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ABSTRACT

This paper investigates the superquadrics-based object representation of complex scenes from range images. The
issues on how the recover-and-select algorithm is incorporated to handle complex scenes containing background
and multiple occluded objects are addressed respectively. For images containing backgrounds, the raw image is
first coarsely segmented using the scan-line grouping technique. An area threshold is then taken to remove the
backgrounds while keeping all the objects. After this pre-segmentation, the recover-and-select algorithm is applied
to recover superquadric (8Q) models. For images containing multiple occluded objects, a circle-view strategy is
taken to recover complete SQ models from range images in multiple views. First, a view path is planned as a circle
around the objects, on which images are taken approximately every 45 degrees. Next, SQ models are recovered
from each single-view range image. Finally, the SQ models from multiple views are registered and integrated. These
approaches are tested on synthetic range images. Experimental results show that accurate and complete SQ models
are recovered from complex scenes using our strategies. Moreover, the approach handling background problems is
insensitive to the pre-segmentation error.
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1. INTRODUCTION

Automatically detecting and describing complex objects is an important goal in the computer vision area. It is
indispensable in many visual tasks including generic object recognition, navigation, robotic manipulation, and object
learning. The shape of an object can be represented by three levels of primitives as respect to the dimensional
complexity: volumetric primitives, surface elements, and contours. As the highest-level representation, volumetric
primitives represent the most intuitive decomposition of an object into parts. Models composed of volumetric
primitives can easily support part articulation and, at the structural level, are insensitive to dimensional changes in the
parts. These part-level characteristics enable volumetric primitives to support object manipulation, functional-based
object recognition, and other high-level activities. The most commonly used volumetric primitives include generalized
cylinders, geons, and superquadrics. Among these different volumetric primitives, superquadric representation has
received substantial attentions due to its own advantages of recovery and rendering, and on the other hand, insolvable
problems caused by the recovery of generalized cylinders. As a subclass of generalized cylinders, superquadrics are
a family of geometric solids, which can be interpreted as a generalization of basic quadric surfaces and solids. With
only a few parameters, they can represent a large variety of regular geometric shapes. This makes superquadrics
much more convenient for object representation.

The problem of direct recovery of individual superquadrics from range images was first solved by Solina and
Bajcsy.? They presented an error metric combining the inside-outside function of superquadrics and a volume
constraint. In their paper, Levenberg-Marquardt method was used to minimize the objective function. Ferrie,
Lagarde, and Whaite* proposed a bottom-up strategy based on sequential application of different techniques to
extract image regions corresponding to convex volumetric parts. They used Darboux frames to describe object
surfaces and snake contour models to interpolate between image features that partition the object surfaces into its
constituent parts. Leonardis and Gupta”® used a recover-and-select paradigm to recover superquadric models of
articulated objects from unsegmented range images. The main advantage of this classify-and-fit approach is that
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the performance of fitting is constantly monitored. Jaklit® refined the recover-and-select algorithm and extended
this approach to recover superquadric models from multi-view range images. Recently, Zhou and Kambhamettu'!
extended superquadrics by introducing exponential functions to model more complicated non-symmetric objects.

Though considerable work has been done in superquadric representation, there exists some weaknesses in current
systems. No prior work has addressed superquadric representation of complex scenes or handled it very well. For
range images containing background, Van Dop® and other researchers stated that a simple thresholding could remove
background and keep objects in an image. However, this strategy works only for even and simple background. In the
presence of some complex backgrounds such as a linked wall and floor as shown in Fig. 2, the simple thresholding
can not remove all the background correctly. On the other hand, for range images including multiple occluded
objects, superquadric representation in a single view may not represent objects completely due to the incomplete
visible information caused by occlusion. Jakli¢® concluded superquadric representation was robust to view changes,
and superquadric models recovered from a single view are complete and accurate enough, but it is not true when
occlusions between objects are serious as shown in Fig. 8. No prior work has treated this problem. In Ref. 10, a few
data sets from multiple views are first registered and fused. Next, the new data set was used to recover geons. This
approach requires accurate information about camera locations, which is not accessible in some cases. Furthermore,
the registration based on raw data requires heavy overlapping between views, which is unnecessary in volumetric
primitive-based representation.

In this paper, we investigate superquadric representation of complex scenes from range images. The issues on
how the recover-and-select algorithm® is incorporated to handle complex scenes containing background and multiple
occluded objects are addressed respectively. Tasks involving such as superquadric model registration and integration
are discussed as well.

The remainder of the paper is organized as follows. In section 2, we briefly explain superquadric representation
of simple scenes. Superquadric representation of complex scenes is proposed in section 3. Experimental results on
synthetic range images are shown in section 4. Finally, conclusions and future work are presented in section 3.

2. SUPERQUADRIC REPRESENTATION OF SIMPLE SCENES

In this section, we briefly introduce superquadric representation of simple scenes. In contrast to complex scenes,
simple scenes assume that only even background, single-part objects, or multi-part objects without serious occlusion
are included in images, or they are simply well pre-segmented images containing only objects. In such cases, su-
perquadric model recovery is very straight forward. For images containing even background, a simple thresholding
operation can remove the background. For the multi-part objects without serious occlusion, superquadric model, as
a volumetric primitive, can handle self-occlusions. In such cases, an image from a single view can provide sufficient
information to complete and accurate representation.

2.1. Superquadric Representation

Superquadrics are a set of geometric shapes generalized from basic quadric surfaces and solids. With a few parameters,
they can represent a large variety of geometric shapes such as cylinders and boxes. A superquadric surface is defined
implicitly by the following equation:

2

F(z,y,2) = [(a%)%*(j—z)%]“ +(:_3)%=1 o

where a3, ag, ag define the size of superquadrics in the x, y and z directions, £;1,£2 define the changing shapes.

To recover a superquadric model in a general position, 11 parameters need to be recovered in the implicit definition
of superquadrics

F(zW7yw’zW) = F(l‘w,yw,zw;al,am03,51,52,¢s9,1/),?m’19yapz) (2)

where ¢,0,7 define the orientation, and pz, py,p. the position in space. We refer to the set of these parameters as
A= {01,0'2,03,51,52,¢193¢;Pmpy,Pz}- ’

Superquadric model recovery is essentially a data fitting process. An objective function is needed to measure
how well the model fits the data as an error metric. Since global minimization is extremely time consuming and
complicated to implement, most researchers use local minimization methods to do the “good-fitting” instead of
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the “best-fitting” achieved by global minimization. The objective function proposed by Solina® is one of the most
commonly used, and it is expressed in the following equation:

N
Gi(A) = a1aza3 E(Fﬁ (TesYerze) — 1)° (3)

i=1

where z.,y., 2. is the coordinate of a point in the canonical system. The item ajasas is positively proportional to
the volume which leads to the resulting superquadrics to fit the data and has minimum volume as well.

The Levenberg-Marquardt method is commonly used to solve the nonlinear least-square optimization problem,
i.e., the minimization of the objective function.

2.2. Recover-and-Select Algorithm

The recover-and-select paradigm® is proposed to recover multiple articulated objects automatically. It consists of
two interactive model-recovery and model-selection stages. In the model recovery stage, seeds placed in the whole
objects are grown into models iteratively. In the model selection stage, all the redundant models are selected to
fulfill the simplest description based on MDL (minimum description length) principle. This interleaving scheme
has a lot of advantages over the early work in superquadric representation. First, it does not need any low-level
information including edges and surfaces. Second, it does not need any prior information about cameras or objects to
be represented. It can also recover correct multi-part superquadric models from complicated objects automatically.
However, the images tested in their work contain no complex background nor occlusions among multiple objects,
hence, they are considered as simple scenes. To represent objects in complex scenes, extra work needs to be added.
This will be addressed in the following sections.

3. SUPERQUADRIC REPRESENTATION OF COMPLEX SCENES

In this section, a system framework is designed to recover superquadric models from complex scenes. Superquadric
representation of range images containing background and multiple occluded objects are investigated respectively.

3.1. System Framework

A system framework to represent objects in complex scenes is shown in Fig. 1. In this system, input is a single-
view range image of a complex scene. Three Dimensional superquadric models based on recovered parameters are
visualized as output. In the case that an image includes a complex background, a coarse pre-segmentation is needed
to remove the background. In the case that recovered representation is not satisfactory, multi-view information must
be incorporated.

input
arange image in a scan-line segmen- recover-and-select
single view of'a tation to remove algorithm to recover ———=
complex scene background SQ models

if (no. of models =no. of | y | acceptthe model
—= objects) and (fitting error description, repre-
< Threshold) sentation done
N
reject recovered models, render 3D SQ models
incorporate multi-view based on recovered output
information parameters

Figure 1. System framework of superquadric representation of complex scenes in a single view.
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3.2. Range Images Containing Backgrounds: Pre-segmentation

The recover-and-select algorithm has shown excellent performance on simple range images without including back-
ground or occluded objects, however, additional work is needed to handle complex scenes. For images with back-
ground, only objects need to be represented, the problem is essentially how to remove the background while keeping
objects. Most work on superquadric representation assumes that the input data has been well pre-segmented and
only objects are left to be recovered. No work clearly explained how to remove backgrounds. Fig. 2 shows two range
images containing a complex background. For the image in Fig. 2 (b), a simple thresholding can not remove all the
backgrounds.

(a) (b)

Figure 2. Synthetic range images containing backgrounds (a) a range image containing an even background (b) a
range image containing a wall and a floor.

As shown in Fig. 1, our strategy includes first, a single-view range image containing background is coarsely
segmented via a modified scan-line grouping segmentation approach.'? An area threshold is then used to remove the
background. Next, the recover-and-select algorithm is performed on the segmented image to recover superquadric
models. If the representation result is satisfactory, which depends on tasks involved and system requirements, the
representation is accepted and the 3D superquadric models are rendered based on recovered parameters. Otherwise,
the representation is rejected. This indicates that the single-view information is insufficient to recover complete and
accurate superquadric models. Therefore, additional information from other views must be incorporated. This is
where the multi-view superquadric representation lies.

3.3. Range Images Containing Multiple Occluded Objects: Multi-view Representation
3.3.1. Framework

In the case of occlusions or self-occlusions occurring in an image, the representation in a single view has low confi-
dence due to incomplete visible data. Additional information from other views must be introduced. A multi-view
representation system, as shown in Fig. 3, is constructed to obtain more convincing superquadric models.

3.3.2. Circle-View Strategy

In this framework, to avoid involving the next-best-view problem, a circle-view path is designed to take images from
multiple views so that we can concentrate on the multi-view representation instead of the view planning. As shown
in Fig. 4, the view path is planned as a circle around the objects and images are taken approximately every 45° on
the view path. The second view is taken in the opposite position to the first view to remove the most ambiguity
while introducing the least overlapping. The third and fourth views are taken in the same rule.

3.3.3. Model Registration and Integration

After all the images from multiple views are taken, superquadric models are recovered from range images in each
view. The representations are sorted in a descending order according to the number of models and the fitting errors
(i.e. the representation which has the most models and smallest fitting error is arranged as SQ1, SQ2,..., etc). Next,
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Figure 3. System framework of multi-view superquadric representation of complex scenes.
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Figure 4. Circle-view strategy to take images from eight views: V1 is view 1, etc.

the first two representations are registered based on the parameters of recovered models using the method proposed
in Ref.6. However, how to select the correct one from the four transformations calculated in the registration step, how
to decide Correspondent models, and how to integrate the models recovered from multiple views were not discussed
in their work. These issues will be addressed in the following.

Assume that there are SQ descriptions D3 and D;4 in the first image, and descriptions Dy; and Dj; in the second
image. Dy consists of region Ry; and SQ model My;, D12 consists of region Ri2 and SQ model Mya, Da; consists
of region Rg; and SQ model Ms;, and Das consists of region Roe and SQ model Ma;. The following is how to decide
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the correct transformation and the corresponding descriptions between the two images. The four transformations
T,,Ts,T3, T4 have been calculated.

For every transformation T;, first keep the representation of image 1 unchanged and transform the representation
in image 2 back to image 1. For the two models in the first image, the registration errors E;; are evaluated as follows

Ey = Z d(z, M)
2€T(Ra1)

E12 = Z d(:t, Mu)
2€T(R23)

> dix, M)

z€T(Ra1)
E d(:L’, Mm)
z€T(Raz)
Ea = min(Eu, E12)
Ey = min(Eys, Er4)
Ey=E, +E (4)

E13

Ey

where d(z, M;;) is the distance between the point = and the model M;;.

Similarly, keep the representation of image 2 unchanged and transform the representation in image 1 to image 2.
For the two models in image 2, the four registration errors are evaluated from the following equations

By = Z d(y, My1)
yE€T(R11)

Ey = Z d(y, Myy)

y€T(R12)

Bn= ) dy, M)
yE€ET(R11)

By = Z d(y, Ma2)
y€T(R12)
Ea = mz'n(E21, Egz)
Ey = min(Eg3, Eg4)
Ey=E,+E (3)

Therefore, two registration errors ( Ey, E; ) are obtained for each transformation. For the correct transformation,
E, should be very close to E, and they should both be less than the threshold E,. Conducting these evaluations
for all the four transformations, the transformation 7' with the minimal registration error, which is less than the
threshold E, is determined as the correct one. Meanwhile, the correspondent descriptions are determined by

if By; < Eyg and E9; < Eg, then Dy is correspondent to Dy; and Dig to Dag
else D1 is correspondent to Das and Djg to Dag (6)

After determining the correspondent models in the two images, the correspondent models are integrated to derive
the more convincing models. In the model integration step, the parameter confidences are assigned to each model

according to their fitting errors. Next, the recovered parameters of the correspondent models are combined with each
other using their different confidences.

In the same manner, this integrated representation is registered with the third one to obtain another integrated
representation. This procedure can be conducted until the integrated representation is satisfactory. As a result,

Proc. SPIE Vol. 4298 61



the multi-view representation scheme obtains the best representation with the least amount of registration and
integration.

Note that this multi-view representation system is flexible and does not require all the eight views exactly. As
stated in Fig. 1, only if either the recovered SQ model is not accurate enough or some objects are missing is an
additional view needed. As long as satisfactory results are obtained, the task is completed. The number of views
required to be taken, and when to terminate the registration and integration, heavily depend on tasks involved and
system requirements.

4. EXPERIMENTAL RESULTS

The proposed strategies and systems were implemented on a SGI OCTANE workstation. To test the accuracy of
recovered parameters of superquadric models, synthetic range images are used in the experiments. Results on range
images containing background and multiple occluded objects are shown respectively in the following sections.

4.1. Results on Range Images Containing Complex Backgrounds

Experimental results on superquadric representation of range images containing complex backgrounds are shown
in Fig. 5 and 6. The raw image shown in Fig. 5 contains an occluded box and cylinder with even backgrounds.
Fig. 6 shows experimental results on a range image including one cylinder, a floor, and a wall as background.
Correspondingly, table 1 and 2 show ground truth and recovered parameters of objects in Fig. 5 and 6. From
the experimental results, we can see that our strategy is efficient to remove background and keep objects. The final
recovered models are insensitive to pre-segmentation errors. Comparing to ground truth values, recovered parameters
of superquadric models are accurate without affected by the background in raw images.

(a) (b) (c) (d) (e)

Figure 5. SQ representation of a synthetic range image with background. (a) input range image: 1 cylinder, 1
box with even background, (b) segmented image by scan-line grouping algorithm, (c) new image with background
removed, (d) recovered SQ description: line-drawings indicate SQ wire frames, (e) reconstructed 3D SQ model from
recovered parameters.

Table 1. Ground truth and recovered parameters of superquadric models in Fig. 5: two models are recovered, GT
indicates ground truth, RP indicates recovered parameters.

Model # | P | a ay | az | en | e | 6 | 8 | ¥ | pa Py p-
1 GT| 30 | 30 | 60 |01 |10 | 08| 10| 0 | 100 | 120 | 100
1 RP | 27.89 | 29.53 | 58.83 | 0.10 | 1.02 | 0.80 | 1.00 | 0.01 | 99.91 | 118.94 | 102.02
2 GT| 30 | 30 | 50 |01 |01 |12]|10]10]| 170 | 120 70
2 RP | 29.46 | 29.82 | 49.83 | 0.10 | 0.10 | 1.20 | 1.00 | 1.00 | 170.33 | 118.79 | 70.05
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(a) (b) (c) (d) (e)

Figure 6. SQ representation of a synthetic range image with background. (a) input range image: 1 cylinder with a
floor and a wall as background, (b) segmented image by scan-line grouping algorithm, (c) new image with background
removed, (d) recovered SQ description: line-drawings indicate SQ wire frames, (e) reconstructed 3D SQ model from
recovered parameters.

Table 2. Ground truth and recovered parameters of superquadric models in Fig. 6: one model is recovered, GT
indicates ground truth, RP indicates recovered parameters.

Model # | P ay as as €1 £ ¢ 0 (0 Pz Dy D:
1 GT 30 30 60 0.1 | 1.0 | 1.57 | 1.0 0 128 100 100
1 RP | 29.80 | 28.93 | 52.66 | 0.10 | 1.01 | 1.57 | 1.00 | 0.08 | 127.97 | 104.61 | 104.43

4.2. Results on Range Images Containing Multiple Occluded Objects

To test our multi-view representation strategy, a set of synthetic range images containing two occluded cylinders
from eight different views is created using our circle-view strategy. Images are taken approximately every 45° on the
circle around one of the objects.

Fig. 7 shows raw range images from eight views of the same scene. It is obvious that occlusions are serious in
some views, but no occlusion happens in other views. The corresponding superquadric representations from view 1,
view 2, and view 3 are shown in Fig. 8, 9, and 10 respectively. In Fig. 8, the smaller cylinder is missing due to serious
occlusion, therefore, information from other views must be introduced to represent this missing object according to
the system framework as shown in Fig. 1. Consequently, representations in views 2 and 3 are incorporated.

Fig. 11 shows registration results of the recovered superquadric models between these two views. Table 3 shows
registration errors of the four transformations. The registration order affects the registration error slightly. Using the
method proposed in Sect. 3.3.3, the registration errors of the four transformations shown in Fig. 11 are calculated
and shown in Table 3. Based on the registration errors, the second transformation shown in Fig. 11 (b) is picked up
as the correct one to align recovered models from these two views. It is calculated as

—0.00953806 0.0343751  0.999363  —4.78517
0.014422 0.99931 —0.0342356 2.63203
—0.999851  0.0140863 —0.0100272 256.311
0 0 0 1

T =

The three rotation angles derived from this transformation are very close to the ground truth value: ¢ = 0,6 =
90%,4 = 0. It is also derived that model 1 in view 2 corresponds to model 1 in view 3, and model 2 in view 2
corresponds to model 2 in view 3. The confidences are assigned to each model in negative proportion to their fitting
errors. Thus,
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(e) (f) (8) (h)

Figure 7. Synthetic range images of the same scene in 8 views: approximately 45° interval between every two
images. (a) view 1, (b) view 2, (c) view 3, (d) view 4, (e) view 5, (f) view 6, (g) view 7, (h) view 8.

Cyp = 52;]%28 — 0.5490
2
Cis = 02&% — 0.4510
0.26
Cas = W — 0.5417
Cag = Fﬁqfﬁ — 0.4583

where C}; represents the confidence of model 7 in view j.

The integrated parameters are calculated with these confidences as weights to the recovered parameters from
single views. Table 4 shows ground truth, recovered parameters of objects from view 2, view 3, and final integrated
11 parameters from these two views.

Table 3. Registration errors of the four transformations in Fig. 11.

registration errors

transform 1

transform 2

transform 3

transform 4

view 2 to view 3

54.0632

3.47892

149.185

124.718

view 3 to view 2

57.916

5.10919

153.729

129.35
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(a) (b) (c)

Figure 8. SQ representation in view 1. (a) input range image in view 1: two occluded cylinders, (b) recovered
SQ description (one object is lost): line-drawings indicate SQ wire frames, (c¢) reconstructed 3D SQ model from
recovered parameters.

(a) (b) (c)

Figure 9. SQ representation in view 2. (a) input range image in view 2, (b) recovered SQ description: line-drawings
indicate SQ wire frames, (c¢) reconstructed 3D SQ models from recovered parameters.

(a) (b) (c)

Figure 10. SQ representation in view 3. (a) input range image in view 2, (b) recovered SQ description: line-drawings
indicate SQ wire frames, (c) reconstructed 3D SQ models from recovered parameters.
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Figure 11. SQ registration of view 2 and view 3: keep representation in view 3 unchanged, transform representation
in view 2 back according to four transformations calculated. Line-drawings indicate SQ models transformed back
from view 2, background is image in view 3. (a) transform view 2 back under transformation 1, (b) transform
view 2 back under transformation 2 (correct transformation), (c) transform view 2 back under transformation 3, (d)
transform view 2 back under transformation 4.

Table 4. Ground truth and recovered parameters of superquadric models in Fig. 9 and 10: two models are recovered,
GT indicates ground truth, RP indicates recovered parameters.

Model # (View) | P ax as as €1 £
1 GT | 30 30 60 |01 1.0

1 (View 2) RP | 29.76 | 28.81 | 59.40 | 0.1 | 1.01

1 (View3) | RP | 2048 | 27.14 | 50.92 | 0.1 | 1.04

1 (Integrated) | RP | 29.63 | 28.06 | 59.63 | 0.1 | 1.02
2 GT | 40 40 80 |01 1.0

2 (View 2) RP | 39.83 | 38.96 | 78.76 | 0.1 | 1.01

2 (View 3) | RP | 39.71 | 38.29 | 79.81 | 0.1 | 1.02

2 (Integrated) | RP | 39.78 | 38.65 | 79.24 | 0.1 | 1.01

During experiments, we found that in our case, only utilizing information in views 2 and 3 is sufficient to recover
complete and accurate superquadric models from the raw image. Comparing the recovered parameters of the final
integrated models with ground truth values, it is concluded that complete and accurate superquadric models are
recovered from complex scenes using our multi-view representation framework.

5. CONCLUSIONS

In this paper, we have successfully utilized the recover-and-select algorithm into superquadric representation of
complex scenes. System frameworks handling images containing complex background and multiple occluded objects
are constructed respectively. The idea to extend object-based to scene-based superquadric representation enables us
to explore images containing background and multiple occluded objects. Experimental results show that our strategies
handle background and occlusion problems successfully. The pre-segmentation stage in our single-view superquadric
representation scheme is different from those in other superquadric representation approaches. It only aims to remove
background without extracting any low-level details including edges and surfaces, therefore, our strategy is robust
to pre-segmentation errors. Simultaneously, our multi-view superquadric representation framework needs less views
than those in multi-view surface reconstruction methods. Moreover, all the planned views are accessible due to the
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2D circle path used instead of the 3D sphere.

The future work is to test our strategies on real range images. How these strategies perform on real 3D data

instead of 2%D range images will also be explored.
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