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ABSTRACT 

In this paper, we propose a method to estimate the blur of a 
fixed imaging system, without control of camera position or 
lighting, using an inexpensive target. Such a method is ap- 
plicable, for example, in the restoration of surveillance im- 
agery where the imaging system is available, but with only 
limited-control of the imaging conditions. We extend a pre- 
viously proposed parametric blur model and maximum like- 
lihood technique to estimate a more general family of blur 
functions. The requirements for an appropriate characteri- 
zation target are also discussed. Experimental results with 
artificial and real data are presented to validate the proposed 
approach. 

1. INTRODUCTION 

Image restoration [ 11 is the process of estimating an image 
from an observation that has undergone some degradation 
such as blur and/or additive noise. To perform any sort of 
image restoration, knowledge of the degradation or blur is 
required. Knowledge of the blur can be obtained in at least 
two ways, which we refer to as blind estimation andperfect- 
control estimation. In the blind estimation scenario [2,3,4], 
the blur is estimated directly from the degraded image(s). In 
the perfect-control setting, the imaging system used to cap- 
ture the given image is characterized through some experi- 
mental process. This option, of course, is often infeasible or 
impractical. Obviously the imaging system cannot be sub- 
jected to a characterization process if it is unavailable and/or 
unknown. Even if the imaging system is available, however, 
current methods for characterization [5,6] are often imprac- 
tical as they require expensive targets, nearly ideal light- 
ing, control of camera and/or target placement, and analysis 
by a skilled individual. These two alternatives - blind and 
perfect-control - represent two extremes of the blur estima- 
tion problem. 
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In this paper, we begin the investigation of a new tech- 
nique for estimating image blur in limited-control environ- 
ments. The limited-control environment falls between the 
two aforementioned extremes and is useful in surveillance 
and/or video forensics applications [7]. In such applica- 
tions, an event of interest may be recorded by a fixed imag- 
ing system, such as a surveillance camera, that is available 
for limited testing in its native environment. As it may 
be desirable to improve the recorded image(s) using image 
restoration techniques, the goal of the work presented here 
is a robust method to estimate the blur of a fixed imaging 
system, without control of camera position or lighting, us- 
ing an inexpensive target (or targets). Such a method is the 
primary contribution of this paper. Additionally, we extend 
the blur models and maximum likelihood estimation tech- 
nique suggested in [2] to allow for a broader class of para- 
metric blur functions. 

The remainder of this paper is organized as follows. In 
Section 2, we present the parametric blur model, based upon 
that in [2], that we have adopted for our work. In Section 3, 
we discuss the maximum likelihood estimation of the blur 
parameters and then, in Section 4, we describe briefly the re- 
quirements for the characterization target. We present some 
experimental results from artificial and real data in Section 5 
and make some closing comments in Section 6. 

2. BLURMODEL 

In general, the blur of an optical imaging system can be very 
difficult to model. An accurate blur model based upon phys- 
ical optics requires such parameters as depth of the imaged 
objects, lens aberrations, and spectral distribution of the in- 
cident light [SI. A more tractable approach is to employ 
parametric blur models based upon geometric or diffraction- 
limited assumptions. Such an approach is suggested in [SI 
as a reasonable alternative to the more cumbersome physi- 
cal optics model and has been used successfully in the im- 
age processing literature [2, 91. 

We adopt the continuous spatial domain approach pre- 
sented by PavloviC and Tekalp in [2 ]  with some modifica- 
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Fig. 1. Simple model of imaging system assuming linear, 
shift-invariant blur and additive noise. 

tions and extensions. Specifically, in [2] out-of-focus cir- 
cular aperture blur and circularly symmetric Gaussian blur 
are considered independently. We, however, allow for sep- 
arable, elliptically symmetric Gaussian blur and addition- 
ally consider both out-of-focus and Gaussian blur simulta- 
neously. The Gaussian is used to approximate any blur in 
the scene that may arise from sources other than focus er- 
ror. We adopt the separable Gaussian because some imag- 
ing systems tend to have more blur in one direction than the 
other (e.g., the real data mentioned in Section 5). The point 
spread function (PSF) for the out-of-focus circular aperture 
is given by 

(1) 
1 

rR2  hc(x; R)  = -HR(IxI) 

where 

The PSF for the elliptically symmetric, separable Gaussian 
is 

The blur for the overall imaging system is given by the con- 
volution of (1) and (3): 

h(x;R,71,y2) = hc(x;R) * hg(X;YI,Y2). (4) 

Letting 6 represent the collection of blur parameters to be 
estimated, { R, yl, y2}, we can rewrite (4) in the Fourier do- 
main as 

exp(-2r2y;u:) exp(-2r 2 2 2  y2u2) (5) 

where J k ( . )  is the kth-order Bessel function of the first kind. 
Given the model of (5), the goal of blur estimation is then 
to estimate the parameters R, 71, and 72.  

3. PARAMETER ESTIMATION 

Referring to the imaging system model in Fig. 1, the in- 
put, f ( x ) ,  is characterized in [2] by an autoregressive model 

driven by Gaussian-distributed, white noise. As we have 
some control over the input to the imaging system in the 
limited-control environment, we can simplify further and 
assume that the input is purely Gaussian noise with un- 
known variance o;. Such an input can be approximated 
using a prefabricated target, as discussed in Section 4 be- 
low. The term .(.) represents additive white noise of un- 
known variance o,“. We let g (n)  represent the N x N ob- 
served samples of the image g(x). Using the well-known 
block circulant approximation [ 101 to the covariance matrix 
of g(n)  (lexicographically ordered), and following the form 
of [2], the maximum likelihood parameters 0 can be found 
by minimizing the negative of the likelihood function (LF) 

where S, (k;  e)  represents samples of the (analytically com- 
puted) power spectrum of g(x)  and where G(k)  is the dis- 
crete Fourier transform (DFT) of g(n). Recalling that the 
input f(.) in Fig. 1 is purely white noise, we can write 

where H ( u ;  e )  was given in (5). We note that IH(.)12 = 
H 2  (.) since H (  .) is purely real. 

To minimize (6) effectively, we must compute the gradi- 
ents of L( .) with respect to each of the unknowns. Recalling 
that 0 = { R, yl, y2}, we have 

for the blur parameters and 

and 

for the signal and noise power, respectively. To complete (S), 
we must evaluate the partials of H ( . )  with respect to each 
of the blur parameters, yielding 
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and 

fori  = 1,2 .  
Given the DFT of the observed digital image, G(k), the 

likelihood function L(.) from (6) is minimized with respect 
to the five unknown parameters - R, 71, 7 2 ,  U;, and U,” 

- using a constrained nonlinear minimization routine (the 
f mincon function from MATLAB’s Optimization Tool- 
box). Initial experimental results indicated some sensitivity 
to initial conditions, so a two-step initialization procedure is 
performed. In the first step, initial guesses for U; and U,” are 
computed. In the second step, these initial guesses are used 
to compute L(.)  over a 7 x 7 grid of equally spaced points 
(over the range of expectedallowable values, noted below) 
by assuming that y1 = 7 2 .  The minimizer over this 49 point 
set is then selected as the starting point for the optimization. 

To constrain the optimization, the unknown parameters 
are allowed to take values in the following ranges: R E 

lowable blur parameter (R, 7 1 , 7 2 )  ranges are representative 
of what is reasonably expected in our application of interest. 

(0,101, { n , 7 2 }  E (0,101, and (03, U,”} E (0, m). The al- 

4. CHARACTERIZATION TARGET 

As mentioned at the beginning of the previous section, the 
goal of the target is to provide white, Gaussian-distributed 
noise as input to the imaging system. White noise ensures 
that the power spectrum S,(.) takes the form of (7). The 
Gaussian distribution is required to satisfy the assumptions 
used to generate the likelihood function of (6). 

The target we employ is composed of constant intensity 
blocks, where the intensity of each block is selected from a 
discrete, approximately Gaussian distribution over [O.O, 1.01 
(0.0 corresponds to black, 1 .O corresponds to white). In the 
ideal -but impractical - scenario, each block on the target 
would correspond to one pixel, with no overlap. Instead, we 
only require that the area of each target block correspond to 
less than the area of one pixel. In this situation there will be 
some correlation because adjacent pixels will generally be 
observing portions of the same target blocks. This correla- 
tion, however, is limited to a 3 x 3 window and is neglected. 

We note that decreasing the area of each target block 
with respect to the area of each pixel would decrease the 
aforementioned correlation, but would also tend to decrease 
the effective SNR. As the number of target blocks observed 
by each pixel increases, the effective spread o f f ( . )  about 
its mean (i.e., U;) decreases. Therefore, we would like the 
target blocks to be smaller than, but on the same order of, 
the area imaged by each pixel. This can be accomplished 

in the field by having several targets with varying block 
sizes available. To account for illumination variation (and 
perform mean removal), we fit the captured image with a 
separable quadratic. The quadratic is subtracted from the 
captured image prior to processing. 

In ongoing work, we intend to correct illumination vari- 
ation and nonlinear contrast modification by including a uni- 
form gray bar and a black-to-white gradient bar, one each in 
both the horizontal and vertical directions, on the target im- 
age. The uniform gray bars will be used to estimate and 
correct illumination variation; the gradient bars will be used 
to estimate and correct contrast modifications. 

5. EXPERIMENTAL RESULTS 

In this section, we present experimental results from both 
artificial and real data. Artificial data was generated by first 
creating a Gaussian white noise image with known variance, 
U;, of size 128 x 128 pixels. This noise image was then 
blurred by a PSF of the form presented in Section 2 with 
known parameters { R, y1,yz}. Gaussian, white noise with 
known variance, U,”, was then added to the blurred image 
to simulate the observation noise. The DFT of the noisy, 
blurred image was then used as G(k) in (6). Real data was 
obtained using a consumer video camera, a PC with video 
capture capabilities, and a noise target such as that described 
in Section 4. To provide blurry images, the autofocus fea- 
ture of the camera was disabled and the camera was man- 
ually defocused by varying degrees. The DFT of one cap- 
tured frame was then used as G(k) in (6). Examples of the 
real images are shown in Fig. 2. 

Some results obtained from the artificial data are sum- 
marized in Table 1. The algorithm performed similarly with 
various blur parameters. It should be evident from Table 1 
that the algorithm performs quite well, even down to SNRs 
as low as 20dB. Around 15dB and less, however, the algo- 
rithm demonstrated decreased robustness. This decreased 
robustness at low SNRs might be a limiting factor in low- 
quality surveillance imagery. 

In Table 2, we summarize results obtained from the real 
data. Although the good results obtained from the artificial 
data give confidence in the results from the real data, we also 
performed an additional subjective test. The blurs estimated 
from the defocused images were applied to images obtained 
using autofocus. The resulting, digitally blurred images cor- 
responded well to the same images obtained with optical 
blurring by manual defocus. This indicates, albeit subjec- 
tively, that the estimated blur is representative of the true, 
optical blur. Ongoing work is aimed at quantifying more 
conclusively the accuracy and consistency of these results. 

We now make a few comments regarding the data from 
Table 2. First, note that the Gaussian blur parameters in- 
dicate more blur in the z 2  (horizontal) direction than in the 
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True 
Estimated 

6.2 I 0.9 1.8 I 40 00 
6.20 I 0 932 1 81 I 40.25 

True I 6.2 I 0.9 I 1.8 I 15.00 
Estimated I 6.94 I 0.764 I 1.63 I 15.58 

Table 1. Some results for artificial images. SNR is given by 
10loglo(.;/.:,. 

True I 6.2 I 0.9 I 1.8 
Estimated I 6.21 I 0.961 I 1.91 shown from left to right. 

20.00 
20.53 

Table 2. Results for the real data shown in Fig. 2. 

Autofocus 0.547 0.489 0.754 
Small Defocus 1.24 1.2 1 2.17 
Large Defocus 2.52 2.07 4.52 

z1 (vertical) direction. This result, initially unexpected, was 
consistent with the observed image DFT, which indicated a 
stronger lowpass nature in the horizontal direction. We ad- 
ditionally note the low SNRs estimated for the defocused 
images with respect to the autofocus image. The unexpect- 
edly low SNRs were evident when the captured images were 
qualitatively examined and were consistent across different 
images. At present time, the cause of these low SNRs is not 
hlly understood. We suspect that low contrast, along with 
defocus and illumination variation, contribute to the prob- 
lem. We hope to address the issue by employing a gradient 
bar and a uniform gray bar in the target image - as men- 
tioned at the end of Section 4 - to estimate and correct con- 
trast modification and illumination variation, respectively. 

41.44 
16.44 
18.47 

ification as well as illumination variation. 
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