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Abstract

Standard JPEG decompression reconstructs quantized DCT
coefficients to the center of the quantization bin. This fails
to exploit the nonuniform distribution of the AC coefficients.
Assuming a Laplacian distribution, we derive a maximum
likelihood estimate of the Laplacian parameter, based on the
quantized coefficients available at the decoder, and use this
estimate to optimally bias the reconstruction levels during
decompression. As a decoder enhancement, this technique
is fully compatible with the JPEG standard and does not
modify the JPEG compressed bit stream. Extensive simula-
tions indicate that, at typical compression ratios, biased re-
construction results in modest PSNR improvements – about
0.25 dB or higher – and slight subjective improvements, for
little or no computational cost. Furthermore, simulations
show that the PSNR improvements are very close (within
0.07 dB) to the best theoretically possible.

1. Introduction

The JPEG image compression standard [1] is used in a
wide variety of consumer and professional digital imaging
applications. Since the JPEG standard only defines a de-
coder syntax, much research in recent years has focused on
achieving the highest possible image quality for a given bit
rate (or file size) while maintaining compliance with this
syntax. This research can be divided into two major cat-
egories. One category has focused on improving encoder
performance by using sophisticated, image-dependent opti-
mization routines [2]-[5]. This approach generally results
in a significantly more complex encoder (compared to the
decoder) and can be suitable for applications that need to
encode the image only once (and usually off line), but need
to decode it multiple times. The second category has fo-
cused on enhancing the decoder performance via either de-
coder modifications or post-processing, such as reducing the
blocking artifacts in highly compressed JPEG images. A
comprehensive survey and bibliography of such techniques
can be found in [6].

One easily implemented decoder modification, which re-
sults in a modest PSNR improvement and mildly reduces
some artifacts, involves modifying the suboptimal dequan-
tization of the AC discrete cosine transform (DCT) coeffi-
cients performed by the standard JPEG decoder. This has
been noted previously [7, 8], but in this work we derive a
maximum likelihood (ML) estimate of the Laplacian distri-
bution parameter describing the AC coefficients based on
the quantized values available at the decoder. We then use
this estimate to optimally bias the reconstruction levels. Ad-
ditionally, we demonstrate that our results are very close
(less than 0.07 dB) to the best theoretically possible PSNR
improvement resulting from reconstructing to the true cen-
troid of each quantization interval.

In Section 2, a brief overview of the JPEG compression
standard as it pertains to the current research is presented.
In Section 3, the modeling of the AC coefficient distribution
is discussed, and based upon this model, the selection of an
optimal reconstruction value is formulated. In Section 4,
the estimation of the parameter necessary to characterize the
model distribution is discussed. Experimental results are
presented in Section 5 and concluding remarks appear in
Section 6.

2. Overview of the JPEG compression standard

In JPEG, the fundamental data unit is an8 × 8 block of
pixels, and each8×8 block is processed independently (ex-
cept for the DC value that is differentially coded). A block
diagram of the JPEG encoder is depicted in Fig. 1. The
original 8× 8 block of pixel values, denoted asf(i, j), un-
dergoes a DCT operation resulting in an8×8 array of trans-
form coefficients denoted byF (u, v). The DCT provides a
spatial frequency decomposition of the block and aids com-
pression by packing most of the block energy into only a
few coefficients. The top-left DCT coefficient is propor-
tional to the average brightness of the image block and is
referred to as the DC coefficient, while the 63 remaining
coefficients are referred to as AC coefficients.
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Figure 1. JPEG encoder block diagram.

Each DCT coefficient is then quantized using a simple
uniform scalar quantization process with a user-defined step
size. An important aspect of JPEG quantization is that the
quantizer step size is allowed to vary with spatial frequency.
Specifically, the JPEG quantization rule is defined as:

F q(u, v) = nint
[F (u, v)
Q(u, v)

]
(1)

whereQ(u, v) are the quantizer step sizes as a function of
spatial frequency, and nint[·] denotes rounding to the near-
est integer. The8 × 8 matrix,Q(u, v), comprises 64 user-
defined values, one for each DCT coefficient, and is com-
monly referred to as the quantization table (or q-table). The
baseline JPEG standard restricts the quantization table en-
tries to be integers between 1 and 255 for 8-bit input images
where larger values correspond to more quantization. For
each coefficientF (u, v), the quantization operation gener-
ates a quantizer output index, denoted byF q(u, v).

The design of the quantization table is the key factor in
determining the image quality of a JPEG-compressed im-
age. The quantization table controls how much error is in-
troduced at a given spatial frequency and provides a means
of trading image quality for compression ratio. Many sys-
tems merely use the JPEG example tables that are provided
in the JPEG specification. Table 1 shows the example lu-
minance q-table used in Annex K of the JPEG standard.
(There is also an example chrominance q-table provided in
the same Annex.)

This example q-table was developed by determining ob-
server threshold response when viewing720 × 576 images
on a monitor at a viewing distance of six times the screen
width [9]. In the ideal scenario, images would be com-
pressed only to threshold levels, i.e., compression errors are
just perceptible under specified viewing conditions. How-
ever, in practice, it is often impossible to operate at thresh-
old levels as higher compression ratios are required. The
common practice is to use a quantization table designed for
threshold levels (or often the JPEG example table) and scale
the table by a constant multiplicative factor. The results re-
ported in this study use the JPEG example q-tables at vari-

Table 1. Example of JPEG luminance quantization
table.

u=
0 1 2 3 4 5 6 7

v=0 16 11 10 16 24 40 51 61
1 12 12 14 19 26 58 60 55
2 14 13 16 24 40 57 69 56
3 14 17 22 29 51 87 80 62
4 18 22 37 56 68 109 103 77
5 24 35 55 64 81 104 113 92
6 49 64 78 87 103 121 120 101
7 72 92 95 98 112 100 103 99

ous scaling factors to achieve a range of compression ratios.
However, it is expected that the reported improvements due
to biased reconstruction carry over to any other q-table se-
lection.

As a final stage in JPEG compression, the quantizer in-
dices are Huffman coded to generate the compressed bit
stream. The q-table(s) and Huffman table(s) are sent as part
of the compressed image header. This information is needed
at the decoder to reconstruct the compressed image, and it
is sent once for each image (or for a group of images).

At the decoder, the quantization and Huffman tables are
parsed from the header prior to decoding. After Huffman
decoding of the quantizer indices, it is necessary to map
each quantizer output index back to a reconstructed coef-
ficient value, denoted byFR(u, v), through the process of
dequantization. In a standard JPEG decoder, the dequanti-
zation process is defined as:

FR(u, v) = F q(u, v)Q(u, v). (2)

This dequantization rule, known as midpoint reconstruc-
tion, reconstructs a coefficient to the center of the quantiza-
tion bin. This reconstruction is optimal only if the prob-
ability distributions of the DCT coefficients are uniform.
However, for a nonuniform distribution, the mean-squared
quantization error is minimized if the reconstruction value
is chosen as the centroid (mean value) of the portion of the
probability distribution enclosed by the bin [10]. It should
be noted that the dequantization process does not affect ei-
ther the compressed file size or the bit stream syntax, so
its optimization can improve the reconstructed image qual-
ity and PSNR without any impact on the encoder. In the
next section, we discuss the modeling of the AC coefficient
distribution, and based upon this model, the selection of an
optimal reconstruction value.
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Figure 2. Example of Laplacian distribution with
midpoint (hashmark) and centroid (cross) recon-
struction.

3. DCT coefficient modeling

Modeling the distributions of the coefficients resulting
from the 8 × 8 DCT of natural images has been studied
extensively in the context of JPEG and MPEG compres-
sion [11]-[14]. The generalized Gaussian probability den-
sity function (GGF) seems to be a good fit for the AC coef-
ficients of most images [13]. The GGF is specified by two
parameters: the variance, and the skewness or shape param-
eter. For a shape parameter of one, the GGF reduces to a
Laplacian (double-sided exponential) distribution, while for
a shape parameter of two it reduces to a normal (Gaussian)
distribution.

Although statistical fitness tests have indicated that the
shape parameter depends on the image and the spatial fre-
quency represented by the coefficient [12, 13], the most
common assumption for the distribution of the AC DCT co-
efficients is Laplacian. In this work, we assume the more
mathematically tractable Laplacian distribution model for
the AC coefficients and derive a maximum likelihood (ML)
estimate of the Laplacian parameter based on the quantized
coefficients available at the decoder. We then use this esti-
mate to optimally bias the reconstruction levels used during
decompression. We justify the Laplacian model by demon-
strating that the resulting PSNR improvements are within
0.07 dB of the best theoretically possible (although imprac-
tical) strategy of reconstructing to the true bin centroid com-
puted from the unquantized samples available only at the
encoder.

The Laplacian distribution, characterized by the single
parameterλ, is given by:

p(F ) =
λ

2
e−λ|F | (3)

An example of Laplacian distribution is shown in Fig. 2.
To simplify notation, the derivation presented here per-
tains to a single 2-D frequency value ofu and v, so that

the dependence onu and v can be dropped. For a given
AC coefficientF , quantized to the bin indexF q, the re-
constructed valueFR will be in the bin intervalIF q =
[(F q − 1/2)Q, (F q + 1/2)Q], whereQ indicates the quan-
tization step size. We seek that value ofFR that minimizes
the mean-squared quantization error. It is well known that
FR is the centroid ofp(F ) overIF q [7, 8, 10, 15] and can
be written as:

FR = F qQ+ b (4)

where

b = − sgn(F q)
[Q

2

(1 + e−λQ

1− e−λQ
)
− 1
λ

]
. (5)

Equation (4) states thatFR is just the bin center,F qQ,
plus a bias termb given by (5). The bias termb depends only
on the sign ofF q and therefore needs only be computed
once for each of the 63 AC coefficients. Thesgn(F q) term
in (5) simply ensures that the bias is towards zero.

4. Laplacian parameter estimation

The value of the bias in (4) depends on the Laplacian pa-
rameterλ, which needs to be estimated for each DCT co-
efficient. One approach is to estimate the value ofλ on the
encoder side prior to coefficient quantization. In general,
given a series of N observations of a given coefficient, de-
noted byFk, wherek = 1, 2, . . . , N (e.g.,N = 6, 144, for
a768× 512 image containing 6,1448× 8 DCT blocks) the
maximum likelihood estimate of the Laplacian parameter is
given by:

λML =
N∑N

k=1|Fk|
, (6)

The problem with this approach is that theλ values need to
be communicated to the decoder as overhead information,
e.g., by being included in the compressed image header.

Since the JPEG syntax does not support this option, a
more practical approach is to estimate theλ values at the
decoder, based on quantized coefficient values. In what fol-
lows, we present a ML estimate of the parameterλ based on
quantized observations. Referring to thekth sample of the
quantized coefficient (i.e., quantizer index) asF qk , we seek
λqML. First, we note that quantization effectively transforms
the continuous distribution of (3) into the discrete distribu-
tion given by:

p(F q) =
∫ (F q+1/2)Q

(F q−1/2)Q

λ

2
e−λ|F | dF, (7)



Figure 3. The 768× 512 monochrome “Boy” image.

whereF q indicates the bin index. Equation (7) leads to:

p(F q) =

{
1
2 e
−λQ(|F q|−1/2) (1− e−λQ), for F q 6= 0

1− e− 1
2λQ, for F q = 0.

(8)

To findλqML, we maximize (overλ) the log-likelihood func-
tion of p(F q) given by:

L
(
λ; {F qk }

)
= ln

[ N∏
k=1

p(F qk )
]
=

N∑
k=1

ln[p(F qk )] (9)

whereF qk indicates the bin index for thekth observation of
a given coefficient. After some tedious manipulation it can
be shown that:

λqML = − 2
Q

ln(γ) (10)

with

γ =
−N0Q

2NQ+ 4S
+√

N2
0Q

2 − (2N1Q− 4S)(2NQ+ 4S)
2NQ+ 4S

, (11)

whereN0 is the number of observations that are zero,N1 is
the number of observations that are nonzero,N is the total
number of observations (N = N0 +N1), and

S =
N∑
k=1

Q|F qk |. (12)

If S = 0, which could occur if the JPEG compression ratio
is too high, then (12) is not valid. In this case, however, all
of the coefficients are in the zero bin where the optimum
reconstruction value is zero.

Table 2. Magnitude of the bias b from (5) as a func-
tion of 2-D frequency, corresponding to λML calcu-
lated from (6). Note that u and v range over 0, . . . 7
from left-to-right and top-to-bottom, respectively.

0 0.25 0.38 1.39 4.37 12.92 20.43 27.01
0.38 0.64 1.10 2.55 5.52 22.04 25.00 23.97
1.15 1.17 1.99 4.68 12.69 22.30 29.65 24.68
1.74 2.91 4.86 8.32 19.62 38.35 35.94 27.75
4.05 5.94 13.35 23.04 29.35 50.46 48.10 35.78
7.95 13.58 23.58 28.37 36.99 48.82 53.77 43.74
21.56 29.23 36.30 40.77 48.91 58.20 58.05 48.87
34.04 44.03 45.59 47.15 54.20 48.30 50.09 48.29

Table 3. Magnitude of the bias b from (5) as a func-
tion of 2-D frequency, corresponding to λqML calcu-
lated from (10). Note that u and v range over 0, . . . 7
from left-to-right and top-to-bottom, respectively.

0 0.25 0.38 1.36 4.15 11.77 18.45 24.33
0.37 0.63 1.08 2.44 5.12 19.92 22.53 21.46
1.13 1.14 1.91 4.40 11.41 20.07 26.46 22.26
1.68 2.80 4.53 7.57 17.48 34.04 31.91 24.33
3.75 5.44 11.88 20.60 26.48 44.99 42.84 31.96
7.26 12.16 21.09 25.74 33.56 44.03 49.46 39.53
19.48 26.80 34.14 37.79 44.75 59.39 58.89 44.71
31.87 44.89 46.39 47.89 54.89 48.89 50.39 48.39

5. Simulation results

In this section, we first examine the improvements
achieved from biased reconstruction on a single example
image, and then study the robustness of the results by con-
sidering a larger set of 33 test images. As an example, the
768 × 512 monochrome “Boy” image in Fig. 3 was JPEG
compressed using the q-table in Table 1 using a scale factor
of 1.0. Tables 2 and 3 denote the bias magnitude tables cor-
responding toλML andλqML, respectively. Recall that the
λML estimate is computed at the encoder and is not com-
patible with the JPEG standard as it requires overhead in-
formation (which was not accounted for in our simulations)
to specify the bias values. These tables were computed by
using (6) and (10), where 6,144 samples were available for
each AC DCT coefficient. These tables indicate that the
bias values resulting from theλqML estimates are slightly
more conservative (less bias) than the ones resulting from
theλML estimates, although in general the differences are
fairly small.

Defining the root-mean-squared-error (RMSE) as the
standard deviation of the error between the original and
the reconstructed (decompressed) image, and the PSNR as
20 log(255/RMSE), the performance improvements re-
sulting from biased reconstruction can be quantified. For
the “Boy” image, the improvements in PSNR are 0.31 dB
for λML and 0.35 dB, forλqML . Surprisingly, the ML esti-



Table 4. Average PSNR improvements, in dB, over
standard JPEG midpoint reconstruction, for bi-
ased, true bin centroid, and fixed percentage re-
constructions.

Quantization Table Scaling
Dequantization Type 0.50 0.75 1.0 2.0

Midpoint (standard) 0.00 0.00 0.00 0.00
Biased,λML, Eq. (6) 0.30 0.27 0.25 0.20

Biased,λqML, Eq. (10) 0.35 0.32 0.30 0.24
Biased,λ from [7] 0.35 0.31 0.29 0.24
True bin centroid 0.42 0.38 0.36 0.30
Fixed percentage 0.20 0.26 0.28 0.26

mate based on the quantized values resulted in a better quan-
titative performance than the ML estimate based on the un-
quantized coefficients. This seems to hold true, in general,
as will be seen shortly from the results on a larger set of
images and a wider range of q-table scales .

Next, a test set of 33 monochrome images (five were
512× 512 while the rest were768× 512) were JPEG com-
pressed using the q-table in Table 1 and scaled by four dif-
ferent factors: 0.50, 0.75, 1.0 and 2.0, respectively (for a to-
tal of 132 different compressed images). These compressed
images were subsequently decompressed using standard
JPEG bin center (midpoint) dequantization, biased dequan-
tization usingλML, and our proposed biased dequantization
based onλqML. A less rigorous estimate ofλ as suggested
in [7] was also tested (see [15] for more details). The ML
estimates and the estimate from [7] were derived separately
for each image and each compression ratio.

A best case, albeit impractical, scenario was also con-
structed. Prior to quantization on the encoder side, the true
centroid of each bin (the average value of all the coefficients
in that bin) for each coefficient was computed and stored.
At the decoder, each coefficient in a given bin was recon-
structed to the true centroid for that bin. This method is
impractical because of both the large overhead (which has
been ignored in our simulations) and incompatibility with
the JPEG standard. It does, however, provide us with the
best possible PSNR improvement for the sake of compari-
son. The results are summarized in Table 4. All PSNR im-
provements have been stated with respect to the JPEG bin
center dequantization.

The quantities given in Table 4 are the average PSNR im-
provements over the 33 test images for the indicated quan-
tization table scaling. As is evident from Table 4, biased re-
construction provides modest improvements in PSNR when
compared to the bin center reconstruction. There were no
individual cases where biased reconstruction caused a rel-
ative loss in PSNR. It is well known, however, that PSNR

Table 5. Magnitude of the bias b from (5) as a func-
tion of 2-D frequency, corresponding to λqML and
expressed as a percentage of the quantizer bin
width. A bias of 50% implies reconstruction to the
lower end of the bin (towards zero) as opposed to
midpoint. Note that u and v range over 0, . . . 7 from
left-to-right and top-to-bottom, respectively.

0 2.96 6.10 8.78 13.65 20.00 31.79 38.72
2.91 5.87 8.47 13.20 18.76 27.60 37.38 42.75
4.91 9.23 12.31 18.05 26.85 34.00 40.17 43.81
10.14 14.72 19.28 23.67 33.40 37.23 41.84 44.76
17.61 21.36 28.26 32.68 37.16 40.57 43.97 45.76
26.88 33.77 34.73 39.73 42.74 43.71 46.01 46.00
33.24 37.17 39.25 41.23 43.97 45.40 46.95 46.93
38.47 39.64 40.38 41.81 44.09 45.69 47.10 47.44

improvements do not necessarily always result in subjec-
tive improvements in image quality. Careful analysis of the
test images indicated that biased reconstruction produced
some subjective improvement; mostly in the form of reduc-
ing some mild edge ringing artifacts. Generally, however,
the differences between the standard JPEG decoded images
and the biased reconstruction images were difficult to de-
tect. Also, the results in Table 4 indicate that estimating the
Laplacian parameters from the quantized coefficients actu-
ally performs better than estimating them from the unquan-
tized coefficients. Although we do not have a good analyt-
ical explanation for this empirical observation, it certainly
strengthens the case for using the decoded values for pa-
rameter estimation without disturbing the encoder syntax.
We additionally note that the less rigorous estimate forλ
suggested in [7] performs just as well as our ML estimate,
λqML.

Finally, it should be noted that the optimal reconstruction
method, using the true bin centroid, is not significantly bet-
ter than any of the biased reconstructions, and its PSNR im-
provement is within 0.07 dB of our proposed scheme. This
justifies the use of the Laplacian model in our formulation,
as it performs almost as well as the best possible and re-
quires little computation when compared to the generalized
Gaussian.

The results presented so far are based on using biased val-
ues that are specific to each individual image. In most prac-
tical situations, it is desirable to add a biased reconstruction
functionality to the JPEG decoder at no extra computational
cost. This requires the use of a fixed set of representative
bias values that are independent of compression ratio or im-
age characteristics. To study the feasibility of such an ap-
proach, for each image in the test set and for each scale (132
cases total), the optimum bias values were computed us-
ing (10). The bias values were then computed as a percent-
age of bin width and averaged to create the matrix shown in
Table 5. This matrix was used to decompress all the images



in the test set. The last row of Table 4 shows the resulting
PSNR improvements. The results are quite encouraging,
especially for scale factors of 0.75 or larger, as the improve-
ments are quite close to the ones possible at a higher compu-
tational cost. We noted earlier that using image-dependent
biased reconstruction improved the results in all cases. In
the fixed percentage case, however, biased reconstruction
resulted in a PSNR loss in 4 out of the 132 cases. In fact,
the well known “Barbara” image (which contains very high
frequencies) was responsible for three out of the four cases
as it displayed a PSNR loss at quantizer scales of 0.50, 0.75,
and 1.0. The average loss for the four cases was -0.13 dB.
No images exhibited PSNR loss at scale 2.0.

Note that the elements of the matrix in Table 5 represent
the bias as a percentage of the quantization bin width and, as
such can be used with any q-table specification. However,
there is a slight asymmetry in the matrix that is reminis-
cent of the asymmetry present in the original JPEG q-table
specification. It might be more appropriate to construct a
different bias matrix for each q-table specification and scale
factor, but that possibility was not explored in our study as
the gains are not expected to be large.

6. Conclusions

Assuming a Laplacian distribution for the unquantized
AC coefficients, the ML estimate of the Laplacian param-
eter was derived using only the quantized coefficients avail-
able to the decoder. Experiments indicate that biased recon-
struction with this estimate gives modest improvements in
the PSNR of JPEG decompressed images and that these im-
provements are close to the best possible by reconstructing
to the true bin centroid. It was also shown that by using a
fixed (as a percentage of bin width) bias matrix, PSNR im-
provements on the order of 0.25 dB can be achieved without
any increase in decoder computational complexity.
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