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Why do R&D of RABiTS™ Substrates?

Answer:  To address “R&D Needs/Knowledge 
Gaps” identified in the DOE Roadmap (8/03).

Needs/Gaps addressed in this project include:

• To understand microstructural factors affecting Jc
• To develop rolling technology and tools to produce 

long, wide substrates
• To understand the interfaces between epitaxial layers
• To develop non-Ni substrates
• To study grain boundaries
• To develop methods to characterize physical properties
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Objective: To explore fundamental issues of the 
RABiTS process and to advance the technology to 
enable commercial fabrication of YBCO/RABiTS

Approach: To focus on the two main steps of the 
RABiTS process – fabrication of textured metal and 
deposition of buffer layers and to address issues 
identified as important by our industrial partners and 
the broader technical community

Objective and Approach
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1. Develop robust buffers on ORNL Ni-3at%W substrates in reel-to-reel 
configurations.

2. Utilize the ORNL rolling mill with clean room facility to develop substrates.  
Support industrial partners with rolling activities. Develop with outside vendors 
better starting coils.

3. Continue magnetization studies for a better understanding of AC loss 
contributions from the alloy substrates.

4. Fabricate long lengths of Cu-based substrates and develop fully-conductive buffer 
architectures.

5. Perform percolation calculations using experimentally achievable texture in 
RABiTS, both in self-field and applied field.

6. Resolve the in-plane and out-of-plane misorientations from the total 
misorientation angle and relate this to critical current density.

7. Develop further solution buffers and fabricate double-sided RABiTS.

Specific Objectives/Milestones



5

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

Presentation Outline

• FY 2004 Results
Reel-to-reel buffer layer development on Ni-3at%W
substrates                     (Fred)

Development of ORNL Rolling facility with clean room (Amit)
AC losses from alloy substrates
Development of Cu-based, conductive RABiTS
Development of Ni-based, non-magnetic RABiTS
Percolation calculations in applied fields
Separation of in-plane and out-of plane misorientations
Enhancement of intragranular-Jc

Development of solution buffers                                 (Parans)

• FY 2004 Performance and FY 2005 Plans (Parans)
• Research Integration
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Objective 1: Reel-to-reel buffer layer development
on Ni-3at%W substrates

Fact: Over 1km of Ni-3at%W substrate was successfully fabricated
in FY03 with ~100% cube texture and sharp in-plane and out-of-plane texture.

Problem: Frequent delamination of standard buffers, Y2O3/YSZ/CeO2,
was observed for this powder metallurgy derived ORNL Ni-W substrate.

Question:  Why do ORNL buffers delaminate while AMSC buffers don’t?

In contrast: American Superconductor Corp. has observed NO delamination 
on Ni-W substrates.  However, their substrates are from coils derived with 

vacuum melting and undergo different subsequent processing.

FY’04 Challenge: Identify and eliminate the cause of delamination of buffer 
layers on well-textured ORNL Ni-W substrate.

Numerous causes were explored in FY’04 including:
- buffer layer related (porosity, stoichiometry) /
- substrate related (carbon content, thermal history) ☺
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Heat treatment of Ni/W substrates has been studied
by thermal desorption spectroscopy (TDS)

TDS System
Base pressure:  ~5 x 10-8 Torr

Sample Heating: Resistive 
Gases: H2O, O2, H2

RGA

Ni/W Substrate
Thermocouple

RGA
(Differentially

Pumped)
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CO desorption from Ni-3%W involves
oxygen and a depletable source of carbon.
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Good agreement of a 1-D diffusion model with 
the CO desorption data is obtained.

Experiment
T = 800°C

Model
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Carbon removal from Ni/W tape can be determined 
by integration of the CO desorption flux.

• Amt. of  carbon removed
is independent of PO2.

T = 800°C

T = 800°C

( )
D

d 2

2

Removal limited by
carbon diffusion

Removal limited by
oxygen supply• C removal is nearly 100%

LECO carbon analysis
581 at. ppm before

21 at. ppm after (b.g.)
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Carbon depletion on lengths of Ni-3%W 
gives high Ic/Jc and no buffer delamination.

• Low levels of carbon (<600 
at. ppm) can contribute to 
buffer delamination.

• Carbon removal is simple, 
rapid, and predictable.

No C-depletion

Severe delamination

Jc = 0

C-depleted

(850°C, 30 min, 5x10-6 Torr O2)

No delamination

Jc = 1.2 MA/cm2 – E-B precursor (ORNL)

Jc = 1.7 MA/cm2 – MOD precursor (AMSC)

Jc = 1.2 MA/cm2 – MOCVD in situ (MetOx)

Problem solved !
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Presentation Outline

• FY 2004 Results
Reel-to-reel buffer layer development on Ni-3at%W
substrates                                     (Fred)

Development of ORNL Rolling facility with clean room            (Amit)
AC losses from alloy substrates
Development of Cu-based, conductive RABiTS
Development of Ni-based, non-magnetic RABiTS
Percolation calculations in applied fields
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Objective 2: Development of Rolling Mill Facility at ORNL

July 18, 2003

- Water sprinkler system on roof (very expensive)
- Installed a pressure differential sensor
- particle count detector, telephone inside clean room



Operation done in a class 1000 clean room

Safety Shield at each end

Motorized interleaf paper
recoiler

AMSC staff using the 
rolling facility
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Top surface was
frosty

Ave. roughness = 30 nm

Bottom surface
was scratched

Ave. roughness = 10 nm

Fixing the bottom surface was easy

Goal was to fabricate wide area substrates for 
American Superconductor’s scale-up efforts

- AMSC interested in high rolling speeds for high throughput
- Significant problems were encountered initially
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Modifications to the mill were made and lubricant viscosity was 
experimented with to obtain a smooth top surface

Work rollsTension rolls Work rollsTension rolls

AMSC personnel visit ORNL on a 
regular basis to roll wide area NiW 
substrates for scale-up efforts and 

this has been the primary activity of 
the mill this year.

As rolled surfaces are smooth 
and require no polishing

Experiments with changing 
lubricant viscosity 

were done
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Objective 3: Continue magnetization studies aimed at a better 
understanding of AC loss contribution from the alloy substrates
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Ferromagnetic losses in low alloy content 
substrates are an extrinsic as opposed to 
an intrinsic property
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Materials Preparation:
VC = vacuum cast
PM = Powder metallurgy
CA = Cut and anneal
AC = Anneal and cut

� loss tends to decrease as W-content x increases, and 
� loss decreases for alloys annealed at higher temperatures (PM materials).
� loss increases significantly with cutting/slitting; also bending deformation

ac losses in cube-textured Ni-W substrates

For Io/Ic in the range of 0.6-0.8, the 
FM loss is about 4-10% of the total 
loss for bending strains of 0.4%
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ac losses in cube-textured Ni-W substrates

Use of a non-magnetic substrate is desired for 
applications in AC fields
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This is important for specialized applications of coated 
conductors, such as airborne generators and devices, having 

operating frequencies well above the usual 50-60 Hz of the 
electric power grid
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ac loss decreases significantly when dc bias field 
saturates the Ni-alloy substrate

This is important for certain applications where 
superpositioning of ac and dc fields can occur such as 

in the stator of a motor
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Reel-to-reel rolling of vacuum cast derived, non-magnetic, 
Ni-13at%Cr coil has been accomplished in FY04

FWHM ∆φ = 6.0 (True Phi)
FWHM ∆ω = 6.25, 4.5

0.05

0.12

0.29

0.69

1.64

3.90

9.24

21.92

51.98

Ni-13at%Cr (111), log-scale 
pole figure ~100% cube

BUFFER LAYER OPTIONS

1) Ni-13%Cr/Pd/MgO/LMO
Jc ~ 3 MA/cm2 @ 77 K, sf

2) Ni-Cr-W/TiN/MgO/LMO/CeO2
Jc ~ 1.8 MA/cm2 @ 77 K, sf
Ex-situ 0.8 µm YBCO

3) Ni-13atCr/Ni-9at%W
with Y2O3/YSZ/CeO2

Standard buffer stack

Texturing of non-magnetic 
NiW alloy is in development
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Jc of 1.8 MA/cm2 was obtained for a 0.8 µm
MOD YBCO on Ni-Cr-W/TiN/MgO/LMO/CeO2

LaMnO3  200 nm

Ni-Cr-W 

TiN 70 nm
MgO 50 nm 

CeO2

TiN, MgO, LMO grown by PLD

TiN/NiCrW

TiN/MgO/LMO/CeO2 stack is an effective buffer layer 
architecture for the non-magnetic, Cr containing alloys
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Scan through (200)
peak over a meter

Reel-to-reel deposition of Ni-9at%W coatings on substrates 
followed by epitaxial growth of standard buffer layers

Distance along tape (cm)

2Theta (deg)

(111) Pole figure

5.516.435.443.90CeO2

5.616.655.854.23YSZ

5.146.185.753.94Y2O3

∆φ
True

∆φ
Meas.

∆ω
φ=90

∆ω
φ=0

Jc = 2.4 MA/cm2 by AMSC for a 
0.8µm thick YBCO layer

Standard oxide buffer stack will be compatible with a 
textured non-magnetic Ni-W substrate

6.55.180
6.75.260
6.65.240
6.65.220
∆φ FWHM∆ω FWHMPosition
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0.04

0.09

0.20

0.48

1.14

2.71

6.43

15.24

36.15

1 km of 1 cm wide Cu substrate fabricated

Cu(111) log-scale pole figure
~100% cube

FWHM ∆φ = 4.0 (True Phi)
FWHM ∆ω = 6.9, 5.2

Objective 4: Long lengths of sharply textured Cu substrates have been 
fabricated and all conductive architecture have been developed
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All Conducting buffer layer development

Conducting seed layer, preferably having a conductive native oxide is desirable

Iridium is a good choice

CeO2, Y2O3, YSZ ~ 10-8-10-10

Oxygen diff. 
(cm2/sec) 800 °CMaterial

5 x 10-12Ir (< 5 µΩ cm)

6 x 10-15IrO2 (< 50 µΩ cm)

Ni-W

YSZ (250 nm)
CeO2 (20nm)

Iridium
LSMO

YBCO

5 x 10-15 

cm2/secLa0.7Sr0.3MnO3
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- Excellent electrical coupling among the individual layers
- TEM shows clean interface between NiW and Ir

Jc (0.2 µm) = 2.2 MA/cm2

Jc (1 µm) = 1.0 MA/cm2
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Jc(77K, 0T) ~ 1x106 A/cm2

Cu(50 µm)

YSZ (250 nm)
CeO2 (20nm)

Iridium (50 nm)
LSMO (400 nm)

YBCO (0.2 µm)

ρnet -T shows good electrical
coupling among the individual layers

PLDPLD--YBCO(0.2 YBCO(0.2 µµm)/LSMO/Ir/Cu:m)/LSMO/Ir/Cu: A Fully Conductive A Fully Conductive 
Architecture is Obtained on CuArchitecture is Obtained on Cu
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Objective 5: Perform percolation calculations using experimentally 
achievable texture in RABiTS, both in self-field and applied field

c)
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Assignment of orientations

G.B. misorientations

Calculate GB misorientations

Calculate Jc based on Jc vs Θ

In FY 03 a new model for percolative current flow was proposed
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In FY04, current-flow modeling has been extended 
to calculation in applied fields
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Dependence of Jc on width in applied field 
is significantly reduced as expected
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∆φ = 4.3°
∆ω = 5.29°; 8.37°

∆φ = 3.9°
∆ω = 4.7°; 7.0°

∆φ = 4.9°
∆ω = 4.0°; 5.1°

∆φ = 4.8°
∆ω = 4.0°; 5.2°

∆φ = 4.0°
∆ω = 4.77°; 7.3°

∆φ = 4.5°
∆ω = 5.37°; 8.26°

Jc = 3.3 MA/cm2

Ic = 260 A
Jc = 3.4 MA/cm2

Ic = 270 A

April, 2004

Jc = 4.3 MA/cm2

Ic = 344 A

FWHM of ∆φ ~ 1-2°

YBCO/CeO2/SC YSZ

The presently achievable in-plane texture of ~5° FWHM 
supports 70-80% of single crystal Jc for YBCO/RABiTS

The grain boundary misorientation distribution is 
significantly different for ∆φ of 5° vs 10° FWHM

NiW

Buffer

YBCO

YBCO on CeO2/YSZ/Y2O3/NiW
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Dependence of Jc on width is significantly 
reduced with sharper FWHM even in self-field
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With sharper FWHM, in applied fields, the
dependence of Jc on width is insignificant

This implies that Jc “pinch-off” in long RABiTS is NOT 
an issue and that subdivision of a RABiTS conductor 

into narrow filaments should be possible
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Objective 6: Separation of in-plane and out-of-plane 
misorientations from total misorientation

Separation of in-plane and out-of-plane misorientation components from
the total misorientation as measured for example by EBKP has been a
goal for over 10 years

Has been difficult for two main reasons:

1) Euler space which is normally used to represent orientations is highly 
non-linear thereby making any projections difficult

2) Calculation of misorientation results in loss of information pertaining to 
the specimen co-ordinate system again making projections impossible

Separation of in-plane and out-of-plane misorientation components from
the total misorientation was made possible in FY04 by manipulations in
Rodrigues Space using a misorientation difference vector



35

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

In-plane Out-of-plane

100 µm 100 µm

Total grain boundary misorientation was separated into in-plane and 
out-of-plane contributions using manipulations in Rodrigues space

Total misorientation

100 µm

EBKP data from the CeO2 layer and all GB’s greater than 1° shown

200 nm

Ni

YSZ (230 nm)

Y2O3 (68 nm)

CeO2 (30 nm)

GB, Θ = 8.5°

GB’s with only out-of-plane tilts 
have been observed in TEM
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Grain boundary maps drawn with all GB’s greater than 
4° show that in-plane misorientation is determining Jc

Total misorientation In-plane Out-of-plane

At most locations ~ 70-80% of substrate 
is single crystal-like w.r.t. in-plane texture

[100]

[010]

100 µm 100 µm 100 µm
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Observations are consistent with Dimos et al.’s work

Ref: Dimos et al., Phys. Rev.B, 41, 4038 (1990)

Pure (100) tilt,
No (001) tilt

1.3 MA/cm2

2.8 MA/cm2

Jc correlates well with GB maps corresponding to the in-
plane texture in state-of-the art RABiTS and that 70-80% 
of single-crystal Jc is consistent with these GB maps
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Intragranular Jc can be significantly enhanced by 
incorporation of self-aligned nanodots in YBCO on RABiTS

Significant enhancement
in Jc is observed
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Cross-section TEM of YBCO/RABiTS
Plan view TEM of YBCO/RABiTS

TEM of self-aligned nanodots in YBCO on RABiTS

Matching field ~ 8-10T



Pinning by 211 nano-particles in 
211/123 multilayer films on RABiTS
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“Island growth of Y2BaCuO5 nanoparticles in 
(211~1.5nm/123~10 nm)xN composite multilayer structures 
to enhance flux pinning of YBa2Cu3O7-δ films”, T. Haugan, 
P. N. Barnes I. Maartense, C. B. Cobb, E. J. Lee, M. Sumption, 
J. Mater. Res. 18, 2618 (2003) - Nov. issue.

Particle Density ~ 3x1011 cm-2

20 nm
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In summary, significant improvements in the intra-granular 
properties was shown possible for YBCO films on RABiTS
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Presentation Outline

• FY 2004 Results
Reel-to-reel buffer layer development on Ni-3at%W
substrates                                     (Fred)

Development of ORNL Rolling facility with clean room            (Amit)
AC losses from alloy substrates
Development of Cu-based, conductive RABiTS
Development of Ni-based, non-magnetic RABiTS
Percolation calculations in applied fields
Separation of in-plane and out-of plane misorientations
Enhancement of intragranular-Jc

Development of solution buffers                                 (Parans)

• FY 2004 Performance and FY 2005 Plans (Parans)
• Research Integration
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Objective 7: Development of low-cost, all-solution buffer layers
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FY04 Results: First two-layer all-MOD buffer for a low-cost RABiTS 
process; 140 A/cm-width (77K,sf) performance demonstrated

NiNi--W 3% (ORNL)W 3% (ORNL)

MOD LZO (120 nm) MOD LZO (120 nm) 
(ORNL)(ORNL)

MOD CeOMOD CeO22 (60 nm)(60 nm)
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Potential route towards fabrication of lower-cost YBCO coated conductors

10 20 30 40 50 60

(007)

(006)

(005)

(004)

(003)

  

Ni (200)

(002)

In
te

ns
ity

 (a
rb

.u
.)

2θ (deg.)

0 50 100 150 200

0

2

4

6

8

10

V
 (
µv

ol
t)

I (A)

77 K & s.f.
Ic = 140 A
Jc = 1.75 MA/cm2



47

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

Objective 7: Fabrication of double sided RABiTS with solution seeds
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Due to reduced funding, we could not modify our equipment to
sputter buffers through non-contact heating, improve the 
buffer microstructure, and hence YBCO with low Jcs were obtained



48

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

FY 2004 Plans and FY 2004 Plans and PerformancePerformance
FY2004 Plans

• Develop reel-to-reel buffer layers 
on PM-derived NiW substrates

FY2004 Performance
9 A major cause for delamination in 

PM derived NiW substrates was 
identified, understood and 
delamination has been eliminated

9 Robust buffer layers on PM derived 
NiW substrates in reel-to-reel 
configurations were developed

9 Buffer layer morphology was 
optimized with respect to columnar 
porosity in the YSZ and Y2O3 layers

9 High critical currents were 
demonstrated using substrate 
processing
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FY 2004 Plans and FY 2004 Plans and PerformancePerformance
FY2004 Plans

• Develop rolling mill facility with 
clean room 

• Support CRADA partners in the 
area of substrate fabrication

• Fabricate sharply textured 
substrates with smooth surfaces

• Work with outside vendors to 
obtain improved starting coils 

FY2004 Performance
9 Installation of rolling mill facility 

with a class 1000 clean room was 
completed and made the mill was 
made fully operational

9 American Superconductor 
Corporation has used this facility 
on a routine basis for fabrication of 
wide substrates – materials from 
this facility are used for scale-up 
research on wide web processing

9 Long lengths of sharply textured 
substrates have been fabricated

,Work with outside vendors for 
improving starting coils was done 
on a limited basis due to reduced 
funding



50

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

FY 2004 Plans and PerformanceFY 2004 Plans and Performance

FY2004 Plans
• Perform magnetization studies 

aimed at a better understanding 
of ac loss contribution from alloy 
substrates

FY2004 Performance
9 Performed a detailed study of ac 

losses from NiW substrates derived 
from vacuum casting and powder 
metallurgy routes

9 Showed that ac losses are an 
extrinsic property of the substrates 
and depend on operations such 
cutting and/or slitting

9 ac FM losses/cycle were found to 
be independent of ac frequency for 
100’s of Hz

9 ac FM losses were found to 
decrease significantly when a dc 
bias field saturates the alloy 
substrate
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FY 2004 Plans and FY 2004 Plans and PerformancePerformance
FY2004 Plans

• Fabricate long lengths of Cu-
based RABiTS with good texture 
and smooth surfaces

• Develop all-conductive buffer 
stack for Cu-based substrates

• Develop compatible buffer layer 
architectures for non-magnetic 
substrates

FY2004 Performance
9 Kilometer long, 1 cm wide, Cu 

substrate was rolled at ORNL
9 Sharp textures of  ~4° in-plane true 

phi with ~ 100% cube texture was 
obtained

9 A promising all conductive buffer 
stack of Ir/LSMO was identified

9 Several options for buffer layers on 
Cr containing non-magnetic alloy 
substrates were identified –
Pd/MgO/LMO or TiN/MgO/LMO

9 A Ni-9at%W coating which has 
minimal contribution to ac FM 
losses was developed for both Cu 
and Ni-based substrates

9 Epitaxy of standard buffers on Ni-
9at%W surfaces was demonstrated
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FY 2004 Plans and FY 2004 Plans and PerformancePerformance
FY2004 Plans

• Perform percolation calculations 
in applied fields

• Perform percolation calculations 
using presently achievable texture 
in RABiTS

FY2004 Performance
9 Percolation calculations in the 

presence of applied fields show a 
diminished dependence of Jc on 
width for long conductors

9 Percolation calculations using the 
presently achievable texture of ~5°
FWHM, show a greatly reduced
dependence of Jc on width for long 
conductors

9 Percolation calculations using the 
presently achievable texture of ~5°
FWHM in the presence of applied 
fields, show a negligible dependence 
of Jc on width for long conductors

9 Results point to feasibility of sub-
dividing conductor into narrow 
filaments to reduce ac losses
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FY 2004 Plans and FY 2004 Plans and PerformancePerformance
FY2004 Plans

• Separate in-plane and out-of-
plane misorientation components 
from the total misorientation at a 
grain boundary

• Relate misorientation to Jc

FY2004 Performance
9 Separation of total misorientation 

into in-plane and out-of-plane 
components was made possible for 
the first time using manipulations in 
Rodrigues space

9 In RABiTS substrates which can 
support a YBCO conductor with 
~70-80% of the Jc of a single 
crystal, GB maps show that Jc

correlates best with in-plane 
misorientation

9 GB maps again point to feasibility 
of sub-dividing conductor into 
narrow filaments to reduce ac 
losses
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FY 2004 Plans and FY 2004 Plans and PerformancePerformance
FY2004 Plans

• Improve intragranular-Jc for YBCO 
films on RABiTS

• Demonstrate double-side, fully 
buffered RABiTS

• Further develop solution-based 
buffer layers

FY2004 Performance
9 Significant enhancement of the 

intragranular-Jc was demonstrated 
for YBCO films on RABiTS

9 Self-aligned nanodots along the c-
direction of YBCO similar to 
discontinuous heavy ion-irradiation 
tracks were demonstrated for the 
first time.  Significant enhancement 
in the in-field Jc and the angular 
dependence was achieved

9 Double sided buffered RABiTS with 
good texture was fabricated

9 An Ic of 140 A/cm corresponding to a 
Jc of 1.75 MA/cm2 was demonstrated 
for 0.8 µm thick YBCO film by ALL-
SOLUTION processing
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FY2005 Plans
Metal/Alloy development:
- Work with outside vendors to obtain improved coils with 

reduced defects
- Research and develop long lengths of powder metallurgy 

derived Ni-(5-9.5)at%W substrates and transfer of technology to 
industry 

- Study texture development of non-magnetic Ni-W substrates via  
vacuum casting derived coils

- Research and develop, strengthened and conductive Cu-based 
substrates with good texture

Texture and percolation:
- Develop methods aimed at separating the a-axis and c-axis tilt 

components from the total misorientation measured in EBKP for 
materials with lower symmetry such as YBCO

- Relate Jc to measured GB maps in laser-scribed samples and 
experimentally demonstrate filament sub-division to reduce 
hysteretic losses
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FY2005 Plans
Buffer layer development:

- Develop conditions for standard buffer layer deposition in reel-
to-reel configurations for higher W containing Ni-based 
substrates

- Use thermal desorption spectroscopy to study evolution of 
gases from higher W containing Ni-based substrates for 
prevention of buffer delamination 

- Develop improved buffer architectures which reduce oxygen 
diffusion to the metal/alloy substrate

- Further develop conductive architectures for Cu-based which 
can support a high-Jc, thick YBCO

- Further develop high rate processes for buffer layer 
depositions, such as solution or reactive sputtering
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Research Integration: Interactions with Companies

• American Superconductor Corporation (AMSC)
- Have a CRADA with AMSC and work on substrates is a significant 

component of the CRADA
- A majority of wide area substrates for scale-up studies at AMSC were 

rolled in the ORNL rolling mill facility with clean room

• MetOX
- Provided both textured alloy as well as buffered RABiTS substrates for 

growth of YBCO

• Oxford Superconducting Technology (OST)
- Continue to collaborate on metal templates

• Ametek Corporation - Developing fabrication of starting coils
• Hamilton Precision Metals - Developing rolling & slitting process for coil
• Flowserve Corporation - Development of vacuum cast starting materials
• Several other proprietary vendor companies
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Good Jc’s have been obtained using
MetOx R2R MOCVD YBCO on ORNL RABiTS
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• Houston-based small business company to produce YBCO coated 
conductors.

• Has proprietary high-rate MOCVD technology for buffers and YBCO 
growth.

• Collaboration status:
– Technical plan has been agreed upon,  CRADA negotiation in process,
– Initial evaluation of MetOx R2R MOCVD YBCO (non-optimized) on ORNL 

RABiTS yielded good YBCO texture: ∆ω ~ 3°; ∆φ ~ 5.5-7.5°

For YBCO < 1 µm:
Ic (max) = 73 A
Jc (max) =1.2 MA/cm2

MetOx

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY
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Research Integration: Interactions with universities

Close collaboration with the following universities:

• University of Cambridge: Noel Rutter

• Washington State University: David Field

• University of Tennessee: Tolga Aytug, S. Sathyamurthy

• University of Tennessee: J. R. Thompson / H. Weinstock 
(AFOSR)

• University of Houston: K. Salama / H. Weinstock (AFOSR)

• University of Florida: D. P. Norton / H. Weinstock (AFOSR)

Acknowledge the support of DOE: LSTDP and RAMS programs
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Research Integration: Interactions with universities

Have provided substrates and/or YBCO/RABiTS to the 
following:

• University of Houston: Alex Ignatiev
• U. of Cincinnati: Donglu Shi
• University of Kansas: Judy Wu
• University of Missouri-Rolla: Jay Switzer
• North Carolina State University: J. Narayan
• California State University: Chuhee Kwon
• University of California at Santa Barbara: Fred Lange
• University of Wisconsin, Madison: Eric Hellstrom

Universities with arrows – close interaction as a 
collaborator on DOE University funded project
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Research Integration: Interactions with national 
laboratories

Have provided substrates and/or YBCO/RABiTS to the following:

• NIST: N. Cheggour, J. Ekin, W. Wong
• SNL: P. Clem, M. Siegel
• NREL: R. Bhattacharya
• AFRL: T. Haugan, P. Barnes

Developed LaMnO3 buffers for IBAD-MgO from Research Park
• LANL: V. Matias

Communications:
• Many publications
• Numerous presentations
• Several patents issued as well as filed
• Information also dispersed via regular CRADA 

teleconferences/meetings/annual reports
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Extras
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Numerous potential causes for delamination
have been explored throughout FY04

A. Porous/columnar grain morphologies
• Thicker Y2O3 and a higher rate YSZ deposition give 

rise to more porous/columnar film morphologies.

B. Oxygen non-stoichiometry of buffer layers
• CeO2 cap layer can become oxygen deficient when 

the precursor is deposited in low PO2.

C. Carbon oxidation at the metal/oxide interface
• CO desorption is observed for vacuum annealed Ni-

3%W when heated in low PO2. 



64

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

A. Modified processing leads to
improved buffer morphologies, but ...

100 nmNi-W

Porosity in
800Å Y2O3 & 0.5Å/s YSZ

“Standard” Buffer

Thinner Y2O3
(150Å)

No porosity in Y2O3, YSZ & 
CeO2

Slower YSZ
(0.2Å/s)

No porosity in
YSZ & CeO2

… delamination persists!
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B. Higher PO2 during precursor deposition
preserves the CeO2 stoichiometry, but…
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