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Abstract. In 2006, the New England Journal of Medicine selected medical 
imaging as one of the eleven most important innovations of the past 1,000 
years, primarily due to its ability to allow physicians and researchers to 
visualize the very nature of disease. As a result of the broad-based adoption of 
micro imaging technologies, preclinical researchers today are generating 
terabytes of image data from both anatomic and functional imaging modes. In 
this paper we describe our early research to apply content-based image retrieval 
to index and manage large image libraries generated in the study of amyloid 
disease in mice. Amyloidosis is associated with diseases such as Alzheimer’s, 
type 2 diabetes, chronic inflammation and myeloma. In particular, we will focus 
on results to date in the area of small animal organ segmentation and 
description for CT, SPECT, and PET modes and present a small set of 
preliminary retrieval results for a specific disease state in kidney CT cross-
sections.  

1   Introduction 

Imaging performs an extremely important role in the understanding of human disease 
through its preclinical application to small animal research. High-resolution, high-
throughput, multi-modality imaging provides the capability to carry out non-
destructive, longitudinal studies on large populations of animals that previously 
required animal sacrifice and painstaking dissection to accomplish. A result of this 
advancing capability is the generation of copious amounts of digital image and 
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ancillary data. Most preclinical researchers today maintain this data in an ad-hoc 
manner, distributed across a number of computers, on different media types, and in 
different physical locations. For those who have dedicated picture archiving and 
communications systems (PACS) in their facilities, the largest data component in the 
system - the imagery - is only marginally indexed for retrieval using simple associated 
text fields. Over time this image data loses its informational power simply because it 
becomes irretrievable, limiting a researcher’s ability to pursue research questions that 
leverage the historical image repository. 

The Oak Ridge National Laboratory (ORNL), the University of Tennessee 
Graduate School of Medicine (UTGSM), and the University of Tennessee Department 
of Computer Science (UTCS) are working together to develop an informatics system 
for small animal imaging that will support UTGSM’s research in the study of amyloid 
disease in mice. Amyloidosis is a protein aggregation disorder associated with a 
growing number of fatal and debilitating diseases, such as Alzheimer’s disease, type 2 
diabetes, chronic inflammatory disorders, and myeloma. 

Our main focus area in this regard is to apply content-based image retrieval (CBIR) 
methods to describe and index the multiple modes of anatomic and functional 
imagery that are generated through these studies and to make that image data 
retrievable in future studies. CBIR refers to techniques used to index, retrieve, and 
manage images from large image repositories based on visual content. Visual content 
is derived from the structures, morphology, and textures intrinsic to the 2D and 3D 
multi-modal imagery used for small animal imaging today such as micro CT, PET, 
SPECT, and MRI.1 There are many researchers today that are applying CBIR to the 
general problem of image retrieval [1] and to the biological or biomedical fields [2], 
but there is not yet a functional PACS that takes advantage of both the extrinsic and 
intrinsic characteristics of imagery - particularly anatomic and functional imagery - to 
facilitate “what-if” search scenarios through terabytes of image data to locate images 
related by morphology, visual phenotype expression, and disease pathologies in the 
preclinical research environment. 

We have developed and fielded CBIR technology and data management systems 
for the semiconductor industry that address similar problems created by the growing 
proliferation of automated microscopy inspection in semiconductor manufacturing 
applications, i.e., the management and reuse of the large amounts of image data 
collected during semiconductor wafer inspection and review [3, 4]. We have adapted 
this technology to other fields including geographical information science [5] and 
retinal diagnostics.2 In this paper we will describe our preliminary results to date in 
the area of small animal organ segmentation and description for CT, SPECT, and PET 
modalities and present a small set of preliminary retrieval results for a specific disease 
state in kidney cross-sections. Our goal is to present the utility of applying CBIR 
methods and technology to the informatics of preclinical, small animal research. In 
Section 2 we will review our previous research and motivation for the use of mouse 
models to research disease, in particular amyloidosis. In Section 3 we will review our 

                                                           
1  Computed Tomography (CT), Positron Emission Tomography (PET), Single Photon 

Emission Computed Tomography (SPECT), and Magnetic Resonance Imaging (MRI).  
2  R01 EY017065-01, Edward Chaum (PI); Automated Screening for Diabetic Retinopathy by 

Content. 



1742 K.W. Tobin et al. 

progress to date on 2D and 3D segmentation of soft tissue organs in micro CT 
imaging along with some preliminary results for fusing anatomic CT and functional 
PET data. In Section 4 we will review our preliminary results related to the indexing 
of a small population of kidney cross-sections from CT and discuss architectural 
concepts for structuring the representation of image features in a small animal 
informatics environment.  

2   Small Animal Imaging in the Study of Amyloidosis 

The amyloidoses represent an ever growing 
number of insidious diseases characterized by 
the aggregation of normally innocuous, soluble 
protein or peptides into highly ordered fibrils 
that accumulate in tissues and vital organs 
leading to organ dysfunction and ultimately 
death [6, 7]. The history of basic and clinical 
amyloid research has been strongly dependent 
on imagery and visual peculiarity.  

Recently, advances in medical imaging and 
tracer development have made possible the 
visualization of amyloid lesions in patients with 
systemic and cerebral disease and micro-imaging 
technologies have fueled preclinical research into 
the pathobiology of amyloid disease in mouse 
models and the development and evaluation of 
novel diagnostic and therapeutic agents. For 
example, UTGSM has developed a multi-
disciplinary research program3 that focuses on 
non-invasive microimaging of amyloid deposits in 
mice to better understand the pathogenesis of 
these fatal diseases and to provide tools (e.g., 
including both animal models and imaging 
methods) to examine the efficacy of novel 
therapeutic, anti-amyloid agents in vivo [8, 9]. 

More specifically, UTGSM, UTCS, and 
ORNL, working with Siemens Preclinical 
Solutions, have fabricated a hybrid SPECT/CT 
microimaging system (see Fig. 1, top) and used it, 
in addition to a dedicated microPET instrument 
(Fig. 1, bottom), to provide quantitative images of 
amyloid deposits in transgenic mice using, as a 
tracer, a highly specific radioiodinated amyloid-
binding protein [8, 10]. 
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Fig. 1. UTGSM/ORNL in vivo 
laboratory animal systems used for 
imaging systemic amyloidosis in 
mice. Siemens microCAT™ II + 
SPECT (top); microPET P4 system 
(bottom). 
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Fig. 2.  MicroPET/CT visualization of 
AA amyloid deposits (arrow) in a 
mouse using 124I-SAP. Visualization 
generated by UTGSM. 

We have developed extensive experience with high-fidelity reconstruction of both 
CT and SPECT images. We have thus developed a parallel-processing version of the 
Feldkamp algorithm for cone beam imaging [11, 12] in a distributed computing 
framework that facilitates the use of iterative reconstruction algorithms, e.g. [13, 14]. 
With respect to SPECT we have implemented an OSEM algorithm using a conic view 
based system model as described in [15]. These codes have all been integrated with 
the RVA™ software that runs on the Siemens microCAT™ family of machines from 
which the SPECT/CT image data shown in this paper have been obtained. 
MicroPET/CT co-registered images (e.g. Fig. 2) were generated using data from a P4 
microPET imaging system (Siemens 
Preclinical Solutions) and contrast-enhanced 
CT data from the microCAT II. Imaging 
protocols have now been developed that allow 
us to generate high-resolution SPECT and 
PET images of amyloid deposits in the viscera 
of mice, that are readily co-registered with 
anatomic CT, to provide highly detailed easily 
interpreted visualizations, as shown in Fig. 2 
[16].  

3   Image Analysis Segmentation 
and Registration 

Quantitative analysis of small animal imagery 
requires the segmentation of anatomic 
structures of interest. The results of such 
segmentation – the shape and volume of a 
specific organ, for example – can serve as 
important features for query and retrieval from 
a CBIR system. In our earlier work in 2D 
biomedical image segmentation, we applied 
probabilistic shape and analysis models 

(PSAM) to the 
segmentation of soft-
boundary anatomic 
structures [17]. The 
PSAM method uses 
an a priori model 
based on a set of 
landmark points 
selected by the user 
during a training step. 
The PSAM method 
has been shown 
effective for 
anatomic structures 

 

Fig. 3. Examples of segmentations achieved on various anatomic 
structures using the PSAM method. Cranium (left), heart and lungs 
(middle), and kidneys (right). 
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that are relatively uniform across populations such as the kidney or skeletal 
components (see Fig. 3), but for other organs with greater morphological variability, 
we have taken an alternative approach.  

We have recently developed relevant 3D image segmentation methods [18] in 
support of quantifying amyloid deposits in a transgenic mouse model of AA-
amyloidosis [19] via anatomic and functional imaging. To date, we have focused on 
identifying the spleen surface using contrast-enhanced CT data with the aim of 
applying that surface to co-registered SPECT or PET data to quantify the amount of 
amyloid tracer inside the spleen. Content defined by 3D visual information is a 
growing topic of research today as a result 
of the increasing availability of volumetric 
imaging modalities.  

Segmentation of the mouse spleen (and 
other organs) in CT imagery can be 
difficult because of poor contrast, even 
with the use of contrast-enhancing agents. 
An example CT slice showing a spleen 
region can be seen in Fig. 4; this data was 
acquired using 350μl of Fenestra vascular 
contrast (VC) agent (Advanced Research 
Technologies/ Alerion Biomedical Inc., 
Quebec, Canada). The blood pool of the 
spleen is relatively bright, while the darker interior regions represent the lymphoid 
follicles. We previously [18] adapted a 2D level sets segmentation method [20] for 
semi-automatic 3D spleen 
segmentation. We extended the 2D 
algorithm to 3D via slice-by-slice 
processing and also improved 
performance by introducing 
statistical and proximity (relative to 
the previous slice) weighting terms. 
An example result from this 
approach can be seen in Fig. 5, 
where the spleen labeled “Auto” 
was segmented with our approach 
and the spleen labeled “Manual” 
was segmented via manual slice-by-
slice thresholding, which is often 
the method of choice in the pre-
clinical setting.  

We have very recently developed 
a fully 3D (i.e., not slice-by-slice) 
level set method for segmentation of 
both the spleen and its interior 
follicular architecture [21]. In addition to adapting our statistical and proximity 
weighting terms to the 3D case, we also implemented a modification to the level set 
energy functional that significantly improved follicle segmentation. An example 

 

Fig. 4.  Example CT slice showing 
mouse spleen (arrow) after injection of a 
venous contrast agent.  Bright interior 
regions represent the blood pool and the 
darker regions represent follicles. 

 

Fig. 5. Example spleen segmentation result 
(“Auto”) using our 3D slice-by-slice approach. 
The “Manual” spleen was acquired using slice-
by-slice, manually-adjusted thresholding. 
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result from this 
algorithm is shown 
in Fig. 6, where the 
spleen is rendered 
transparently and the 
follicles are opaque. 
Segmentation of the 
follicles is important 
for two reasons. 
First, we are 
interested in 
quantifying the 
volume occupied by 
the “blood pool” red 
pulp as this is 
decreased as 
amyloid deposits accumulate in the spleens of mice with systemic AA amyloidosis. 
Secondly, variations in the follicular architecture may indicate changes in the extent 
of the amyloid disease and that of other lymphoproliferative disorders that involve the 
spleen, such as lymphoma. Quantifying the follicle structure and storing in the CBIR 
system will allow us to detect changes – statistically across populations and/or in 
single-subject longitudinal studies – that indicate important biological changes. Thus, 
indexing the volumetric data by its image content becomes extremely relevant to the 
study of amyloid disease. 

We have also used the results from anatomic (CT) image analysis to quantify 
functional (PET) data. For example, we have recently applied the spleen and follicle 
boundaries from segmentation to co-registered PET data to quantify the amount of 
amyloid-specific tracer in 
the blood pool and 
follicular regions of an 
effected spleen. We 
aligned the CT and PET 
data sets using fiducial 
markers visible in both CT 
and PET modalities. Rigid 
transformation parameters 
were calculated via 
constrained gradient 
descent, though more 
sophisticated approaches 
certainly exist if needed 
[22, 23]. Two viewpoints 
of volume-rendered, co-
registered PET and CT 
data can be seen in Fig. 7, where the bright PET region (arrow) corresponds to 
amyloid burden in the spleen. 

Fig. 6. Result from our recently developed fully 3D spleen 
(transparent) and follicle (opaque) segmentation technique 

 

Fig. 7. Volume renderings (two viewpoints) of co-registered 
CT and PET data. The bright PET region  (arrow) 
corresponds to induced amyloid deposits in the spleen. The 
spleen boundary is applied to the PET data to quantify the 
amyloid-bound radiotracer in the blood pool and follicular 
regions. 
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4   Preliminary Results and Architecture Concepts for CBIR 

Both the context and the content of image data represent an inherent source of 
information and learning that is only marginally accessed today in the biomedical 
clinical and preclinical environments [24, 25]. While researchers continue to discuss 
how this may be achieved, practical progress has not kept pace with the production of 
imagery [26-28]. Image context is represented by extrinsic properties such as the time 
and date of data acquisition, subject data regarding animal strain and parentage, study 
data such as the type of SPECT tracer or CT contrast agent used along with the route 
of administration, and perhaps textual information regarding other unique conditions 
under which the data were collected. For our purposes, we will refer to this extrinsic 
image data as metadata. 

Image content is represented by the intrinsic properties of the image itself such as 
texture and regional structure [29], i.e., attributes that the human eye keys on to 
comprehend an image. Image content is extensive yet most data management systems 
today rely solely on extrinsic properties of the data to catalogue it for future use. 
Commercial relational database products and PACS reduce the ad-hoc nature of the 
cataloguing procedure by leveraging extrinsic image properties, but to effectively 
access the entire historical repository requires an ability to simultaneously engage 
both the extrinsic and intrinsic properties in a manner that is reasonably transparent to 
the user.  

Fig. 8 shows examples of the wide variety of descriptive imagery that is generated 
at UTGSM and ORNL in support of our small animal research. Extracting, indexing, 
and managing the informational content of this data is of paramount importance.  

 

Fig. 8.  Examples of the wide variety of descriptive imagery that is collected in support of small 
animal studies.  This data was generated by UTGSM and ORNL to support amyloid research 
and includes (left) contrast-enhanced CT and both planar and volume segmentation of the 
spleen, (center) registered CT and SPECT data plus autoradiographs of splenic amyloid 
deposits imaged with 125I-SAP, and (right) visualizations of amyloid burden generated from co-
registered SPECT/CT (upper) and PET/CT data (lower). 

Our CBIR technology is a library of C++ objects that create, manipulate, and 
access database tables as well as measure unique numerical descriptions of image 
content. Two main procedures of indexing and retrieval are carried out. The indexing 
process consists of measuring features from images, then using the features to build 
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tree structures that describe the image population. The indexing procedure begins by 
reading an image and extracting the image features from multiple regions of interest. 
For this research, these regions are generated using the 2D and 3D segmentation 
methods described earlier. As images are added to the table, indexing trees are 
generated. We use a modified approximate nearest-neighbor (ANN) algorithm to 
build and maintain the indexing 
trees [30].  In practice, multiple 
trees are generated, each 
representing a group of 
attributes associated with the 
image population, e.g., shape 
attributes and texture attributes, 
as shown in Fig. 9.   

In retrieving, features are 
extracted from a query image 
and each indexing tree is 
searched to find the closest 
examples based on an L-norm 
distance metric. The final 
retrieval is a function of the 
intersection of these sets.  A user 
can easily enable or disable these 
various attribute sets while 
performing queries, therefore 
making the system flexible and 
useful to a large population of 
end-users, each with differing 
search goals. 

To demonstrate the initial 
application of our CBIR 
technology to this research, we 
have built a small CT cross-section databases for testing with existing feature 
constructs.  The database contains 239 images from the microCT system of normal 
kidneys and polycystic kidney disease (PKD) cross sections. Each kidney image in 
the database is indexed individually such that one mouse is represented twice, once 
for each kidney. The kidney mask (i.e., segmentation) was automatically generated 
using the 2D PSAM algorithm of Gleason in [17]. The left image in Fig. 10 shows a 
random population of images from the database. The right image shows the result of 
querying with the left kidney of Mouse #32, which has PKD. Note that the first query 
result in the list contains Mouse #32’s right kidney. The second and third results show 
Mouse # 33’s right and left kidney respectively. Mouse #33 also has PKD. There 
were no other PKD mice in the database.  

For this example the image texture attributes in the segmented kidney regions plays 
an important role in differentiating PKD from normal mice, although a total of 111 
features representing intensity, texture, and shape where applied. Even though this 
was a simple example on a relatively small data set, it represents the inherent 

 

Fig. 9. Example feature indexing architecture. In (a) 
users select the descriptors of interest for each queried 
organ. The retrievals for each organ type (if multiple 
are selected) are returned in a list based on the Boolean 
intersection of the sets. In (b) the ANN indexing trees 
are represented that are accessed for each selected sub-
group within an organ. 
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investigative power that could be achieved by a fully developed informatics system 
that leverages visual content to perform queries on historical data populations. The 
incorporation of other study data (i.e., metadata) into the query process will extend 
this capability further and facilitate rapid investigations through hundreds of 
thousands of images while providing for the effective reuse of large historical 
repositories. 

 

Fig. 10.  Example database of normal and PKD kidneys generated using the micro CT imaging 
at ORNL.  The left image shows a random retrieval of kidney image cross-sections.  The right 
image shows a query with Mouse #32’s left PKD kidney.  

5   Conclusions 

Micro imaging has become a predominant means for generating high-resolution, high-
throughput, multi-modality small animal data. A result of this advancing capability is 
the generation of copious amounts of digital image and ancillary data that must be 
indexed and managed to retain it’s usefulness in the preclinical study of genetics and 
disease. We have presented results of our preliminary research to segment and 
describe anatomic and functional structures, primarily soft organ tissue, collected 
from CT, SPECT, and PET imaging modalities. We have also shown an example of 
image indexing and retrieval on a small CT database of mice exhibiting polycystic 
kidney disease, demonstrating an ability to locate similar diseased mice in a 
population using kidney morphology and texture. The goal of this research is to 
develop a small animal information system that will improve the ability of preclinical 
researchers to make important biomedical discoveries by drastically increasing the 
achievable scope and size of their studies, therefore accelerating the translation of the 
preclinical investigation of disease to the clinical environment. More importantly, 
through the effective analysis and indexing of image content, the data system will 
provide researchers with unprecedented access to information in the imagery, which 
comprises the largest data component of the system. 



 Image-Based Informatics for Preclinical Biomedical Research 1749 

References 

1. Santini, S., Exploratory Image Databases, Content-based Retrieval. Academic Press, San 
Fransisco, CA, 2001. 

2. Shyu, C., et al., ASSERT, A physician-in-the-loop content-based image retrieval system for 
HRCT image databases. Computer Vision and Image Understanding, July/August 1999. 
75(1/2): p. 111-132. 

3. Tobin, K.W., et al., Content-based Image Retrieval for Semiconductor Process 
Characterization. Journal on Applied Signal Processing, 2002. 2002(7). 

4. Tobin, K.W., Karnowski, T.P., Arrowood, L.F., and Lakhani, F. Field Test Results of an 
Automated Image Retrieval System. in 12th Annual IEEE/SEMI Advanced Semiconductor 
Manufacturing Conference and Workshop. 2001. Munich, Germany. 

5. Tobin, K.W., Bhaduri, B.L., Bright, E.A., Cheriyadat, A., Karnowski, T.P., Palathingal, 
P.J., Potok, T.E., Price, J.R., Automated Feature Generation in Large-Scale Geospatial 
Libraries for Content-Based Indexing. Journal of Photogrammetric Engineering and 
Remote Sensing, 2006. 72(5). 

6. Merlini, G. and V. Bellotti, Molecular mechanisms of amyloidosis. N Engl J Med, 2003. 
349(6): p. 583-96. 

7. Bellotti, V., P. Mangione, and G. Merlini, Review: immunoglobulin light chain 
amyloidosis--the archetype of structural and pathogenic variability. J Struct Biol, 2000. 
130(2-3): p. 280-9. 

8. Wall, J.S., et al. Radioimaging of Primary (AL) Amyloidosis with an Amyloid-Reactive 
Monoclonal Antibody. in Amyloid and Amyloidosis: Proceedings of the Xth International 
Symposium on Amyloidosis. 2005. Tours, France: CRC Press. 

9. Schell, M., et al. Prevention of AA-amyloidosis by active immunotherapy. in Amyloid and 
Amyloidosis: Proceedings of the IXth International Symposium on Amyloidosis. 2001. 
Budapest, Hungary: David Apathy. 

10. Wall, J.S., et al., Quantitative high-resolution microradiographic imaging of amyloid 
deposits in a novel murine model of AA amyloidosis. Amyloid, 2005. 12(3): p. 149-56. 

11. Gregor, J., Benson, T., Gleason, S., Paulus, P. Support algorithms for x-ray micro-CT 
conebeam imaging. in Int. Conf. Fully 3D Image Reconstruction in Radiology and Nuclear 
Medicine. 2003. Saint Malo, France. 

12. Gregor, J., Gleason, S., Paulus, M., Cates, J., Fast Feldkamp reconstruction based on 
focus of attention and distributed computing. Int. J. Imaging Systems and Technology, 
2002. 12: p. 229-234. 

13. Benson, T., and Gregor, J., Distributed iterative image reconstruction for micro-CT with 
ordered-subsets and focus of attention problem reduction. J. X-Ray Systems and 
Technology, 2004. 12: p. 231-240. 

14. Benson, T., Gregor, J. Modified simultaneous iterative reconstruction technique for faster 
parallel computation. in IEEE Medical Imaging Conf. 2005. Puerto Rico. 

15. Gregor, J., Gleason, S., Kennel, S., Paulus, M., Benson, T., Wall, J. Approximate 
volumetric system models for microSPECT. in IEEE Medical Imaging Conf. 2004. Rome, 
Italy. 

16. Yap, J.T., et al., Combined Clinical PET/CT and micro PET Small Animal Imaging. IEEE 
NUCLEAR SYMPOSIUM 1082-3654, 2004. 5: p. 2995-2998. 

17. Gleason S, S.-S.H., Abidi M, Karakashian F, Morandi F, A New Deformable Model for 
Analysis of X-ray CT Images in Preclinical Studies of Mice for Polycystic Kidney Disease. 
IEEE Trans. on Medical Imaging, 2002. 21. 



1750 K.W. Tobin et al. 

18. Aykac, D., Price, J.R., Wall, J. 3D Segmentation of the Mouse Spleen in microCT via 
Active Contours. in Proceedings of the IEEE, Nuclear Science Symposium and Medical 
Imaging Conference. 2005. Puerto Rico. 

19. Wall, J.S., Kennel, S.J., Paulus, M.J. , Gleason S.S. , Gregor, J. , Baba, J. , Schell, M. , 
Richey, T. , O'Nuallain, B. , Donnell, R. , Hawkins, P.N. , Weiss, D.T. , and Solomon, A. , 
Quantitative high-resolution microradiographic imaging of amyloid deposits in a novel 
murine model of AA amyloidosis. Amyloid, 2005. 12(3): p. 149-156. 

20. Chan, T.a.V., L., Active contours without edges. IEEE Transactions on Image Processing, 
2001. 10(2): p. 266-277. 

21. Price, J., Aykac, D., Wall, J. A 3D level sets method for segmenting the mouse spleen and 
follicles in volumetric microCT images. in IEEE Engineering in Medicine and Biology 
Conference (EMBC). 2006. 

22. Besl, P.a.M., N., A method for registration of 3-D shapes. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 1992. 14(2): p. 239-256. 

23. Micheals, R.a.B., T. Increasing robustness in self-localization and pose estimation. in 
Proceedings of the 1999 Mobile Robots XIV. 1999: SPIE. 

24. Muller, H., et al., A Review of Content-Based Image Retrieval Systems in Medical 
Applications - Clinical Benets and Future Directions. International Journal of Medical 
Informatics, 2004. 73(1): p. 1-23. 

25. Chu, W.W., Cardenas, A.F., Taira, R.K., Knowledge-based image retrieval with spatial 
and temporal constructs. IEEE Trans. on Knowledge and Data Engineering, 1998. 10(6): 
p. 872-888. 

26. Bueno, J.M., et al. How to Add Content-based Image Retrieval Capability in a PACS. in 
The 15 th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002). 2002. 

27. Schultz, C.P., et al., Molecular Imaging Portal: New Development IT Platform for 
Imaging, Nonimaging and Genomics. Molecular Imaging, 2005. 4(4): p. 71-77. 

28. Le Bozec, C., Zapletal, E., Jaulent, M., Heudes, D., Degoulet, P. Towards content-based 
image retrieval in a HIS-integrated PACS. in Proceedings AIMA Symposium. 2000. 

29. Smeulders, A.W.M., et al., Content-Based Image Retrieval at the End of the Early Years. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000. 22(12): p. 1349-
1380. 

30. Arya, S., et al., An Optimal Algorithm for Approximate Nearest Neighbor Searching in 
Fixed Dimensions. Proc. of the Fifth Annual ACM-SIAM Symposium on Discrete 
Algorithms, 1994: p. 573-582. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


