart and lung images from second training set. Note the variation 
in pose, shape, and intensity of the heart and lungs.
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Fig. 5.16 Transaxial slice through an x-ray CT volume of a mouse chest.  The two 
dark objects are the air-filled lungs, and the object between them is the heart.

lung

heart
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Fig. 5.17 Average boundary error for the heart and lung images. The PSAM bound-
ary error is lower than ASM boundary error in 9 of the 12 images (only 
slightly lower for images 4 and 12). PSAM has higher error than ASM in 
three cases (images 8, 9, and 11).
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(b) (c)

Fig. 5.18 Heart and lung segmentation result for image 3: (a) initial position of model; 
(b) result obtained using PSAM; (c) result obtained using ASM.

(a)
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Fig. 5.19 Segmentation result using (a) PSAM and (b) ASM for image 8. qualita-
tively, the segmentation accuracies are comparable.

(a) (b)
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Once again, it is interesting to analyze the relationship between the boundary error and

the GLM confidence metric, c3. The plot in Fig. 5.20 shows the average LP boundary

error versus the GLM confidence metric, c3. In this case, there is not the same type of neg-

ative correlation as we saw in the skull data set. We do see one extreme case (upper left)

where the average error is very high (16.8 pixels), corresponding to a relatively low confi-

dence metric (0.17), but there does not appear to be an overall correlation between c3 and

the boundary segmentation error similar to that which was seen on the skull image data.

5.3.3 Mouse Kidney and Spine Segmentation

The third data set consists of 14 transaxial X-ray CT slices through the abdomen of 14

mice revealing a view of the kidneys. Four of the 14 images are shown in Fig. 5.21. Again,

Fig. 5.20 Average error vs GLM confidence for heart and lung images. Note the 
upper-left point where the error suddenly jumps to a low value of the GLM 
confidence.
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Fig. 5.21 Mouse kidney images from third training set. Note the large variations in 
pose, shape, intensity, and background complexity.
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note the large variation in the pose of each of the animals, the variation in kidney size and

appearance, and the complexity and variability of the kidney backgrounds. The white

spots in the upper two images are concentrations of X-ray contrast agent. The two lower

images contain much less contrast agent compared to the two upper images. These pose,

size and appearance variation of the kidneys along with the complexity and variability of

the backgrounds make this the most challenging segmentation problem of the three data

sets. One sample image is more clearly illustrated in Fig. 5.22. This slice through the

abdomen shows the kidneys and spine of the animal as well as some of the intestines in the

lower abdomen. A three-boundary model was used during training to delineate the kid-

neys (two closed boundaries) and the spine (an open boundary). As with the two previous

data sets, the same training data was used to train both the PSAM and standard ASM algo-

rithms.

The plot in Fig. 5.23 shows the total boundary error for each of the 14 kidneys images

tested. With this data set, the PSAM algorithm outperformed ASM in 10 of the 14 cases.

In the first four of those cases (images ) PSAM has much lower boundary errors than

ASM. ASM error is lower than PSAM error in 4 of the 14 cases, but the difference in error

is relatively small. Two PSAM versus ASM segmentation results are shown in Fig. 5.24

and Fig. 5.25. In the first example, PSAM generated a more accurate segmentation of both

kidneys and the spine. The second example (Fig. 5.25) is the same one that was presented

as a particularly problematic case for ASM in Sec. 3.5. There, it was demonstrated explic-

itly that the independent optimization of the GSM and the GLM led to a poor segmenta-

tion of the left kidney. Use of the new PSAM approach led to near-perfect segmentation of

1 4–
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Fig. 5.22 Transaxial slice through an X-ray CT volume of a mouse abdomen.  The 
two elliptical objects are the mouse kidneys, and the white object above them 
is one of the vertebra in the spine.

kidney

spine

kidney

intestines

contrast agent
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Fig. 5.23 Total boundary error for the kidney and spine images. The PSAM algorithm 
outperforms ASM in 10 of the 14 images and is slightly outperformed by 
ASM in the remaining 4 cases.
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(b) (c)

Fig. 5.24 Kidney and spine segmentation result on image 1: (a) initial position of 
model; (b) result obtained using PSAM; (c) result obtained using ASM.

(a)
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(c)

Fig. 5.25 Kidney and spine segmentation result on image 12: (a) initial position of 
model; (b) result obtained using PSAM; (c) result obtained using ASM. 
Because the kidney edge is very faint on a printed version of the image, it has 
been marked with an arrow for convenience.

(a)

(b)

Actual location of left kidney edge Actual location of left kidney edge
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both kidneys. Comparing the sum of the total boundary error across all LPs for all of the

14 test images, the total error for ASM was 1256 pixels versus 1038 pixels for PSAM. The

ASM total boundary error on this test set was 21% higher than the PSAM error. 

Once again, it is interesting to analyze the relationship between the boundary error and

the GLM confidence metric, c3. The plot in Fig. 5.26 shows the average LP boundary

error versus the GLM confidence metric, c3. In this case, there is again (as in the skull data

set) an approximate negative correlation between c3 and the boundary segmentation error.

For the case of kidney and spine segmentation shown here, the GLM confidence metric

could be used as an approximate predictor of segmentation accuracy.

Fig. 5.26 Average error vs GLM confidence for kidney and spine images. In general, 
lower confidence corresponds (with the exception of the outlier) to higher 
segmentation error.

outlier



152

5.3.4 Gaussian Distribution Goodness-of-Fit Tests

During the theoretical development of the PSAM algorithm, multivariate Gaussian

functions were used to model both the shape variation and the gray-level profile variation

for each LP. Although researchers in this area of statistical shape models often make simi-

lar assumptions, the validity of these assumptions is rarely tested. Two separate statistical

techniques were used to test the validity of these Gaussian assumptions for the three med-

ical image data sets just presented. These statistical tests were performed with a relatively

small number of samples (12 for the skull data, 12 for the heart and lung data, and 14 for

the kidney data); therefore, the results must be interpreted with a degree of caution.

Two well-known multivariate tests were used to determine if the shape and gray-level

data in the training set come from a specific (Gaussian, in this case) distribution. Both

tests— the Kolmogorov-Smirnov (K-S) goodness-of-fit test [14] and the Anderson-Dar-

ling (A-D) test [88]— are based on the fact that for a multivariate Gaussian distribution,

the distribution of squared Mahalanobis distances as measured from the training data will

follow a chi-square distribution with k degrees of freedom, where k is the number of vari-

ables being modeled. The two tests differ in how they measure the difference between the

ideal (chi-square) distribution and the empirical (Mahalanobis distance) distribution. The

Anderson-Darling test is a more recent variation of the Kolmogorov-Smirnov test and is

considered to be both more stringent and more accurate.

The result of these tests applied to the shape vectors, v, as measured from the three dif-

ferent medical image training sets are shown in Fig. 5.27 and Table 5.1. The shape vector



153

(a)

(b)

(c)

Fig. 5.27 Probability distributions for multivariate Gaussian shape data. Plots show 
empirical (dots) and theoretical (curve) distributions for skull data (a), heart 
and lung data (b) and kidney/spine data (c).
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distributions pass the K-S test on two of the three data sets (one passes only marginally),

and that they all fail the more stringent A-D test. This is an interesting result given that the

PSAM algorithm performs well on all three data sets. Recall that the PSAM algorithm also

optimizes with respect to the gray-level information, so we will now examine how well

the gray-level profile distributions for each LP fit the assumed multivariate Gaussian dis-

tribution.

The results of the K-S and A-D tests as applied to the gray-level profile distributions

indicate a better fit (as compared to the shape vectors) to a multivariate Gaussian distribu-

tion. For the K-S test, 100% of the gray-level profile distributions pass the multivariate

Gaussian test. For the more stringent A-D test, 63 to 68% of the gray-level profile distri-

butions were found to fit a multivariate Gaussian distribution. The lowest percentage cor-

responds to the heart and lung data set. This is the same data set in which the Gaussian-

based GLM confidence metric, c3, did not correlate reasonably well with the PSAM

boundary error (see Fig. 5.20).

5.4 LSM Experiments

Many sets of experiments were performed on the synthetic and real data to test the

effectiveness of the new LSM introduced in Chap. 4. Some of the tests on synthetic data

Table 5.1: Results of K-S and A-D Tests on Training Shape Vectors, v

Image Set K-S Test 
Result

A-D Test 
Result

Skull Fail Fail

Heart/Lung Marginal Fail

Kidneys/Spine Pass Fail
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(star images) have already been presented at the beginning of this chapter. These showed

that the LSM influences the solution in the manner expected. The tests carried out using

LSM on real data have shown that when the LSM is used in conjunction with the GSM,

both weighted at full strength (w1 = 1, w2 = 1), only in a few instances is segmentation

accuracy improved over using the GSM alone. One of those cases is illustrated in Fig.

5.28, where two LSMs (size = 5 LPs) were included, one around each ear canal. The GLM

weight, w3, is was set to 1 for all experiments described here. In the majority of cases, the

inclusion of the LSM along with the full influence of the GSM (w1=1) did not signifi-

cantly affect the segmentation result, but in the cases where the LSM did influence the

result, it improved accuracy. The LSM seems to have a more positive impact in situations

where the GSM may be ill-defined, as described next.

In segmentation applications where the GSM is ineffective because of a combination

of few training samples and substantial global boundary shape variability, using LSMs

(a) (b)

Fig. 5.28 Effect of LSM influence on segmentation on mouse skull. (a) No LSM influ-
ence (w2 = 0) and (b) full LSM influence (w2 = 1).
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independent of the GSM can be beneficial. A good example of this situation is an ivy leaf

data set. A few examples of this data set are shown in Fig. 5.29. There is a large degree of

variability in the overall global shape, but the local shapes of the tips of the leaves and the

corners between leaf tips are more predictable and can be modeled effectively using

LSMs. The image in Fig. 5.30 shows where the centers of six LSMs were defined during

training. Each of the six LSMs included three LPs. The PSAM algorithm was used to seg-

ment the ivy leaf images first using the GSM and the GLM (no LSM), and second using

only the LSM and the GLM (no GSM). An example of the results is shown in Fig. 5.31.

Note the improved segmentation result using LSMs instead of the GSM, particularly

around the areas where the LSM was defined. This improvement was typical for most leaf

images in the training set.     

Recall from the development of the shape model in Sec. 4.1.2 that an LSM reward

term was added to the shape component of the objective function. Simply adding this term

implied an assumption of independence between the LSMs and GSM. The quality of this

assumption depends in part on the size of the LSM (which is a subset of the GSM) relative

Fig. 5.29 Three examples from the ivy leaf data set. Note the large variations in global 
shape of the leaves.
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Fig. 5.30 Ivy leaf example. Arrows show the location of centers for six LSMs

(a) (b)

Fig. 5.31 Samples of PSAM segmentation on ivy leaf images. The image in (a) was 
segmented with w1 = 1, w2 = 0, and w3 = 1 (no LSM). The image in (b) was 
segmented with w1 = 0, w2 = 1, and w3 = 1 (no GSM).
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to the GSM. If the LSM is small enough compared to the GSM, this independence

assumption will approximately hold. As the LSM size approaches that of the GSM, the

independence assumption falls apart. In practice, there may be a level of dependence

between the GSM and LSM that needs to be included in the theoretical development of the

PSAM approach. It has been demonstrated (e.g., Fig. 5.28) that including LSM influence

with the GSM during optimization will in some cases increase the boundary segmentation

accuracy. It is also clear from experimentation that the inclusion of the LSMs has a larger

and more positive impact if done independently of any GSM influence (e.g., Fig. 5.31).

This last observation supports the fact that there is a level of dependence between the

LSM and the GSM that probably needs to be theoretically developed in future research for

maximum effectiveness.

5.5 Experimental Results Summary

Experiments with synthetic images showed that the influence of the three model com-

ponents (GSM, LSM, and GLM) can be controlled through setting of the three weight

parameters w1, w2, and w3. The effect of this procedure was shown in the LP boundary

segmentation results as well as in the confidence metrics for each component. Experi-

ments using real data demonstrated that the PSAM algorithm is superior to the standard

ASM approach in terms of segmentation accuracy. It was also shown that in some cases

(two out of the three medical cases) the GLM confidence metric may be effectively used

as a predictor of segmentation accuracy. It was also demonstrated that in spite of the fact

that the Gaussian distribution assumption is not ideal for the anatomic shape variations in

the medical images, PSAM was able to perform the object segmentation quite well. This is
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probably due, at least in part, to the fact that the gray-level profiles were shown to follow a

multivariate Gaussian distribution in most instances. Finally, it was shown that the use of

LSMs in conjunction with the GSM will generate more accurate segmentation for a few

cases. However, the LSM has more influence if it can be used independently from the

GSM. Future work needs to be done to further assess the effectiveness of the LSMs and to

incorporate them more fully into the theoretical development of the PSAM algorithm.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter summarizes PSAM development and segmentation performance. It con-

cludes by describing opportunities for future work based on this research.

6.1 PSAM Development and Performance

The new probabilistic shape and appearance modeling (PSAM) algorithm has many

advantages over existing boundary-finding techniques. The PSAM technique is based on

compound Bayesian decision theory, and the formulation is general enough that can be

used as a starting point to derive some of the other previously developed probabilistic

boundary-finding techniques. The motivation for developing this new PSAM algorithm

arose from a need to segment semirigid objects from complex backgrounds in cases where

the object might have faint and/or missing edge information, as is common in medical

imaging applications. 

The PSAM algorithm contains three specific model components: (1) a global shape

model (GSM), (2) a local shape model (LSM), and (3) a gray-level model (GLM). The

GLM formulation is flexible enough to allow a variety of image features to be extracted,

but the image feature on which this research focused was gradient-based gray-level pro-

files normal to the boundary through each LP. All three of the PSAM components are

optimized simultaneously when performing boundary searches within new images. PSAM

is formulated in a convenient manner so that the influence of each of these components on



161

the final boundary position can be controlled by the system operator through adjustments

of individual model component weight parameters. This formulation allows the same

PSAM algorithm to be used in applications with predictable global shape and relatively

poor object edge strength, as well as applications where global shape is unpredictable but

object edges are prominent and/or LSMs are applicable.

The PSAM algorithm formulation provides confidence metrics for each of the three

model components to indicate how well each PSAM component of the final boundary fits

within the distribution of each component as derived from the training data. These confi-

dence metrics can be monitored to alert an operator to any boundary results in which one

or more model components was found to be “out of bounds” relative to the training data.

Furthermore, as was demonstrated in this research, the GLM confidence metric can be

used a a predictor of segmentation accuracy for some applications.

The performance of the PSAM algorithm is remarkable for applications of varying

degrees of difficulty. In three cases of real medical image data segmentation the PSAM

algorithm performed well and, in fact, outperformed the existing ASM algorithm by a sub-

stantial margin. In particular, PSAM has a much larger degree of success compared to

ASM on the most difficult cases (e.g., the mouse kidney images).

Finally, it was shown that the new local shape modeling formulation in this work is a

positive addition to the PSAM boundary-based segmentation algorithm. When GSM and

LSM are used simultaneously to optimize a boundary, the result is occasionally better than

results using only the GSM for shape. It was also shown that in an application where glo-

bal shape is highly variable, to the point where it maybe difficult to predict given the train-
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ing samples, the use of LSMs in place of the GSM can improve the PSAM algorithm

performance.

In summary, the strengths of new PSAM algorithm are the following:

• PSAM simultaneously optimizes with respect to boundary shape and gray-level 

characteristics using a priori information derived from a training set. In addition, 

PSAM simultaneously optimizes with respect to the boundary pose parameters 

(translation, scale, and rotation).

• PSAM provides control over the relative influence of each of the three model com-

ponents (GSM, LSM, and GLM) via the adjustment of component weight parame-

ters.

• The algorithm optimizes over pose parameters by modeling acceptable translation, 

scale, and rotation as measured from the training set.

• It incorporates local shape modeling for more controlled segmentation around criti-

cal LPs.

• It generates confidence metrics that can used to ascertain how well the final PSAM 

boundary shape and gray-level characteristics fit those measured in the training 

data; in some cases, the GLM confidence can be used to predict segmentation accu-

racy.

• PSAM performs well on a wide variety of semirigid object segmentation applica-

tions and significantly outperforms similar shape-based segmentation approaches. 
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This was demonstrated to be true especially for the more difficult segmentation 

problems.

• It provides a general theoretical framework for previously developed probabilistic 

boundary-finding techniques.

6.2 Future Research

There are many opportunities for future research using this PSAM algorithm as a start-

ing point. Some involve improving the performance of the algorithm on 2D segmentation

applications. Other opportunities involve extending this approach to 3D object segmenta-

tion.

Formulating a shape-modeling component that includes a theoretical dependence

between the LSM and the GLM may improve the performance of PSAM when these two

shape models are used simultaneously for boundary-based segmentation. The use of other

image-derived features beyond gray-level profiles may have a positive impact on the per-

formance of this approach; for example, using local texture measurements near the current

boundary could provide additional useful information. Also, using LPs that are not neces-

sarily located directly on the object boundary but placed on interesting features within the

interior to the object of interest may improve the boundary-finding capability of the

PSAM algorithm. Finally, alternative optimization approaches beyond gradient descent

should be explored to determine if improved convergence is possible.

Another substantial opportunity for new research is in the extension of this approach

to 3D object segmentation. There are two primary challenges in completing an extension
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of the PSAM algorithm. The first is the theoretical development of the objective function

in a 3D volumetric application, although the theoretical basis of PSAM supports direct 3D

extension. The second challenge of extending the approach to 3D applications is providing

the operator with a robust, easy-to-use training procedure to allow placement of LPs on

the surface of an object embedded within a 3D volume. This is a challenging task and will

involve both unique data visualization tools and some level of semiautomatic LP place-

ment to ensure that corresponding LPs are similarly placed on the surface of each object in

the training set.
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