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ABSTRACT

Previously, we derived sensor optimal prefilters for
image interpolation. The prefilters were applied
prior to integer interpolation with a standard (e.g.,
linear or cubic) kernel. Here we expand upon that
notion and construct complete, sensor optimal in-
terpolation kernels for rational interpolation fac-
tors. After restating the interpolation problem in
a reconstruction-like fashion, we employ a simple
model of the image capture system to derive the
MMSE interpolator. Results indicate significant
subjective improvements over cubic interpolation,
for little extra computation.

1. INTRODUCTION

Image interpolation is an important task in many
applications. Some examples include professional
and consumer imaging software as well as texture
mapping for 3D scene reconstruction. If informa-
tion about the system used to capture a given im-
age is known, it seems reasonable to expect that
such information could be used to improve the in-
terpolation of that image. As noted in [1], other
researchers [2, 3] have considered this problem be-
fore, although in a different fashion than we do. A
similar approach to what we present here can be
found in [4]. Our technique differs from [4] in that
we employ a nonseparable image covariance model
and additionally construct the interpolation kernels
in the spatial domain – the Wiener restoration filters
in [4] are found in the Fourier domain, windowed,
then sampled to provide the spatial domain kernels.
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Figure 1: Equivalent forms of optimal prefiltering
followed by integer interpolation.

To use knowledge of the capture system, we
first pose the image interpolation problem in a
reconstruction-like manner as follows: The given
image is the observation of a scene captured by a low
resolution sensor. An interpolated image is sought
that is an observation of the same scene, captured by
a higher resolution sensor. Such an interpretation
has been previously mentioned in [2, 3, 5, 6].

2. PROBLEM FORMULATION

In the optimal prefiltering approach from [1], we ap-
plied a prefilter, upsampled (by an integer factor),
and then interpolated. When the interpolation is
implemented by a linear, shift invariant filter (e.g.,
cubic or linear interpolation), the entire process is
equivalent to upsampling and filtering with a mod-
ified interpolation kernel, as shown in Fig. 1. The
modified interpolation kernel, s̃(n), is given by

s̃(n) =
(
tM ∗ s

)
(n) (1)

where tM (n) is the prefilter, t(n), upsampled by a
factor of M :

tM (n) =

{
t(n/M) ; n = Mk, k ∈ Z× Z,
0 ; otherwise.

(2)

With this in mind, a more complete approach is
to find an optimal interpolation kernel, rather than
just a prefilter. We turn our attention to this prob-
lem now, explicitly considering sensor noise and
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Figure 2: Discrete approximation of the image cap-
ture system.
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Figure 3: Interpolation with s to provide optimal
estimate, f̂(n), of the desired, high resolution im-
age.

rational interpolation factors as well. Note that
bold faced indices herein indicate two-vectors – i.e.,
n = (n1, n2) ∈ Z× Z.

To incorporate sensor knowledge into the interpo-
lation problem, we must assume a model of the im-
age capture system(s). As described in [7], many of
the effects in a real-world, image capture system are
nonlinear and/or shift-varying. Despite this fact,
we have found the simple, discrete model shown in
Fig. 2 to be concise and effective in our research.
The terms h1(n) and h2(n) represent FIR blurs,
where the high resolution blur, h1(n), is more spa-
tially localized than the low resolution blur, h2(n).
The term v(n) represents additive noise from the
low resolution sensor. Note that P and L, where
P < L, are assumed to be relatively prime.

The problem now is to find an interpolator s, as
shown Fig. 3, that provides an optimal estimate,
f̂(n), of the desired, high resolution image f(n).
Note that â(n) in Fig. 3 refers to a(n) of Fig. 2.
Given Figs. 2 and 3, we seek s to minimize

Ef (n) = E
{(
f(n)− f̂(n)

)2} (3)

for all n. We assume that c(n) is wide sense sta-
tionary (WSS) with covariance rcc(k) and that the
noise, v(n), is uncorrelated with c(n). Under the
assumption that c(n) is WSS, both g(n) and f(n)
are also WSS since decimation preserves WSS. (It is
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Figure 4: Bank of optimal interpolation filters.

well known that WSS is not necessarily an accurate
assumption for image processing. Such limitations,
however, can be addressed with adaptive interpola-
tion algorithms [8].)

In tackling this problem, there are two issues that
we consider. First, note that finding s to minimize

Ea(n) = E
{(
a(n)− â(n)

)2} (4)

for all n effectively minimizes Ef (n) of (3) for all n
as well. This is evident since the MMSE at every n
is unique. This fact will make our derivations sim-
pler since we can neglect the factor of P decimator
in Fig. 3. In other words, the optimal interpolator
for factor of L interpolation is also optimal for L/P
interpolation. The second issue is that the input to
the interpolator – q(n) into s in Fig. 3 – is not sta-
tionary because of the factor of L upsampler. We
address this issue in the next section.

3. SOLUTION

As the input to the interpolator s is not stationary,
the standard Wiener filter solution is not immedi-
ately applicable. We can proceed in two ways that
are in fact equivalent. For brevity, we describe only
our intuitive approach here. Another, more rigor-
ous approach can be carried out using properties
of random processes in multirate systems [9], i.e.,
cyclic Wiener filtering [10]. Using a few multirate
identities, it can be shown that the two approaches
yield equivalent results [8]. To prevent excessive
notation, we will limit our presentation in this sec-
tion to signals over a single index – i.e., rather than
g(n) with n = (n1, n2), we will consider just g(n).
The extension to images (signals over two indices)
is straightforward.

Referring again to Figs. 2 and 3, we seek s to esti-
mate a(n) given g(n). The signal a(n) is sampled at
L times the rate of g(n), so for every sample of g(n)
we must estimate L samples of a(n). Although q(n),
the L-upsampled version of g(n), is not stationary,
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Figure 5: Equivalent forms for a section of the ith

branch in Fig. 4.

both g(n) and a(n) are. This leads us to propose an
optimal interpolator composed of a bank of L (FIR)
filters, where each such filter, si, produces the es-
timate âi(n) = â(Ln − i) for i = 0, 1, . . . , L − 1.
The L polyphase processes denoted by â(Ln − i)
must then be appropriately interleaved to produce
the complete estimate â(n). This process is illus-
trated in Fig. 4, where the filters si(n) are repre-
sented by their z-transforms, Si(z).

Finding each optimal interpolation kernel si is
just a ubiquitous Wiener filtering problem. Letting
each si be a 2N+1 point FIR filter (centered on the
origin), the optimal coefficients are found by solving
the normal equations

N∑
m=−N

si(m)rgg(k −m) = riag(k), (5)

for i ∈ [0, L− 1] and k ∈ [−N,N ], where

rgg(k) = E {g(n)g(n+ k)} (6)

and where

riag(k) = E {a(Ln− i)g(n+ k)} . (7)

With known sensor and covariance models, (5)-(7)
lead to L linear systems with 2N+1 unknowns each
that can be solved to yield the coefficients of si(n)
for n ∈ [−N,N ] and i ∈ [0, L− 1].

Although we have found a bank of L filters, it is
interesting to note, and perhaps evident from Fig. 4,
that this bank can be expressed as a single, time in-
variant filter. Using a common multirate identity,
the ith branch of Fig. 4 can be represented in the
equivalent form of Fig. 5. Applying the identity of
Fig. 5 to each branch (and moving the common up-
samplers out), it can be seen that Fig. 4 is equivalent
to Fig. 6. Finally, we can collapse the branches of
Fig. 6 to get Fig. 7, where the single filter is given
by

S(z) =
L−1∑
i=0

z−iSi(zL). (8)

In other words, the optimal filters Si(z) for i =
0, 1, . . . , L− 1 are just the L polyphase components
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Figure 6: Equivalent representation of the optimal
interpolation bank in Fig. 4.
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Figure 7: A single, shift-invariant filter for optimal
interpolation.

of a single filter S(z). Although the polyphase im-
plementation is more computationally efficient, the
representation as a single, time invariant filter per-
mits us to display and examine a single impulse re-
sponse and/or frequency response.

4. RESULTS

We employ the following forms for the sensor blurs
from Fig. 2:

h1(n) =
1
N1

e−τ1(n2
1+n2

2) (9a)

h2(n) =
1
N2

e−τ2(n2
1+n2

2), (9b)

where N1 and N2 are normalization factors so that
the impulse responses sum to one after truncation.
Additionally we assume a nonseparable, exponential
covariance model [11] for c(n) from Fig. 2:

rcc(k) = ρ
√
k2

1+k2
2 . (10)

As an example, we consider a factor of L = 4
optimal interpolator using the sensor blurs from (9)
with τ1 = 1.3 and τ2 = 0.10. The noise variance was
chosen to be σ2

v = 0.01 and ρ from (10) was 0.95.
The size for each of the (polyphase) component in-
terpolators was chosen to be 13 × 13. The impulse
response of the complete 52× 52 kernel (polyphase
components combined) is shown in Fig. 8. The mag-
nitude response of this kernel is shown as a sur-
face in Fig. 9 and as an inverse grayscale image in



Fig. 10. The unwrapped phase is shown in Fig. 11.
Note that the complete kernel is not linear phase.

Subjective tests were performed using the follow-
ing rational interpolation factors:

L/M ∈ {2, 3, 3/2, 4, 4/3, 5, 5/2, 5/3, 5/4,
7, 7/2, 7/3, 7/4}.

The various parameters used to compute the opti-
mal interpolators are summarized in Table 1. Four-
teen subjects were shown 42 pairs of images on a
computer screen with a black background. Each
image pair consisted of one cubic interpolated im-
age and one optimally interpolated image – the type
of interpolation was not indicated. The subjects
recorded which of each pair they preferred.

After discarding the most and least favorable sub-
jects, 82% (412/504) preferred the optimally inter-
polated images over the cubic interpolated images.
Neglecting the data for facial images, where a softer
image is usually preferred, 87% (387/444) of the
subjects selected optimal interpolation over cubic
interpolation. These results indicate that signifi-
cant subjective performance improvements can be
obtained by interpolating with the sensor optimal
kernels. Note that we do not include any example
images in this paper as the reproduction process
tends to degrade image quality. It is also worth
noting that the optimal interpolators, when imple-
mented in polyphase form, require less computa-
tion than unoptimized cubic interpolation, such as
MATLAB’s interp2( . . . ,’*cubic’) function.

5. CONCLUSIONS

In this paper, we construct MMSE interpolators
based upon a model of the image capture system.
The optimal interpolation kernels are quite long
compared to traditional kernels and exhibit nonlin-
ear phase. Experiments indicate that optimal inter-
polation outperforms cubic interpolation in terms
of subjective image quality, without a significant in-
crease in computational cost.
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Figure 8: Impulse response of optimal interpolator
(polyphase components combined) for factor of four
interpolation.
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Figure 9: Normalized frequency response magni-
tude for factor of four interpolator from Fig. 8.
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Figure 10: Normalized frequency response magni-
tude, shown as image, for factor of four interpolator
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tor of four interpolator from Fig. 8.


