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Abstract surface. As first presented in [5], the construction of (con-
tinuous) FIFs is relatively straightforward. Creatiogn-

In this paper we present a method for constructing frac- tinuousfractal interpolation surfaces (FISs), and similarly
tal interpolation surfaces and volumes through points sam- fractal interpolation volumes (FIVs), however, is more dif-
pled on rectangular lattices. Unlike other surface construc- ficult (excluding the tensor product cases).
tions ours uses rectangular rather than triangular tilings, In Section 2, we review the basics of FIFs and note two
halving the number of required parameters. This method is equivalent forms they may take — the latter of which facili-
no more complex than previous constructions and yet doedates our FIS and FIV constructions. In Section 3, we first
not suffer from their limitations. Additionally, our construc- state the FIS problem and describe the difficulties involved
tion extends easily to volumetric interpolation, for which in constructing continuous FISs. We next briefly describe
there were no previous (continuous) constructions. In addi- previously proposed constructions and point out their re-
tion to an example with synthetic data, a real image is in- strictions. We then detail our FIS construction and provide a
terpolated using a fractal surface. Limitations and possible synthetic example. In Section 4, we describe how the ideas
improvements are mentioned. behind our FIS construction can be extended to create con-

tinuous FIVs. In Section 5, we note that many fractal inter-

polation problems can be reduced to a simple matrix/vector
1. Introduction expression that can, in turn, be used to aid in selecting free
parameters. Finally, in Section 6, we present a portion of
a fractal interpolated image and make some concluding re-

Interpolation has long been an important tool for data marks.

visualization. Classical interpolation techniques fit elemen-
tary functions (e.g., lines and cubics) to given data points . . .
in order to render a connected visualization of the sam—2' Fractal interpolation functions
ples. Such elementary functions often imbue the visualiza- o )
tion with a degree of smoothness that may not be consistent For the classic linear FIF we have a set of data points
W|t_h the nature of the datr_;\. Fractals [1] and frgctal mterpo- {(xmyn) eDxR:nel01,... ,N]}7 )
lation [2] have been applied to prevent such inappropriate
smoothing. Fractal interpolation functions (FIFs) have also wherez,, is strictly increasing and = [z, xzy] C Ris a
been used to interpolate turbulent speech signals [3] as welklosed interval. We seek a continuous functjonD — R
as to model mountain profiles, seismic data, and electrocarthat interpolates this data according to
diograms [4].

The motivation of this work was to explore the potential Fan) = yn
use of fractal interpolation in the context of image interpo- Fojlowing the standard form used in the signal processing

lation. In this respect, we consider points of an image 10 jiterature, such FIFs are constructed usiNgaffine map-
be samples (on a uniform rectangular grid) of a continuous pings of the form

forn €10,1,...,N]. 2)

*(©1998 IEEE. InProceedings of the 32nd Asilomar Conference on
Signals, Systems, and Computend. 2, pp. 1698-1702, November, 1998, w. [F) = (% 0 z + Cn
Pacific Grove, CA, USA. " \y bn /) \y dy,
tJ. Price is a Kodak Fellow. Funding for this research has been gra-
ciously provided by the Eastman Kodak Company. forn e [1’ ce ’N]’ (3)



In this alternative form, the subinterval endpoint constraints
become

L,(xo) =2p-1 and L,(zyn)=2x,

(7)
Fn,(xo, yo) = Yn—1 and Fn(xNa Z/N) = Yn-

Note thatL, (z) of (6b) describes the horizontal “shrink-
ing” and mapping ofD onto D,,. We will refer to these
functions as thalomain contractions What has not been
considered previously, but is necessary for our FIS and FIV

[

af e b—> 1 ~—Dr—> 1 km%i ] constructions, is to allow the domain contraction factgrs
R to be negative. A negative value fay, implies that the en-
tire function overD is reflected about its center point when
Figure 1. Example fractal interpolation func- mapped taD,,. (These reflections are similar to transforms
tion. used in fractal image compression.) This reflection just re-
verses the endpoint constraints of (4) and (7). This equiva-
with the interval endpoint constraints lent form for the FIF will be used in the next sections to aid
in our FIS and FIV constructions.
)= Gm) e G2)=C0)
Yo Yn—1 Yn Yn 3. Fractal interpolation surfaces

forne[l,....,N]. (4)
3.1. Problem Statement
We refer toa,, as thedomain contraction factorand~,,
simply as thecontraction factors Equations (3) and (4) im- For the surface interpolation problem, we begin with a

ply that each mapy,, horizontally “shrinks” (by a factor of  data set that can be expressed similarly to (1) as
a,) and vertically scales (by a factgy,) the entire function
over the intervalD, and maps it to the piece of the function {(xm yn) EDXR:ne€ N}, (8)
over the intervaD,, = [x,,—1,z,]. (See Fig. 1.)
It is easily shown that with each contraction factgy where nowx,, = (z,22), D C R?is closed, anaV repre-
a (fixed) free parameter, the remaining parameters of eactsents some ordering of the data set. In our case of a uniform
map in (3) are uniquely specified by the constraints of (4). rectangular lattice, we have
With eachry,, chosen such thdt,,| < 1, the collection of
affine mappings defined by (1)-(4) form a hyperbolic iter- N =10,1,....,N1] x [0,1,..., No]. 9)
ated function system (IFS). In other words, there exists a

. To interpolate the data of (8) we seek a continuous surface
unique (nonempty) compact sétc R? such that P (8)

f: D — R such that

N
G =] wn(@). ) f(xn) =yn forneN. (10)

n=1 We attempt to construct such a surface using maps similar
to (6), wherer now becomes the 2-vectarc D c R? and
L, (x) can take more general forms (as noted later).

Like the FIF, the FIS construction requires each domain
contractionZ,, (x) to take the entire domaiP C R? (or a
subregion ofD for the recurrent IFS) onto the smaller “sub-
domain” D,,, where the union of these subdomains covers
D. In the FIF case, these subdomains were the subintervals
we referred to ad),,. For the FIS, these subdomains are

Moreover, it can be shown that this ggtis the graph of a
continuous functiory : [zg,zxy] — R that interpolates the
data set according to (2).

Detailed in [5], but ignored in the signal processing liter-
ature until [6], is an equivalent form for the FIF associated
with (1)-(4) that is expressed as follows:

wn(w,y) = ( ), Fnl, y)> (62) areas and can take various shapes as illustrated in Fig. 2.
Ln(z) = anz + ¢y (6b)  The intuitive extension of the FIF would imply that these
Fo(z,y) = MLn(2)) + 70 (f(z) — b(z))  (6c) subdomains irR? should be rectangular. Such rectangu-

lar subdomains have, however, proved troublesome for con-
where theheight functioni(z) is the piecewise linear in-  structing continuous FISs. In Section 3.3 we describe how
terpolation through the data points, and these function  to alleviate this problem, but mention here that previous FIS
b(x) is the linear function througkz, yo) and (zx, yn)- constructions have resorted to triangular subdomains.



Rectangular Tiling Triangular Tiling (Recurrent IFS) pings as a rectangular tiling, since each potential rectangu-

’ lar subdomain must be divided into two triangles. Addi-

. tionally, we note that using such a triangular tiling when

| , is in fact rectangular requires the recurrent IFS formalism.
............ oo In this case, larger triangular subregionsiafmap to the

| | y g smaller triangular subdomains [7],[9]. For an illustration of

; o these ideas refer to Fig. 2.

| P The first published construction of a continuous FIS was

: ' described in [8]. This construction requires all the bound-
) . i ) ary data ofD to be coplanar. As noted in [7] this will pro-
Figure 2. Domain for fractal interpolating sur- duce an FIS with many straight line segments, potentially a
faces over rectangular lattice, possible sub- significant drawback in visualizing many phenomena. The
domain ftilings, and subdomain boundary coplanar boundary requirement is removed in the FIS con-
points. struction of [7], but only in the special case where every

mapping has the same contraction factor. This requirement

_ The key difficulty in constructing FISs involves ensur- . hrove limiting as well since it implies that the surface
ing continuity. Adjacent subdomains are associated with is equally “rough” all over, and precludes selecting the con-

different mappings, and yet share common points. To guar-yation factors to satisfy any appropriate criteria. In [2]
antee continuity, we require that these adjacgnt MappPINgS$he author increases the dimension of the affine mappings
produce the same vall_Jes at these common points. Referring, (3) in order to construct FISs (and FIVs). Although
to Fig. 2, letx be a point on the boundary of adjacent sub- \;nmentioned, this construction either produces discontinu-
domainsD,, and D,,, which are associated with mappings ;s 5 rfaces (and volumes) or reduces to the case where the
w, andw,,, respectively. Note first that from (6) we can ., traction factors must be constant.
show thatF, (x, y) = f(Ln(x)), and therefore The breakthrough that permits our construction was re-
alized by Zhao in [9]. Using a form similar to (6), Zhao
F(x) = h(x) + [ f(L, (%) = b(L, ' (x))] allows the contraction factors, to become a continuous
forx € D,. (11) “contraction function”y(x). When expressed similarly to
(6¢), this yields

For the boundary point we have bothe D,, andx € D,,.
With this in mind, we can use (11) to see that for continuity Fy(x,y) = h(Ln(x)) +7(x)(f(x) = b(x)).  (13)

itis required that With +(x) now a continuous function, the join-up condi-

[f(L‘l( )) b(L‘l( ))] tions of (12) reduce to
Tn n X)) — n (X
= [ (L' () = (L5 (x))]  (12) F(L () = (L, ()

_ _ . = f(Ly' (%) = b(Ly' (%) (14)
for all x on the boundaries of adjacent subdomains. These
requirements are sometimes referred to as the “join-up” The simplest method to satisfy these join-up conditions is
conditions [7]. In the FIF, the boundary between adjacent to ensure that
subdomains consists of only a single point. By the endpoint 1 .
constraints of (4) or (7) the join-up conditions are automat- Ly (x) = Ly, (%) (15)
ically satisfied. For the FIS, however, adjacent subdomainsgy, every pointx on the boundaries of adjacent subdomains
share infinitely many points along boundaries. Applying p andD,. This means thak,, andL,, should map the
constraints similar to those of the FIF construction will not ggme points (from an edge) 6f onto the common bound-

work ary (edge) points shared &y, andD,,. To meet this condi-
_ _ tion, Zhao employs triangular subdomains, and the domain
3.2. Previous constructions contractionsl.,, are chosen to rotat® (or a triangular sub-

region) appropriately.
The construction of FISs has been investigated by several
authors [2], [7]-[9]. Here we briefly review these construc- 3.3. Rectangular subdomain FIS
tions, and point out some of their inherent restrictions.
First, we note that all of the previous constructions em-  Here we describe our (in fact quite simple) extension of
ploy triangular subdomains. For data over rectangular lat- the approach in [9] that allows the use of rectangular subdo-
tices, such a triangular tiling requires twice as many map- mains. The central problem to solve is satisfying the join-up
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Figure 3. Rectangular domain contractions to
satisfy join-up conditions.

I I

conditions of (15). First note that domain contractions that ~ Figure 4. Example fractal interpolation sur-
employ only rotations of (a rectangulaF) cannot satisfy face.
(15). The key to solving this problem is realizing that, con- .
trary to the triangular case, rotations alone do not describetr"’u:t.'.On fac“’f. foreach € [0, 1,. L0 Ni] x .[0’ L., Na].
all of the domain contraction possibilities for a rectangu- Additional pplnts Of. Fhe cqntractlon'functlor(x) are cal-'
lar D. As mentioned at the end of Section 2, we should culated by simple bilinear interpolation of these contraction
also consider reflections. Explicitly adapting the notation factors. ) )
of (6b) for the rectangular FIS, the domain contractions can An e_xample F!S through 8x 3 lattice c_)f synthetic data
be written as points is shown in Fig. 4. The data points were assumed
to be sampled uniformly o® = [0,1] x [0,1]. The con-
al 0 ¢ traction function used was bilinear, and parameterized by a
Ln(x) = < 0 a2> X+ (C ) : (16) 3 x 3 array of contraction factors. The surface of Fig. 4 is
" composed of 29 x 129 points interpolated from the original
The four possible sign combinations af and a? real- 3 x 3 lattice.
ize four different combinations of reflections about the two
x axes. Using these combinations appropriately, one can4, Fractal interpolation volumes
construct an FIS over rectangular subdomains such that the
join-up conditions of (15) are indeed satisfied. Anillustra- 1,4 aytension of our FIS construction to the volume case
t|_on of th|§ is shown n '_:'g' 3 where the Iarge numbers, is straightforward. An equation similar to (16) is used,
cwck_ad points, and solid lines indicate thg vertices and CoN- L ow in R3. With three differenta,, parameters, there are
n.ectllng edges ab. Thg smal.ler_numbers in the subdomams eight possible sign combinations. These correspond to the
(indicated by dashed lines) indicate where these vertices are,iont combinations of reflections across each of the three
mgpped by .the domain contractions. For larger data sets, planes. In the volumetric case, the domain contractions
this patte_rn IS repee_lted as necessary. Note that each O_f thﬁow map larger parallelepipeds to smaller parallelepipeds.
four_ po ssible refl_e_ctlon co_mblnatlons IS necessary to Sat'SfyUsing appropriate reflections, similar to Section 3.3, a “rect-
the Jjon-up condmons. With the domain _contract|ons ch.o- angular” tiling can be constructed such that common points
senin this fash_lon,we n_owturn our attention to the selection on adjacent “faces” (rather than line segments in the FIS
of the contrgctlon functhry(x). , , case) of subdomains come from the same points on the face
Any contlnuou_s f“'?c_“"” fory(x) is suitable. _In F”der of the entire domain. In conjunction with a continuous (3-
to preserve the simplicity OT the FIF, however, it might be_ D) contraction functiory(x), the join-up conditions will be
desirable to choose a function that can be represented W'”Eatisfied, resulting in a continuous FIV.
a number of parameters close to, or perhaps even much less
than, the number of maps. This would allow the same flex- ) .
ibility of the FIF without an increase in complexity. We 9. Contraction factor selection
have chosen to use a piecewise linear form (i.e, bilinear)
for v(x) where there is a parametgy associated with each For many interpolation problems, only a few additional
data point (rather than with each map). In other words, we points between each data point are sought. In the FIF case,
haveamapforeache [1,..., N1]x[1,..., Ny] butacon- (11) can be used to reduce such a problem to the following



matrix/vector form

f=h+Qy, (17)

where the vector§ andh denote points of the FIF(xz)

and the height functioh(z), respectively [6]. The vectey

is composed of the contraction factors, dpds a (sparse)
matrix whose entries are determined by only a few values
of the difference functiorf f (x) — b(x)).

Employing the bilinear (or similarly parameterized)
form for v(x), as mentioned in Section 3.3, we can derive
a expression (with appropriate dimensionality adjustments
and data ordering) for the FIS and FIV cases:

f =h+ QB~. (18)

The additional matrixB represents the bilinear interpolation
(or parameterized computation) of the contraction factors

in order to calculate the necessary points of the contraction
function~(x). In the form of (18), various techniques (e.g.,
constrained optimization) can be used to fipduch that
the interpolationf possesses some quantifiable properties
related to the known data points.

(2]

6. Real image example and conclusions

Unfortunately, experiments using our rectangular subdo-
main FIS for image interpolation have been largely unsuc-
cessful. An exaggerated example is shown in Fig. 5, where
a21 x 21 section of thd_enaimage has been interpolated

by a factor of 20. The rectangular tiling is evident in the [4]

grid-like structure of the image. Although our experiments
indicate limited applicability for image interpolation, the
flexibility of our FIS and FIV constructions may find use
in other visualization endeavors. Additionally we note that

careful selection of the contraction factors, using (18), may [5]

also prove beneficial

In summary, we have derived a method for constructing
continuous fractal interpolation surfaces for data on rectan-
gular lattices. Unlike prior constructions, ours allows the
use of true rectangular subdomains and, additionally, does
not suffer from the other constraints of these previous con-

structions. We also mentioned how our surface construc-[7]

tion extends easily to the volume interpolation problem, for
which there were no previous (continuous) constructions.
Finally we noted that in many cases fractal interpolation
problems can be expressed in a matrix/vector expression

that allows the contraction factors to be selected according(8]

to some appropriate criteria.
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