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ABSTRACT 
 
 This paper describes current work at Oak Ridge 
National Laboratory to develop a robotic vision system 
capable of determining the position and orientation (pose) 
of designated objects from their geometry.  A method has 
been developed that connects 2-D point features from a 
single image into higher-order shapes and then matches 
these features with corresponding features of a polyhedral 
model.  Pose estimates are made from these matches using 
a closed-form point solution based on model features of 
four coplanar points.  Rotations are represented by 
quaternions, which are four component numbers, that 
simplify the calculations in determining the least-squares 
solution for the coordinate transformation.  This pose 
determination method, including image acquisition, feature 
extraction, feature correspondence, and pose calculation, 
has been implemented on a real-time system using a 
commercial camera and image processing hardware.  
Experimental results from this implementation are given 
for relative error measurements. 
 
I.  INTRODUCTION 
 
 A major advantage of robotic manipulators is their 
ability to function in hostile environments impractical or 
unsafe for humans.  In many applications, such as bomb 
disposal or ordnance handling, the benefits of replacing 
humans with a mechanical counterpart are obvious.  The 

dexterity of mechanical hands to grasp and manipulate 
objects is quite advanced and improving rapidly. Object 
recognition and localization present one obstacle for future 
use of robots in unstructured hazardous environments.  
The ability to "find" a designated item is a subject of much 
continued research.  It would be highly beneficial for the 
robot to locate an unknown object and determine its 
position and orientation (pose) in a world coordinate frame 
based solely on visual cues. 
 
 Current work at Oak Ridge National Laboratory to 
develop a robotic vision system capable of determining the 
pose of designated objects from their geometry is detailed 
in this paper.  Valid pose estimates will be used to provide 
destination coordinates to a self-directed robotic arm.  
Both accuracy and robustness are required for robotic pose 
estimation where lighting and occlusion of objects are not 
closely controlled.  An estimate of uncertainty in the 
measurement is also needed. 
 
 This system remotely measures the six degrees-of-
freedom position and orientation of a target object with 
respect to a vision sensor. Point features from the target are 
extracted from a single image and then combined into 
higher-order geometric features for identification and 
correspondence with a polyhedral model using a newly 
developed method.  A closed-form algorithm is applied to 
these geometric features for the actual pose calculation.  
Robustness and measurement quality estimates have been 



 

incorporated into the design to give good accuracy as well 
as to prevent the reporting of estimates with large position 
errors. A complete solution has been implemented 
including calibration and operator interface. 

 

 
 Section II of this paper presents a summary of 
previous work related to this area of pose measurement.  A 
description of the problem and the theoretical background 
for the solution are given in Section III.  Section IV 
describes the system implementation and Section V 
provides experimental results. 
 
 
II.  RELATED WORK 
 
 Much work has been published relating to single-
camera position determination.  Most of this work has used 
point features in the image to derive the position.  Methods 
of this class were the first to be studied and as a result have 
been more extensively developed than model-based 
methods.1  The most common assumption is the 
perspective projection of a 3-D object onto a 2-D image 
plane through a pinhole camera model.2  Both single-
image and stereo methods have been reported although 
single-image techniques have by far the greatest number of 
solutions.  One reason is that point correspondence with an 
object from a single image is easier than determining 
correspondences between two images and the object, as 
required in stereo. 
 
 The general framework is, given N corresponding 
points in the object and in the image, to solve for the 
relative pose between the camera and the object.  The 
minimum N to give a finite number of solutions is three.  
Under certain conditions, as many as four solutions are 
possible with three points.  Four coplanar, noncollinear 
points give a unique solution.  Four or five noncoplanar, 
noncollinear points give up to two solutions.  For N greater 
than five noncollinear points, the result is unique and 
consists of an overdetermined set that can be solved using 
least-square methods.3  In general, as N increases, the 
accuracy of the results increases.  These overdetermined 
solutions are also used for camera calibration in which 
internal camera parameters, including lens distortion and 
focal length, are measured along with the external 
parameters.  One of the best known methods of this type is 
that given by Tsai.4  For direct pose measurement, 
however, three- and four-point coplanar targets have been 
more commonly used for pose determination.  The 
National Aeronautics and Space Administration has 
described the use of a "T"-shaped target with three feature 
points that was used in spacecraft docking experiments.5  
Fischler and Bolles  describe a geometric solution with 
only three points.6  Also described is a method with four 

coplanar points which provides a unique solution with 
redundancy.  A fast, closed-form solution for a four-point 
coplanar target is given by Abidi and Chandra.3  Their 
approach does not require that the lens focal length be 
known as long as the plane of the target is not parallel to 
the image plane of the camera.  This restriction is removed 
if the focal length is known.  Redundant measurements are 
combined through averaging or by calculating the median.  
No explicit estimate of measurement error is provided.  
This method produces as its output the coordinates of the 
target features with respect to the camera reference.  Horn 
gives a method for determining the least-square error 
transformation between two coordinate reference frames 
given the coordinates of N points in each frame.7
 
 Quaternions are used to represent rotations and 
simplify the calculation of the least-square error 
transformation.  Where one set of coordinates is known to 
high accuracy, as in a geometric model, the distance 
squared error between the model points and the 
transformed points may be used as an indication of 
measurement error. 
 
 A second category of solutions uses more complex 
geometric shapes and features to determine the pose.  
Known collectively as model-based methods, these 
approaches generally attempt to match features in an image 
with those of the geometric model.  Lowe describes a 
solution in which a 3-D model is projected to 2-D and then 
matched with the image.8  In an iterative procedure, the 
position and orientation that give the optimum match 
between the features in the model and the image are 
calculated. 
 
 Much of this work treats the correspondence between 
points in the image and the model as a separate problem 
that is not addressed. The correspondence may be trivial 
for a small number of points in a plane.  However, with a 
larger number of points on a 3-D object where some of the 
points may be obscured, the problem becomes much more 
difficult. 
 
III.  THEORY OF OPERATION 
 
 The problem of pose determination is shown in Figure 
1 along with the separate 3-D reference frames for the 
target object and camera.  A pinhole lens camera model is 
used where the lens center is the camera reference point.  
The desired result is the coordinate transformation between 
the camera and the object. 
 
 This transformation can be defined as a composition 
of three rotations and three translations and is denoted by a 
4-by-4 matrix T, 
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where R is a 3-by-3 rotation matrix and D is a 3-element 
displacement vector.  The conversion between the target 
and the camera coordinates of a single point is a simple 
matrix multiplication, 
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Xc and Xo are 4-element vectors consisting of the 3-D 
point coordinates in the form (x  y  z  1)T.  The 
decomposition of T into the individual rotation and 
translation matrices is 
 
T R R R Sr p t=  .         (3) 

 
The roll, pan, and tilt rotation matrices represent rotations 
about the x, y, and z axes, respectively, while S is the 
translation matrix.  These individual rotation angles are not 
unique and, in general, are dependent on the order of 
multiplication.   
 
 From one intensity image of the target, the 2-D feature 
coordinates in the image plane can be extracted.  These 
coordinates, along with the geometric model of the target 
and intrinsic camera parameters, provide the necessary 
information for pose calculation.  Camera calibration 
performed off-line prior to the pose measurement is used 
to determine the intrinsic camera parameters such as pixel 
size and focal length.  The relation between the 3-D 
camera coordinates and the 2-D image is based on the 
assumed perspective projection vision model.  
 
These relations are, given image coordinates (xi  yi) and 

camera coordinates (xc  yc  zc), 
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where fe is the effective focal length.9
 
 While the calculation of the image coordinates is 
straightforward given the 3-D coordinates and the camera 
parameters, the inverse operation of determining the 3-D 
coordinates from the 2-D image plane coordinates  is  more 
difficult since the correspondence of 2-D to 3-D 
coordinates is not unique. 
 
 As discussed above, a minimum of four coplanar 
points in the image are needed to perform the inverse 
perspective mapping. However, for a single four-point 
target in a scene with other objects and clutter, the problem 
becomes one of identifying the target points and 
determining the point correspondence between the object 
model and the image feature points.  This approach is not 
robust, however, in that the loss of a single point will 
prevent the pose calculation.  Additional points are needed 
for redundancy.  Also, the use of object points in a single 
plane depend entirely upon perspective to recover pose.  
This is not a problem as long as the object dimensions are 
comparable to the distance of the object from the camera.  
At longer distances, this perspective effect is reduced, and 
the calculation of pose becomes more sensitive to noise.  
As a result, pose measurement based on a model of a 
polyhedral object has been developed. 
 
 The model of the object is represented as surface 
faces, each of which is a convex quadrilateral with four 
vertices.  Adjacent faces then share two vertices.  From an 
image of the target object, points are extracted representing 
the vertices of the faces of the object that are visible from 
the camera.  These image points are then matched to the 
target vertices based on convexity and adjacency 
constraints.  The convexity constraint states that the image 
of a convex polygon under perspective projection remains 
a convex polygon.  Likewise, adjacent polygons remain 
adjacent.  For N target points, there are N! possible 
correspondences to the image points.  To reduce the 
computation required to test this large number of possible 
trials, feature points in the image are grouped into sets of 
convex quadrilaterals.  From these sets, candidate sets are 
further selected that match the adjacency of faces in the 
geometric model.  The image points are matched first to 
the model faces and then to the vertices within each face.  
These individual face points are then used for the pose 
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Figure 1.  Perspective model for pose determination 



 

computation.  Extraneous points at random locations that 
are not part of the target may also be detected.  The 
extraneous points will not, in general, provide a geometric 
fit to the model and will be rejected by the geometric 
constraints.  However, it is possible for an erroneous 
matching set to be generated.  Error checking performed 
during the subsequent pose calculation will then flag the 
mismatch. 
 
 After the point correspondence is made, the pose is 
calculated separately for each identified face.  A direct 
algorithm developed by Abidi and Chandra is used that 
determines a unique measurement for the four coplanar 
points in each face, assuming a perspective vision model.3  
This algorithm calculates the 3-D coordinates of the points 
relative to the camera using only the image point locations 
and the dimensions of the face points from the target 
model.  The next step is to determine the transformation 
matrix T.  While the pose calculation method is exact, 
errors in determining the image feature point locations due 
to noise or other factors will prevent the exact 
determination of T.  This error can be represented as 
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for each point k, where s is a scale factor and R and D are 
the rotation matrix and displacement vector respectively.  
The optimum transformation is found when the sum of the 
squares of the errors is minimized.  Horn shows that the 
optimum translation is  
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which is the difference between the centroid of the camera 
coordinates and the scaled and rotated centroid of the 
object coordinates.7  Quaternions, which can be thought of 
as complex numbers with three imaginary parts, are used 
to represent rotations.  Horn further shows that the unit 
quaternion q°    that maximizes 
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represents the optimum rotation.  The solution is an 
eigenvector problem requiring the solution of a quartic 
polynomial equation for the eigenvalues and then finding 
the maximum eigenvector. 
 

 The sum of squared errors is used as an error measure 
to indicate the difference in geometric shape between the 
calculated points and the transformed model face points.  
An error value above an expected level due to random 
noise is an indicator of an incorrect point assignment as 
well as a measurement quality indicator. 
 
IV.  IMPLEMENTATION 
 
Camera Calibration 
 
 To extract an accurate 3-D position from 2-D image 
coordinates, the camera's internal geometric and optical 
characteristics must be known.  The parameters needed for 
pose computation are effective focal length, pixel size, lens 
distortion, and optical center.  Camera calibration 
computes a camera's intrinsic and extrinsic parameters 
based on some number of points whose world coordinates 
(xw, yw, zw) are known and whose image coordinates (xi, 
yi) are measured.  To perform the calibration, a specialized 
target with a large number of precisely spaced points is 
imaged.  Next, the coordinates of the target points in the 
image must be found to subpixel accuracy.  These image 
coordinates are correlated with the world position of those 
target points.  This information is then provided to the 
camera calibration routine, which calculates the camera 
parameters based on the target data and the camera model.  
Once the image points have been correlated with world 
coordinate points, these data are provided to the camera 
calibration program, and the focal length, radial distortion, 
and the optical center are calculated for the camera and 
lens arrangement.  This calibration process uses a 
well-known model for camera calibration developed by 
Tsai.4  A public domain software implementation of Tsai’s 
method was adapted for use in this application.  An 
automated procedure was developed to match the image 
points with the target points for use by the calibration 
software. 
 
Pose Calculation 
 
 A complete system has been implemented to 
demonstrate and test the pose determination method 
described above in Section III.  Figure 2 shows a block 
diagram of the principal hardware elements.  The major 
items include a target object, a camera, and an image 
acquisition and processing computer.  Six infrared (780 nm 
wavelength) light-emitting diodes (LEDs) are arranged at 
the corners of the front faces on the target. 
 



 

 

 The functional breakdown for the pose determination 
software is shown in Figure 3.  During image acquisition 

the MV200 digitizes the camera data to 8 bits per pixel and 
stores an entire frame in a local memory buffer.  The data 
are then thresholded to segment the light points and are 
passed through a morphological filter that removes some 
artifacts from the image such as single pixel points and 
small holes within a larger object.  Blob analysis is next 
performed, with the result that the centroid of each LED 
image is found to subpixel accuracy.  Because the LED 
image is roughly elliptical, filtering is also used at this 
point to eliminate shapes arising from other sources.  The 
centroid values from the remaining objects are then used to 
establish point correspondence and connectivity between 
points from the actual geometry of the 3-D target points. 
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Figure 2.  Hardware implementation 

 A commercial camera, a CIDTEC 2250a, is used for 
viewing the target.  A 6-mm focal length lens is used for a 
wide-angle field of view with a 780 nm infrared pass filter 
to block out visible light.  The image resolution is 512 by 
512 square pixels at 30-frames/s progressive scan.  The 
camera image is acquired by a Datacube MV200 image 
processing VME board.  This board along with the main 
central processing unit (CPU), a Motorola MVME167, 
SCSI disk, and VME chassis, comprise the Datacube 
MaxTd development system.  System software includes 
the Lynx real-time operating system, Motif X-windows, 
and Datacube imageflow software.  Application software 
written in C controls the MV200 and programs the 
processing elements on the board for each pose calculation 
cycle. 
 
 Approximately 100 ms is required to perform the full 
pose calculation, which includes both point 
correspondence and pose calculations for two faces.  An 
option is included in the program that can be selected from 
the main menu to display a live digital image from the 
camera. The result is a pattern of LEDs from the target.  
Overlaying this image are rectangles that outline the LED 
regions as detected by the program.  These regions are 
identified and connected according to the geometry of the 
target as described above.  Overlay lines show this 
connectivity as well as indicate that a valid pose has been 
calculated.  A continuous update and display of the 
calculated pose with translation parameters in millimeters 
and angles in degrees are presented on the local screen. 
 

 
 Two faces are extracted from the six points of the 
target, and a pose calculation based on the four-point 
coplanar algorithm is subsequently made from each face.  
While these values could be combined using several 
different methods, the result giving the lowest error 
measure is reported as the pose estimate.  This pose value 
is sent to the user interface computer as requested using a 
command-response protocol developed for this application 
based on Unix sockets.  Some robustness is built into this 
implementation in that one light and some patterns of two 
lights may be obscured without preventing pose 
determination since one face can still be identified.  
 
 
Graphical User Interface 
 
 A graphical user interface (GUI) was developed for a 
simulated docking demonstration in conjunction with the 
pose calculation software.  It is implemented on a Sun 
SPARCstation 10/30 using X-windows (X11R5) protocol 
and Motif (Version 3.0) widgets.  Several different 
techniques for graphically representing the pose 
information have been implemented on the dashboard 
simulation GUI.  In autonomous docking modes, the GUI 
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Figure 3.   Software functional flow 



 

display is used by the operator to monitor the path of a 
robotic arm.  For manual docking modes, the GUI is 
intended to improve the operator’s ability by providing a 
supplementary viewpoint.  The challenge in this 
development is to provide an operator with information 
about six degrees of freedom on a 2-D screen.  Position 
instruments and text displays were implemented on one 
screen. 
 
V.  EXPERIMENTAL RESULTS 
 
 A relative accuracy measurement of all six pose 
parameters has been performed for the implemented 
system.  In all cases, the transformation matrix is 
calculated with respect to the camera lens center, which is 
the origin of the baseline reference frame and the target 
reference frame located at the center of the target.  The 
transformation matrix is then decomposed into the six 
parameters.  A test fixture for the camera and target 
permitted precise movement of the target independently in 
each translation and rotation direction.  The target used is 
that shown in Figure 2.  Overall target dimensions are 
approximately three inches high, seven inches wide, and 
five inches deep. 
 
 Initially the camera and target were aligned so that the 
x and y axes of both frames were parallel and the z axis of 
the target was collinear with the z axis of the camera  For 
the translation axes, the procedure was to move the target 
along one axis by 5 mm and by 15 mm. for various 
distances from the camera.  The rotation angles remained 
at zero.  For each movement approximately 100 pose 
measurement readings were taken.  Similarly, movements 
of 5, 10, and 20 degrees were made for each rotation with 
corresponding measurements recorded.  In the graphs that 
follow, the mean calculated values as a function of camera 
distance are shown along with error bars that give the 
maximum and minimum readings for each measurement 
set.  Where no error bars are visible, the data variability 
was not large enough to be shown for the resolution of the 
graph.  Figures 4 to 6 show the relative changes in  x, y, 
and z measurements when the target is moved 5 and 15 
mm in the translation axis.  These changes are shown as a 
function of distance of the target from the camera.  For 
both x and y, the changes are within about 5% of the actual 
movements over the entire range of camera distances.  
However, the z axis variations become much worse as the 
camera distance increases.  At a distance up to 400 mm, 
the variation is comparable to the x and y axes.  At larger 
distances, the mean errors become as large as 100%, while 
a larger variation is seen in the maximum and minimum 
values.  These data indicate that small lateral movements 
are measured accurately even at relatively large distances 
while small distances along the optical axis of the camera 

are accurate only when the variations are a significant 
percentage of the camera distance to the target.  Figure 7 
plots the percentage error in the absolute z-axis 
measurement as a function of distance from the camera 
using the closest z-axis measurement as a reference with 
zero error.  This provides an estimate of absolute error in z, 
which is low compared to the relative errors shown in 
Figure 6. 
 
 Angular measurements are shown in Figures 8 to 10 
for pan, tilt, and roll movements of 5, 10, and 20 degrees.  
These show more variation and mean error than the 
translation axes at larger camera distances.   Similar 
accuracies, however, are obtained at closer distances.  The 
translation axes reference movements were made using 
precision micrometer stages that are accurate within a few 
microns.  Rotation axes reference movements, in contrast, 
are  accurate only to about ±0.5 degree.  Some of the 
variation in rotation axis measurement versus actual 
movement can be attributed to this error component. 
 
 Other sources of error include camera and data 
acquisition noise, processing of the image to extract the 
LED centroids, calibration error, and uncertainty in the 
initial off-line  measurement of the distances between LED 
centroids for use in the geometric model.  It is believed 
that a significant improvement in performance can be 
achieved by obtaining  more accurate centroid estimates in 
both the image and in the model.  Modifications to the 
model to add points will increase redundancy that can also 
be used to improve accuracy. 
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Figure 4.  X-axis measurement 
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Figure 7.  Z-axis absolute error 
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Figure 5.  Y-axis measurement 
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Figure 8.  Pan angle measurement 
Z value Variations

0

5

10

15

20

25

30

35

135 277 409 519 563

Distance from camera (mm)

C
ha

ng
es

 in
 z

 (m
m

)

5mm

15mm

 

Figure 6.  Z-axis measurement 
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Figure 9.  Tilt angle measurement 
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