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Resampling and Reconstruction
with Fractal Interpolation Functions
Jeffery R. Price,Student Member, IEEEand Monson H. Hayes III,Fellow, IEEE

Abstract—An alternative form of the fractal interpolation
function (FIF)—previously unmentioned in the signal processing
literature—is noted. This form highlights a simple relationship
between fractal and linear interpolation. Using this relationship,
many FIF problems can be reduced to a matrix/vector expression.
This expression provides a more powerful way to employ the FIF
for interpolation and permits its adaptation for reconstruction.
Additionally, the alternate form of the FIF allows the construction
of fractal functions whose piecewise integrals match observed
data.

Index Terms—Fractal interpolation, reconstruction.

I. INTRODUCTION AND REVIEW

FRACTAL interpolation, first described in [1], has been
used for various data visualization and modeling problems

[2]–[7]. In this letter, we describe a form of the FIF that
simplifies its implementation and allows it to be used for
reconstruction. In this first section, we briefly review the classi-
cal form of the FIF as it appears in previous signal processing
literature. We then present an alternate form detailed in [1]
but largely ignored since. In Section II, we describe how this
alternate form leads to a matrix/vector expression for many FIF
problems and suggest how this expression can be exploited for
reconstruction. In Section III, we describe how the alternate
form also permits reconstruction of a continuous function
when the observed data represents its piecewise integrals. A
simple example of these reconstructions is given in Section IV.
In Section V, we make some closing comments.

For uniformly sampled signals, we begin with a data set

(1)

where and A continuous function
is sought that interpolates the data according to

for (2)

Following the standard form used in the signal processing
literature, FIF’s are constructed using affine mappings of
the form

for

(3)
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Fig. 1. Example fractal interpolation function withN = 3:

with subinterval endpoint constraints

and

for (4)

Equations (3) and (4) imply that each map horizontally
“shrinks” (by a factor of and vertically scales (by a
factor the entire function over the interval and maps
it to the piece of the function over the interval

(see Fig. 1). For these mappings to be contractive,
it is necessary that and With each
(referred to ascontraction factors) considered a (fixed) free
parameter, is guaranteed by the constraints of (4).
The contraction factors, however, must be chosen to satisfy

Under these conditions the collection of mappings
defines a hyperbolic iterated function system whose attractor
set in is the graph of a continuous function satisfying (2).

An equivalent form for the FIF associated with (1)–(4) is
described in [1]. It can be expressed as

(5a)

(5b)

(5c)

where theheight function is the linear interpolation of the
data while thebase function is the linear function through

and (More general functions and
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are allowed so long as passes through each of the data
points, passes through the first and last data points and
both are continuous.) In this alternate form, the subinterval
endpoint constraints become

(6)

Examining (5) we note that and hence

for (7)

which is the key expression used in the next sections. In the
case of uniform sampling on we have
and (5b) becomes

(8)

II. RECONSTRUCTION BY INTERPOLATION

Many interpolation and reconstruction problems can be
summarized as follows. Given an -point signal
construct an -point signal (where that
is consistent with according to some model. For basic
interpolation, the model states that represents actual points
on some continuous function and is a finer sampling of
this function. In reconstruction, the signal often represents
the observation of a higher-resolution signal that has been
distorted and downsampled. (The effects of noise are not
considered in this letter.)

We begin with an -point signal and seek a
signal which has new points inserted between every
sample of This corresponds to upsampling by a factor
of The interpolated signal will then have

total points. Although there
are various methods [5] to compute points of an FIF, we
are interested in only specific points. Assuming certain
relationships between and (to be described shortly), we
can use (7) to write

(9a)

(9b)

where and (which
excludes the very last point The term
is derived from the inverse of in (8) and describes
how points of the entire signal propagate to points of each
subinterval. We have assumed that and are such that

is indeed an integer in This can easily be
ensured by signal extension or application of the process to
pieces of the signal. The term represents samples
of the base function while indicates samples
of the height function.

We now envision vectors and Letting
we create a matrix

... (10)

where so that we can express the FIF
problem of (9) simply as

(11)

For interpolation purposes,is arbitrary so long as
In many cases, however, we might be interested in choosing
so that satisfies some properties. For instance, in speech
interpolation it might be prudent to make the relationship
between and as close to linear phase as possible. For
signals that are known to exhibit certain fractal properties, we
might try to maintain some estimated fractal dimension as in
[2]. These are, in essence, reconstruction problems.

A more common reconstruction problem can be stated
as follows. Suppose is a low-resolution observation of a
higher-resolution signal A known system model
implies that and are related linearly by where

represents some (FIR) distortion and
downsampling. For this underdetermined problem an estimate

is sought so that is minimized. Referring to (11)
we let and let be some initial estimate of (The
base function implicit in the matrix Q is defined by the first
and last points of We then seek to minimize
The resulting signal (an approximation of is composed
of samples of some fractal function. Note that (11) provides a
simple expression that can facilitate the selection ofNote
also that is arbitrary in this problem so can be refined
if desired. An example of this approach is given in Section IV.

III. RECONSTRUCTION BY INTEGRATION

In some reconstruction problems, the observed data
might represent the piecewise integrals of an unknown con-
tinuous function [8], [9]. In other words, is sought
such that where now
Applying (7), we can construct such a fractal function. We
can then either produce actual points of the resulting function
as described previously or integrate over smaller intervals in
order to implement resampling.

Simplifying the work in [1] for our purposes, we use (7)
to write

(12)

Letting and substituting variables yields

(13)
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Next we let and , which
gives

(14)

We choose and so that is some (again arbitrary)
initial guess at while must satisfy
and Since and
only the contraction factor of (14) is unknown. Since
it is required that , a direct solution of (14) might
seem infeasible, perhaps implying a constrained optimization
approach is necessary. There is, however, an easier method.
First solve (14) for If this yields then adjust
over so that the solution of (14) does yield For
example, we might begin with a piecewise linear function
and change it to an appropriate quadratic overif necessary.
(This is the approach used in Section IV.) The result is a
function that satisfies

To resample by integration we split each into
equal subintervals for and then compute
the new integrals of over these smaller intervals.
Assuming is an integer, an expression similar to (14)
can be derived:

(15)

for and In (15), and
are the integrals of and over respectively.
Letting represent the splitting of the entire domaininto

subintervals, and indicate the integrals of and

over respectively. Note that can be computed by
summing the appropriate (and known) piecewise integrals
Note also that it might be desirable to scale the new samples,
since they correspond to integration over smaller intervals.
This will ensure that they are similar in scale to the original
data. An example of this approach is given in the next section.

IV. EXAMPLES

We now employ the reconstruction methods of Sections II
and III in order to upsample a short segment of a speech signal
by a factor of four. The original 257-point signalwas filtered
by a five-point FIR filter and then downsampled by a factor
of four, yielding the 65-point observation

For the interpolation-based reconstruction—referring to
(11)—we seek so that or equivalently

(16)

Since can be refined, can easily be found so that (16) is
equality. The basic idea is to introduce an artificial contraction
factor and add an extra column to so that the
matrix product is invertible. Then (16) can be solved
for The contributions to from the artificial and
any contraction factor for which are absorbed into
The “INTERPOLATION” reconstruction of Fig. 2 was found in

Fig. 2. Fractal reconstruction examples.

this fashion and therefore has zero reconstruction error—i.e.,

For the integration-based reconstruction the first 64 points
of were taken to be the piecewise integrals of some un-
known function This function was found as described
in Section III. The reconstruction error here is zero as well
since by construction. The function was
then integrated over quarter-intervals and the result scaled by
four to produce the “INTEGRATION” plot shown in Fig. 2.

V. CONCLUDING REMARKS

In this letter, we have noted an alternate form of the FIF
and shown how it can be applied to reconstruction problems.
Although only modest examples were given, the simplicity
of the approaches described should permit a wide variety of
fractal reconstructions.
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