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Resampling and Reconstruction with
Fractal Interpolation Functions

Jeffery R. Price, Student Member, IEEE and Monson H. Hayes III, Fellow, IEEE

Abstract— An alternative form of the fractal interpolation
function (FIF) – previously unmentioned in the signal pro-
cessing literature – is noted. This form highlights a simple
relationship between fractal and linear interpolation. Us-
ing this relationship, many FIF problems can be reduced
to a matrix/vector expression. This expression provides a
more powerful way to employ the FIF for interpolation and
permits its adaptation for reconstruction. Additionally, the
alternate form of the FIF allows the construction of fractal
functions whose piecewise integrals match observed data.
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I. Introduction and Review

FRACTAL interpolation, first described in [1], has been
used for various data visualization and modeling prob-

lems [2]-[7]. In this letter we describe a form of the FIF
which simplifies its implementation and allows it to be used
for reconstruction. In this first section we briefly review the
classical form of the FIF as it appears in previous signal
processing literature. We then present an alternate form
detailed in [1] but largely ignored since. In Section II we
describe how this alternate form leads to a matrix/vector
expression for many FIF problems and suggest how this
expression can be exploited for reconstruction. In Sec-
tion III we describe how the alternate form also permits
reconstruction of a continuous function when the observed
data represents its piecewise integrals. A simple example of
these reconstructions is given in Section IV. In Section V
we make some closing comments.

For uniformly sampled signals, we begin with a data set{
(xn, yn) ∈ D × R : n ∈ [0, 1, . . . , N ]

}
, (1)

where D = [0, 1] and xn = n/N . A continuous function
f : D → R is sought that interpolates the data according
to

f(xn) = yn for n ∈ [0, 1, . . . , N ]. (2)

Following the standard form used in the signal processing
literature, FIFs are constructed using N affine mappings
of the form

wn

(
x
y

)
=
(
an 0
bn γn

)(
x
y

)
+
(
cn
dn

)
for n = 1, . . . , N (3)
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Fig. 1. Example fractal interpolation function with N = 3.

with subinterval endpoint constraints

wn

(
x0

y0

)
=
(
xn−1

yn−1

)
and wn

(
xN
yN

)
=
(
xn
yn

)
for n = 1, . . . , N. (4)

Equations (3) and (4) imply that each map wn horizon-
tally “shrinks” (by a factor of an) and vertically scales
(by a factor γn) the entire function over the interval D
and maps it to the piece of the function over the interval
Dn = [xn−1, xn]. (See Fig. 1.) For these mappings to be
contractive, it is necessary that |an| < 1 and |γn| < 1.
With each γn (referred to as contraction factors) consid-
ered a (fixed) free parameter, |an| < 1 is guaranteed by
the constraints of Equation (4). The contraction factors,
however, must be chosen to satisfy |γn| < 1. Under these
conditions the collection of mappings defines a hyperbolic
iterated function system whose attractor set in R2 is the
graph of a continuous function satisfying Equation (2).

An equivalent form for the FIF associated with Equa-
tions (1)-(4) is described in [1]. It can be expressed as

wn(x, y) =
(
Ln(x), Fn(x, y)

)
(5a)

Ln(x) = anx+ cn (5b)

Fn(x, y) = h(Ln(x)) + γn
(
f(x)− b(x)

)
(5c)

where the height function h(x) is the linear interpolation of
the data while the base function b(x) is the linear function
through (x0, y0) and (xN , yN ). (More general functions
h(x) and b(x) are allowed so long as h(x) passes through
each of the data points, b(x) passes through the first and
last data points and both are continuous.) In this alternate
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form, the subinterval endpoint constraints become

Ln(x0) = xn−1 and Ln(xN ) = xn

Fn(x0, y0) = yn−1 and Fn(xN , yN ) = yn.
(6)

Examining Equation (5) we note that Fn(x, y) = f
(
Ln(x)

)
and hence

f(x) = h(x) + γn
[
f
(
L−1
n (x)

)
− b
(
L−1
n (x)

)]
for x ∈ Dn (7)

which is the key expression used in the next sections. In the
case of uniform sampling on D = [0, 1] we have an = 1/N
and Equation (5b) becomes

Ln(x) =
1
N
x+

1
N

(n− 1). (8)

II. Reconstruction by Interpolation

Many interpolation and reconstruction problems can be
summarized as follows. Given an (N + 1)-point signal yn,
construct an (M + 1)-point signal fn (where M > N) that
is consistent with yn according to some model. For basic
interpolation, the model states that yn represents actual
points on some continuous function f(x) and fn is a finer
sampling of this function. In reconstruction, the signal
yn often represents the observation of a higher-resolution
signal fn that has been distorted and downsampled. (The
effects of noise are not considered in this letter.)

We begin with an (N + 1)-point signal yn and seek a
signal fn which has P new points inserted between every
sample of yn. This corresponds to upsampling by a factor
of U = (P + 1). The interpolated signal fn will then have
(M + 1) = (N + 1) +NP total points. Although there are
various methods [5] to compute points of an FIF, we are
interested in only NP specific points. Assuming certain
relationships between N and U (to be described shortly),
we can use Equation (7) to write

fnU+k = hnU+k + γn
(
yl(k) − bl(k)

)
(9a)

l(k) =
N

U
k (9b)

where n ∈ [0, 1, . . . , N − 1] and k ∈ [0, 1, . . . , P ] (which
excludes the very last point fM+1 = yN+1). The l(k) term
is derived from the inverse of Ln(x) in Equation (8) and
describes how points of the entire signal propagate to points
of each subinterval. We have assumed that N and U are
such that l(k) is indeed an integer in [0, 1, . . . , N ]. This can
easily be ensured by signal extension or application of the
process to pieces of the signal. The bl(k) term represents
(N +1) samples of the base function while hnL+k indicates
(M + 1) samples of the height function.

We now envision vectors f ,h ∈ RM+1 and γ ∈ RN .
Letting qk = yl(k)−bl(k) we create a matrix Q ∈ R(M+1)×N

Q =


q

q
. . .

q
0

 (10)

where q =
(
0 q1 q2 . . . qP

)T so that we can express
the FIF problem of Equation (9) simply as

f = h + Qγ. (11)

For interpolation purposes γ is arbitrary so long as
|γn| < 1. In many cases, however, we might be inter-
ested in choosing γ so that f satisfies some properties. For
instance, in speech interpolation it might be prudent to
make the relationship between f and h as close to linear
phase as possible. For signals that are known to exhibit
certain fractal properties, we might try to maintain some
estimated fractal dimension as in [2]. These are, in essence,
reconstruction problems.

A more common reconstruction problem can be stated
as follows. Suppose y is a low-resolution observation of a
higher-resolution signal z ∈ RM+1. A known system model
implies that y and z are related linearly by y = Az where
A ∈ R(N+1)×(M+1) represents some (FIR) distortion and
downsampling. For this underdetermined problem an esti-
mate ẑ is sought so that ‖y−Aẑ‖ is minimized. Referring
to Equation (11) we let ẑ = f and let h be some initial es-
timate of z. (The base function implicit in the matrix Q is
defined by the first and last points of h.) We then seek γ to
minimize ‖y−Af‖. The resulting signal f (an approxima-
tion of z) is composed of samples of some fractal function.
Note that Equation (11) provides a simple expression that
can facilitate the selection of γ. Note also that h(x) is ar-
bitrary in this problem so h can be refined if desired. An
example of this approach is given in Section IV.

III. Reconstruction by Integration

In some reconstruction problems the observed data yn
might represent the piecewise integrals of an unknown con-
tinuous function [8], [9]. In other words, f(x) is sought such
that yn =

∫
Dn

f(x) dx where now n ∈ [1, . . . , N ]. Apply-
ing Equation (7) we can construct such a fractal function.
We can then either produce actual points of the resulting
function as described previously or integrate over smaller
intervals in order to implement resampling.

Simplifying the work in [1] for our purposes, we use
Equation (7) to write

yn =
∫
Dn

f(x) dx

= γn

∫
Dn

(
f
(
L−1
n (x)

)
− b
(
L−1
n (x)

))
dx

+
∫
Dn

h(x) dx.

(12)

Letting h̄n =
∫
Dn

h(x) dx and substituting variables
yields

yn = h̄n + γnan

∫
D

(
f(u)− b(u)

)
du. (13)

Next we let F̄ =
∫
D
f(u)du and B̄ =

∫
D
b(u)du which gives

yn = h̄n + an
(
F̄ − B̄

)
γn. (14)
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Fig. 2. Fractal reconstruction examples.

We choose h(x) and b(x) so that h(x) is some (again
arbitrary) initial guess at f(x) while b(x) must satisfy
b(0) = h(0) and b(1) = h(1). Since F̄ =

∑N
n=1 yn and

an = 1/N , only the contraction factor γn of Equation (14)
is unknown. Since it is required that |γn| < 1 a direct
solution of Equation (14) might seem infeasible, perhaps
implying a constrained optimization approach is neces-
sary. There is, however, an easier method. First solve
Equation (14) for γn. If this yields |γn| > 1 then adjust
h(x) over Dn so that the solution of Equation (14) does
yield |γn| < 1. For example, we might begin with h(x) a
piecewise linear function and change it to an appropriate
quadratic over Dn if necessary. (This is the approach used
in Section IV.) The result is a function f(x) which satisfies
yn =

∫
Dn

f(x) dx.
To resample f(x) by integration we split each Dn into P

equal subintervals Dk
n for k ∈ [1, . . . , P ] and then compute

the NP new integrals of f(x) over these smaller intervals.
Assuming N/P is an integer, an expression similar to Equa-
tion (14) can be derived:

ykn = h̄kn + an
(
F̄ k − B̄k

)
γn (15)

for n ∈ [1, . . . , N ] and k ∈ [1, . . . , P ]. In Equation (15),
ykn and h̄kn are the integrals of f(x) and h(x) over Dk

n, re-
spectively. Letting Dk represent the splitting of the entire
domain D into P subintervals, F̄ k and B̄k indicate the in-
tegrals of f(x) and b(x) over Dk, respectively. Note that
F̄ k can be computed by summing the appropriate (and
known) piecewise integrals yn. Note also that it might be
desirable to scale the new samples since they correspond
to integration over smaller intervals. This will ensure that
they are similar in scale to the original data. An example
of this approach is given in the next section.

IV. Examples

We now employ the reconstruction methods of Sec-
tions II and III in order to upsample a short segment of
a speech signal by a factor of 4. The original 257-point

signal z was filtered by a 5-point FIR filter and then down-
sampled by a factor of 4 yielding the 65-point observation
y.

For the interpolation-based reconstruction – referring to
Equation (11) – we seek γ so that Af ≈ y or equivalently

AQγ ≈ y −Ah. (16)

Since h can be refined , γ can easily be found so that
Equation (16) is equality. The basic idea is to introduce an
artificial contraction factor γN+1 and add an extra column
to Q so that the matrix product AQ is invertible. Then
Equation (16) can be solved for γ. The contributions to
f from the artificial γN+1 and any contraction factor for
which |γn| > 1 are absorbed into h. The “INTERPOLA-

TION” reconstruction of Fig. 2 was found in this fashion
and therefore has zero reconstruction error – i.e., Af = y.

For the integration-based reconstruction the first 64
points of y were taken to be the piecewise integrals of some
unknown function f(x). This function was found as de-
scribed in Section III. The reconstruction error here is zero
as well since

∫
Dn

f(x) dx = yn by construction. The func-
tion was then integrated over quarter-intervals and the re-
sult scaled by 4 to produce the “INTEGRATION” plot shown
in Fig.2.

V. Concluding Remarks

In this letter we have noted an alternate form of the
FIF and shown how it can be applied to reconstruction
problems. Although only modest examples were given, the
simplicity of the approaches described should permit a wide
variety of fractal reconstructions.
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