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Abstract

In this paper we derive an optimal (MMSE) prefilter for
image interpolation. This derivation is based upon a model
of the sensor used to capture the image. To employ this
model, we restate the interpolation problem in an intuitive,
reconstruction-like fashion. Using a simple CCD sensor
model, an example prefilter is derived. Simulations with this
prefilter are performed using linear and cubic interpola-
tion as well as an ad hoc, directional interpolation scheme.
Quantitative and subjective results indicate that prefiltering
generally improves the quality of the interpolated images.

1. Introduction

Digital image interpolation is a fundamental component
in a variety of technologies today. Some common exam-
ples include digital zoom in CCD based video cameras,
color plane interpolation for single CCD digital cameras,
printing (reasonably sized) low-resolution images on high-
resolution printers, and conversion between various televi-
sion formats. For ease of implementation and speed of com-
putation, conventional techniques such as nearest neighbor,
linear, cubic and spline interpolation have been widely used
in the past [1]-[4]. With the explosive growth in computa-
tional power, however, more advanced techniques have re-
ceived significant attention. A few examples can be found in
[5]-[14]. Many of these techniques use adaptive processing.
Some information about the local image content is gathered
and used to drive the interpolation process. Few methods,
however, have proposed to exploit any knowledge of the
image capture device. If there exists some knowledge of
the capture sensor, we would expect that such information
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could be used to improve interpolation. In this paper, we
consider the application of a sensor model to conventional
(e.g., linear and cubic) interpolation and to a simple direc-
tional interpolation scheme.

We first mention some previous interpolation algorithms
that have employed sensor models and describe how our
method differs from these. In [15], an optimal interpolation
kernel is proposed that minimizes a deterministic, sum-of-
squares quantity. This filter attempts to reconstruct points
of the continuous image that result from the convolution of
the original (continuous) scene with the sensor PSF. In other
words, the given low-resolution pixels are blurred samples
of some continuous scene, and the interpolation filter seeks
to produce additionalblurredsamples of this scene. In [14],
the authors employ a sensor model (in a deterministic fash-
ion) to iteratively improve their edge-directed interpolation.
Our approach differs from each of these. Unlike [15], we
seekdeblurredsamples of a higher-resolution (but not con-
tinuous) image that is related to the observed image by a
sensor model. Contrary to both [14] and [15], we adopt a
stochastic approach to account for sensor effects. Addition-
ally, our approach differs from [14] in that it is not iterative.
(It is certainly possible, however, that a prefilter might serve
as an initial step in such an iterative approach.)

The remainder of this paper is organized as follows. In
Section 2, we restate the interpolation problem to include a
sensor model. We then derive an expression for an optimal
prefilter based upon this model and present an example. We
describe a simple, ad hoc directional interpolation scheme
in Section 3. In Section 4, experiments are performed us-
ing the example prefilter with standard and directional in-
terpolation. Quantitative and subjective results are given
and some observations obtained during the experiments are
mentioned. Finally, some closing comments are made in
Section 5.
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22. Sensor model optimal prefilter

2.1. Interpolation restated

To incorporate knowledge of the sensor, we restate the
interpolation problem in a reconstruction-like manner:

The given image is the observation of a scene cap-
tured by a low-resolution sensor. An interpolated
image is sought that is an observation of the same
scene, captured by a higher-resolution sensor.

(This interpretation is mentioned in [14] and [16] as well.)
We intend to employ a model that relates these high-
resolution and low-resolution images. As a simple exam-
ple, we consider an image captured by a CCD array with
element size(d × d). We seek an interpolated image with
twice the number of pixels in each direction, corresponding
to a CCD array with element size(d/2× d/2). This idea is
illustrated in Fig. 1.

The response of a CCD element is directly proportional
to its area. With this in mind, we employ the layout of
Fig. 1 to construct a simple, discrete model relating the de-
sired high-resolution image to the observed low-resolution
image. This model, shown in Fig. 2, convolves the high-
resolution image with an FIR filterh(n), and then down-
samples by a factor ofM in each direction. With the CCD
arrangement of Fig. 1, we haveM = 2 and
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Figure 1. Example CCD layout for interpola-
tion by factor of 2 (in each direction). Solid
lines indicate the low-resolution sensor and
dashed lines the high-resolution sensor.
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Figure 2. Simple model relating desired high-
resolution image to observed low-resolution
image and layout for prefilter design.

To apply this model, we first regard interpolation from
a slightly different perspective. We consider interpolation
as a technique to fill in or “predict” missing pixels from
known pixels. In the context of the model above, however,
the pixels of the observed image arenotpixels of the desired
image – they are distorted by the FIR filterh in Fig. 2. We
therefore seek to estimate actual pixels of the desired image
and interpolate (predict from) these rather than interpolating
the distorted pixels of the observed image. Such an estima-
tor will serve as an interpolation prefilter. In other words,
the prefilter will be applied to the low-resolution image and
then the image will be interpolated to the higher-resolution.
To derive this estimator, we employ the layout illustrated in
Fig. 2.

2.2. Optimal prefilter

We propose a minimum MSE estimator and seek filter
coefficientst(n) to minimizeξ = E{e(n)2}, with e(n) de-
fined as shown in Fig. 2. Note that all indices represent two-
element vectors – i.e.,n = (n1, n2). For simplicity, we
begin with the (not necessarily accurate) assumption that
the original imagef(n) can be modeled as a wide-sense
stationary (WSS), random process with covariance function
r(k). Differentiatingξ with respect tot(n) and setting the
result to zero will, after some manipulation, yield∑

p

t(p)
∑

j

ch(j)
[
r(Mn−Mp−j)+r(Mp−Mn−j)

]
= 2

∑
i

h(i)r(Mn + i), (2)

wherech(j) represents the deterministic autocorrelation of
h(n) given by

ch(j) =
∑

l

h(l)h(l + j). (3)

Fort(n) an(L×L) FIR filter, Equation (2) defines a system
of (L × L) linear equations that can be solved to find the
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Figure 3. Optimal (11× 11) prefilter t(n) corre-
sponding to sensor model of Equation (1).

coefficientst(n). Note thatt(n) is not separable unless both
the sensor modelh(n) and the covariance functionr(k) are
separable.

To find an example(11 × 11) filter, we use the nonsep-
arable, exponential, image covariance model suggested in
[4] (with ρ1 = ρ2 = 0.95) and the sensor model of Equa-
tion (1). In this case, the coefficients oft(n) tend rapidly to
zero. The center column oft(n) is displayed in Fig. 3(a),
and the magnitude of its DFT in Fig. 3(b). It is evident from
the DFT that the prefilter accents the higher frequencies.
We note that the frequency response of this filter is simi-
lar to that of the direct spline transform prefilter used in the
interpolation scheme of [12].

3. Directional interpolation

After some preliminary experimentation with the exam-
ple optimal prefilter, observations indicated that its perfor-
mance might be improved by incorporation into a direc-
tional interpolation scheme. The intuitive reasoning be-
hind this hypothesis stems from the global, WSS covariance
model used in the prefilter derivation of the previous sec-
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Figure 4. The three possible pixel arrange-
ments and associated directions for direc-
tional interpolation by factor of 2. The filled
circles indicate the pixel to be interpolated
and the empty circles indicate original pixels.

tion. The WSS model implies that all pixels in an image are
equally correlated with their nearby neighbors. This is true
for many pixels of most natural images, but there are, how-
ever, cases where this implication is incorrect. Edges, for
example, are one such case – pixels on one side of an edge
might be correlated with one another, but not with those
on the opposite side of the edge. Similar arguments can
be made for other image structures. In such scenarios, we
might expect different correlations in different directions.
Therefore, by using directional interpolation, we hope to
compensate for some of the inaccuracies introduced by the
global nature of the prefilter. (Oriented Gaussian post-filters
are used in [12] for this function.) For this reason, we have
implemented an ad hoc directional scheme for interpolation
by a factor ofM = 2 (in each direction).

The ideas behind our scheme are similar to those of [11]
and [17]. For factor of 2 interpolation, there are three dis-
tinct arrangements for the interpolated pixels as illustrated
in Fig. 4. For each new pixel, either five or six directions
are considered. The four low-resolution pixels nearest the
directional lines of Fig. 4 are used to calculate the direction
of lowest variation. Once this direction has been found, the
interpolated pixel valuep is calculated by

p =
1
32
(
5d1 + 11d2 + 11d3 + 5d4,

)
(4)

wheredk for k = 1, . . . , 4 indicate the four pixels along the
minimum variation direction, withd2 andd3 the two near-
est the new pixel location. The coefficients of Equation (4)
were chosen by experimentation. This scheme is very ba-
sic – every pixel is interpolated in exactly the same man-
ner. This can produce excessive smoothing in areas, but is
nonetheless sufficient for our purposes. Examples of more
advanced directional interpolation approaches can be found
in the references.



4Interpolation Type Avg Std Dev Min Max

Linear (22/28) 1.08 0.35 0.01 1.87
Cubic (21/28) 1.12 0.33 0.72 2.09

Directional (21/28) 0.87 0.26 0.58 1.42

Table 1. Summary of PSNR gain (in dB) for
prefiltering prior to interpolation.

Interpolation Type Avg Std Dev Min Max

Linear (6/28) 0.21 0.16 0.02 0.49
Cubic (7/28) 0.32 0.17 0.11 0.63

Directional (7/28) 0.24 0.17 0.03 0.57

Table 2. Summary of PSNR loss (in dB) for
prefiltering prior to interpolation.

4. Simulations and results

To test the performance of the prefilter, experiments were
performed using 28 monochrome images. Each original,
high-resolution image was filtered and downsampled using
the sensor model from Fig. 2, withM = 2 andh defined by
Equation (1). The resulting low-resolution image was inter-
polated to the original size, with and without the prefilter,
using linear, cubic, and the directional interpolation scheme
of Section 3.

For an objective measure, the PSNRs between the inter-
polated and original images were calculated. The differ-
ences between the PSNRs (in dB) for images interpolated
with and without prefiltering are summarized in Tables 1
and 2. The numbers in parentheses in the first columns in-
dicate the number of images that were improved (Table 1)
or degraded (Table 2) when using the prefilter. Only those
images were used in calculating the values in each table.

It is evident from Table 1 that in the majority of cases
(approximately 75%), the prefilter provides a modest im-
provement in PSNR – about 1.1dB on average for linear
and cubic interpolation, and about 0.9dB for directional in-
terpolation. In the few cases shown in Table 2, where the
prefilter worsened the PSNR, the loss was only about 0.3dB
or less on average. We note that the seven cubic interpolated
images that suffered PSNR loss from prefiltering were the
same seven images that experienced loss for directional in-
terpolation. (These include the six images that experienced
loss with linear interpolation.)

More important than such quantitative measures, how-
ever, is the perceived quality of the interpolated images. For
this reason, subjective tests were conducted. Subjects were
asked to view 12 pairs of (unlabeled) images and to score
each image in the pair on a relative scale of 1 to 10. The 12
pairs were broken into three sets of four image pairs each to

Comparison Avg Std Dev Min Max

I +2.82 1.45 -2.00 +6.00
II +2.88 1.47 -2.00 +6.00

III +1.41 1.91 -3.00 +6.00

Table 3. Summary of subjective quality com-
parisons. I – Cubic, prefilter vs. no prefilter;
II – directional, prefilter vs. no prefilter; III –
prefiltered directional vs. prefiltered cubic.

perform the following three comparisons:

I. Cubic interpolation with prefiltering (A) vs. cubic
interpolation only (B),

II. Directional interpolation with prefiltering (A) vs.
directional interpolation only (B), and

III. Directional interpolation with prefiltering (A) vs.
cubic interpolation with prefiltering (B).

The sets for comparisons I and II were comprised only of
the seven images for which there was a loss in PSNR in the
quantitative test (i.e., those of Table 2). The set for III of
was chosen arbitrarily. A total of 14 subjects were adminis-
tered the test resulting in14 · 4 = 56 data points for each of
the three comparisons. For every image pair, the score dif-
ference(A−B), with A and B as indicated in the list above,
was calculated and the results are summarized in Table 3.

From the results in Table 3 for I and II, we see that
the prefiltered images scored significantly higher. Recall
that these images were those where prefiltering produced a
PSNR loss. Although subjective tests were not performed
on those images with PSNR improvements, our observa-
tions indicate similar results would be expected. We note
that only four of the 112 total data points for sets I and II in-
dicated that the prefiltered image was worse (resulting in a
negative score difference). The results for set III, though not
as definitive, show that prefiltering with directional interpo-
lation might be generally better than prefiltering with cubic
interpolation. Of the 56 data points for set III, 10 indicated
that cubic interpolation was preferred. Comments from the
test subjects mentioned that the overall sharpness of the pre-
filtered, cubic interpolated images was better, but that these
images tended to have “jagged” edges and/or noticeable
ringing artifacts. Directional interpolation produced better
edges, but tended to cause excessive smoothing in other re-
gions. This smoothing, of course, can be attributed to the
simplistic nature of our directional interpolation scheme.
We would expect a more sophisticated approach to provide
better and more definitive results.



55. Summary

In this paper we have presented a novel and simple ap-
proach for incorporating sensor knowledge into the image
interpolation problem. Using an example sensor model, an
optimal prefilter was derived and simulations using this pre-
filter were performed. Both quantitative and subjective re-
sults from these simulations indicate that prefiltering tends
to improve the quality of the interpolated images for both
standard and directional interpolation. Additionally, com-
ments and results from the subjective experiments indicate
that prefiltering with a more sophisticated directional inter-
polation scheme might provide more visually pleasing re-
sults than any of the other techniques explored.
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