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Relevance to DOE Superconductivity 
Program and Technical Targets

“R&D Needs/Knowledge gaps” identified in the 
DOE Coated Conductor Technology Development 
Roadmap and addressed in this project:

• Developing solution-based buffers
• Development of an all conducting buffer architecture
• Non-Ni substrate development
• Understanding interfaces between epitaxial layers
• Understanding of microstructural factors affecting 

critical current density
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Specific Objectives/Milestones

Develop all solution buffer architectures that are compatible with MOD TFA 
YBCO 
- Achieve over 200 A/cm-w on solution LZO seeds
- Extend to 4-cm-wide substrates

Continue fundamental studies of epitaxial growth of both PVD and solution 
buffers on textured substrates, including copper and copper alloys.

For copper-based substrates, develop a fully conductive architecture.
Achieve high-Ic YBCO films on Cu or Cu-alloy templates by in-situ or 
ex-situ approach.

Enhance flux-pinning in YBCO films on RABiTS through
growth-controlled pinning centers



OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

Research Integration (scoring criterion)

Two Research Assistant Professors working 
full time at ORNL

- Tolga Aytug

- S. Sathyamurthy (Watson)

Close Collaboration with University of Tennessee
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Presentation Outline

• FY 2004 Results

Solution-based buffer layers                                     (Watson)

Development of all conducting buffer layers (Tolga)

Incorporation of pinning centers in YBCO films on RABiTS (Amit)

Status of Cu-based substrates (Amit)

• FY 2004 Performance and FY 2005 Plans (Amit)

• Research Integration
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Solution Based Buffer Layers

Deposition Methods:
•YBCO: ex-situ BaF2 (or TFA) 
•YSZ and CeO2 : rf sputtering 
•Y2O3: e-beam

GOALS 
• Simplified buffer architecture
• Potentially lower cost
• Faster deposition
• Compatible with ex-situ BaF2

(or TFA)

Materials under consideration
La2Zr2O7 (LZO) and CeO2

NiW

YBCO 

Y2O3

YSZ
CeO2

NiW
Solution Buffers

YBCO
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Solution Buffer Layer Development

• Epitaxial LZO with smooth surface can be grown 
directly on textured Ni-W substrates

• 20 – 100 nm/coat; highly reproducible
• Pursued reel-to-reel dip-coating for 

double sided conductors
SEM LZO surface

AFM LZO surface

Ra = 1.8 nmRa = 1.8 nm
µm

µm
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Scintag PAD X

Buhler HDK 2.3
Pt20%Rh Strip heater

Nucleation and Growth Kinetics of sol-gel LZO films on Ni-W substrates

LZO (222)

LZO (004)
850°C

Ti
m

e (
h)

24 h

• Extended hold at low temperatures 
leads to nucleation and growth of 
random polycrystalline LZO
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Epitaxial LZO films can be processed at high rates at high temperatures

1050°CLZO (222)

LZO (004)

Time (min.)

1 h
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Thick LZO films with good surface crystallinity and 
smooth surface can be processed at high rates
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100 nm LZO films processed at 1100oC for different times

Ra = 0.75 nm

Ra = 1.8 nm

Ra = 2.6 nm
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Milestone met : Ic > 200 A/cm achieved on 
solution seed layers
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CeO2(sputtered)
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Effect of LZO thickness for high Jc YBCO
2 MA/cm2 Benchmark Jc value for 0.2 µm YBCO on 
similar substrates using any buffer architecture

Thicker LZO layers may be needed 
for high Ic thick YBCO films
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Thick YBCO process window
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 LZO (120 nm)
 LZO (160 nm)
 STD (300 nm)

Thicker LZO film protects the nickel from 
extensive oxidation

Samples Used :
LZO (120nm)/NiW
LZO (160nm)/NiW
CeO2/YSZ/Y2O3/NiW (Standard 

RABiTS– 300nm)

Wet Ar-180ppm O2

Dry Ar-
180ppm O2

Time = 1h, 3h, or 6h
740oC

Time
10 µm

LZO (120 nm) after 6 h
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MOD approach gives epitaxial CeO2 with smooth 
surface, dense microstructure, and improved texture

200 nm

Ra = 3 nm
10 x 10 µm

Texture
∆ω ∆φ

CeO2 4.7o 7.4o

NiW 5.2o 7.4o

1000°C

• Process time <15 mins at temperatures >1000oC

Time (mins)

CeO2 (111)
CeO2 (002)
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LZO   (004)

CeO2 (111)
LZO   (222)

Solution CeO2 with good texture and smooth 
surface deposited on LZO/NiW

• Effect of annealing treatments

As-grown
Ra 2.9 nm

10 µm x 10 µm

700 °C/N2/1h
Ra 7.3 nm

10 µm x 10 µm

Ar/4%H2/700 °C/1h
Ra 3.4 nm

10 µm x 10 µm

Ar/10%H2/700 °C/1h
Ra 2.3 nm

10 µm x 10 µm
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SIMS studies on all-solution buffer architecture 
shows Ni diffusion is blocked successfully
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Ic of 140 A/cm demonstrated for the first time for 
solution YBCO on all-solution buffers

77K, SF:  Jc = 1.75 MA/cm2, Ic = 140 A/cm

Ni-3%W

Sol-gel LZO (120 nm)
ORNL

MOD CeO2 (60 nm)
AMSC

MOD YBCO (0.8 µm)
AMSC
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• Demonstrated Ic = 140 A/cm-w using all solution conductors 
YBCO (0.8 µm – MOD) / CeO2 (60 nm - MOD) / LZO (120 nm – sol-gel) / Ni-W

• Demonstrated Ic = 213 A/cm-w using solution LZO seed 
layers - YBCO (0.8 µm – MOD)/ CeO2 (sputt.) / YSZ (sputt.) / LZO (80 nm) / Ni-W

Summary

• Epitaxial LZO films with smooth surface can be grown 
by sol-gel processing

• Solution LZO > 80 nm is effective in stopping Ni diffusion

• Solution CeO2 can be grown on solution LZO with good 
texture and smooth surface
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Presentation Outline

• FY 2004 Results

Solution-based buffer layers                                     (Watson)

Development of all conducting buffer layers (Tolga)

Incorporation of pinning centers in YBCO films on RABiTS (Amit)

Status of Cu-based substrates (Amit)

• FY 2004 Performance and FY 2005 Plans (Amit)

• Research Integration
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Development of Conductive Buffer Layers for Development of Conductive Buffer Layers for 
RABiTSRABiTS--based Coated Conductorsbased Coated Conductors

Approach:Approach:
● Identify issues & develop a proof-of-principle conductive buffer architecture     

on Ni-3at.%W substrates
● Use understanding achieved from the Ni-alloy tapes to apply the same

approach on pure textured Cu substrates

Project Objective:Project Objective:
Develop multifunctional electrically conductive buffer layers for advanced
coated conductors

Motivation for CuMotivation for Cu--based substrates:based substrates:
● Non-magnetic (no ferromagnetic ac-losses)
● Lower cost (commodity prices a factor of 4-6 less than Ni)
● High thermal conductivity
● High electrical conductivity 

Electrical self-stabilization
Substantial improvement in JE
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Ni

CeO2 (20nm)
LaNiO3

SrRuO3

YBCO

Cu

CeO2 (20nm)

Ni
La0.7Sr0.3MnO3

YBCO

Ni

YBCO

La0.7Sr0.3MnO3

Cu

YBCO

La0.7Sr0.3MnO3

Development of Conducting Buffer Layers are Development of Conducting Buffer Layers are 
Challenging due to the Oxidation of the SubstrateChallenging due to the Oxidation of the Substrate

Electrical coupling degrades due to interfacial NiO or Cu-O formation

Previous work on conductive buffer architectures:

For applications, need Ri < 10-7 Ω-cm2
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interfacial resistance

(effective Ri ~ 1 x 10-5 Ω-cm2)

Jc (77 K,0 T) = 2.3 x 106 A/cm2
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Oxygen Diffusion Barrier Needed for YBCO DepositionOxygen Diffusion Barrier Needed for YBCO Deposition

fcc (Ir)

Ir

Conducting seed layer, preferably having a conductive native oxide is desirable

Rutile (IrO2)

Ir

O

Conductive metal [ρ (RT) < 5 µΩ cm)]
Non-magnetic
Cubic, close lattice match to YBCO (ao = 3.84 Å)
High density = 22.4 g/cc & Melting point= 2716 K

Conductive oxide [ρ (RT) < 50 µΩ cm)]
Tetragonal, lattice parameter (ao = 4.49 Å)

Main use in industry
Oxygen stable electrodes
in corrosive environments

6 x 10-10Y2O3

6 x 10-15IrO2

5 x 10-12Ir

2 x 10-8YSZ

7.7 X 10-15LaMnO3

5 x 10-15La0.7Sr0.3MnO3

6 x 10-9CeO2

8 x 10-22MgO

Oxygen diffusion 
(cm2/sec) 800 °CMaterial

Oxygen diffusion coefficients
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PostPost--annealing Studies in Simulated YBCO Dep. Conditionsannealing Studies in Simulated YBCO Dep. Conditions
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Ir has much lower
residual resistivity
than Ni-W

10 µm

Before YBCO annealBefore YBCO anneal

As suggested by thermodynamic stability consideration:
● XRD shows no IrO2 formation
● No NiO due to low oxygen diffusion through Ir
● ρ vs T shows complete electrical coupling

10 µm

After YBCO annealAfter YBCO anneal

T=780 oC & P(O2)= 100 mTorr, Time= 15 min.

Ni-3at.%W

Limited Jc performance, directly on Ir, is 
due to the multiple domain oriented YBCO

YBCO

Iridium (400 nm)
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Conductive Conductive LaLa0.70.7SrSr0.30.3MnOMnO33 Cap Layers Enabled Growth of Cap Layers Enabled Growth of 
HighHigh--Quality Quality PLDPLD--YBCOYBCO FilmsFilms on on IrIr/Ni/Ni--WW

Ra = 1 nm
10 x 10 µm

Ir(400 nm)/Ni-W

10 x 10 µm
Ra = 0.8 nm

LSMO/Ir/Ni-W
LSMO: 40 nm
Ir: 50 nm

Ni-W

5 x 5 µm
Ra = 2 nm

Improved surface roughness with Ir

Iridium (50-400 nm)
Ni-W

LSMO (40-300 nm)
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YBCO(1 YBCO(1 µµm)m)/LSMO/Ir/Ni/LSMO/Ir/Ni--WW

• Fully epitaxial architecture obtained
• No NiO, NiWO4, IrO2 at interface
• No other reaction phases even  
after 1µm YBCO growth

A totally insulating-oxide-free
RABiTS architecture obtained
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TEM of TEM of PLDPLD--YBCO(0.2 YBCO(0.2 µµm)/LSMO/Ir/Nim)/LSMO/Ir/Ni--WW

Ni-W[010]//Ir[010]//LSMO[010] LSMO [010] // YBCO [010]

● All interfaces are clean & sharp; no NiO & NiWO4 & no interdiffusion
● YBCO/LSMO/Ir/Ni-W layers are epitaxial & cube-on-cube oriented

LSMO

Ni-W [010] // Ir [010]
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YBCO LSMO

LSMO
Ir

Ir

Iridium

Iridium Ni-W

Mn

La

O
Sr

Ni

W

HRTEM HRTEM YBCO(0.2YBCO(0.2µµm)/LSMO/Ir/Nim)/LSMO/Ir/Ni--WW

High-resolution EDS line scans reveal:
• Absence of oxygen within the Ir, NiW & at the interface
• All interfaces clean. Ir, LSMO blocks inward oxygen diff.

Ir

NiW LSMO

Ir

Column
boundaries

YBCO

LSMO
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Prototype on NiPrototype on Ni--W:W: A fully conductive architecture is obtainedA fully conductive architecture is obtained
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Excellent electrical coupling among the individual layers
High-Jc (0.2 µm) = 2.2 x 106 A/cm2

High-Jc (1 µm) = 1 x 106 A/cm2
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Ri < 10-7 Ω-cm2
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VoltageVoltage--Current Characteristics of ConductiveCurrent Characteristics of Conductive
YBCO(0.2 YBCO(0.2 µµm)m)/LSMO/Ir/Ni/LSMO/Ir/Ni--WW StructureStructure
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Performance of Performance of inin--situsitu PLDPLD--YBCO/LSMO/YBCO/LSMO/Ir/Ni(WIr/Ni(W)) compares compares 
well with baselinewell with baseline--process process exex--situsitu BaFBaF22--YBCO/RABiTSYBCO/RABiTS

Similar Jc-d dependence for ex-situ & in-situ YBCO coatings

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5
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2.5

 PLD-YBCO/LSMO/Ir/Ni-W
 Baseline BaF2-YBCO/ORNL RABiTS

T = 77 K
H // c-axis

d-1/2

 

YBCO thickness (µm)

J c (M
A

/c
m

2 )

Ir = 50 nm
LSMO = 40 nm

Total buffer layer
thickness: 90 nm

Modified BaF2-CeO2/LSMO/Ir/NiW

Jc = 1.48 MA/cm2

Ic = 154 A/cm-width

Same Jc performance provided by thinner Ir/LSMO buffers
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EpitaxialEpitaxial LSMO/LSMO/IrIr Architecture on Pure Cu TapesArchitecture on Pure Cu Tapes

LSMO (111)

Cube % = 96.7

Ir (111)

Cube % = 98.5

Cu (111)

Cube % = 98.3

All Layers are epitaxial, cube-on-cube oriented & clean

Iridium (50nm)
Cu

LSMO (300 nm)

Cu

Extension of Extension of LSMO/LSMO/IrIr Architecture to Architecture to CuCu--based RABiTSbased RABiTS

LSMO

Ir
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PLDPLD--YBCO(0.2 YBCO(0.2 µµm)/LSMO/Ir/Cum)/LSMO/Ir/Cu:: A Fully Conductive A Fully Conductive 
Architecture is Obtained on CuArchitecture is Obtained on Cu

ρnet -T & I-V shows good electrical
coupling among the individual layers

Cu(50 µm)

YSZ (250 nm)
CeO2 (20nm)

Iridium (50 nm)
LSMO (400 nm)

YBCO (0.2 µm)
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Non optimum Non optimum JJcc performance of performance of YBCO/LSMO/YBCO/LSMO/IrIr/Cu/Cu is likely due to is likely due to 
degradation in degradation in IrIr texture and substrate surface roughnesstexture and substrate surface roughness

Ir texture degrades on Cu
due to low T= 300 oC deposition

10 x 10 µm
Ra = 1.7 nm

Cu

10 x 10 µm

Ra = 2.4 nm

Ir(50 nm)/Cu

Surface roughness also increases

10 x 10 µm
Ra = 3 nm

LSMO/Ir/Cu

Work is in progress to solve
these issues for FY-2005
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SummarySummary

● Developed a multifunctional conductive buffer layer architecture of 
La0.7Sr0.3MnO3/Ir on Ni-3at.%W & Cu substrates

A good oxygen diffusion barrier

A good metal cation diffusion barrier
Chemically stable 
Non-magnetic

● YBCO films on LSMO/Ir/Ni-W & LSMO/Ir/Cu revealed excellent  
electrical coupling to the underlying substrate

● Jc (0.2 µm) = 2.2 x 106 A/cm2 on Ni-W tapes (optimum performance)

● Jc (0.2 µm) ~ 1 x 106 A/cm2 on Cu (non-optimum performance)
Further optimization of buffer structural properties are needed
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Presentation Outline

• FY 2004 Results

Solution-based buffer layers                                     (Watson)

Development of all conducting buffer layers (Tolga)

Incorporation of pinning centers in YBCO films on RABiTS (Amit)

Status of Cu-based substrates (Amit)

• FY 2004 Performance and FY 2005 Plans (Amit)

• Research Integration
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0.04

0.09

0.20

0.48

1.14

2.71

6.43

15.24

36.15

1 km of 1 cm wide Cu substrate fabricated

Cu(111) log-scale pole figure
~100% cube

FWHM ∆φ = 4.0 (True Phi)
FWHM ∆ω = 6.9, 5.2

Long lengths of sharply textured Cu substrates were fabricated in FY04

Development of Cu-based substrates
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Development of Cu-alloy substrates

Goal: High strength, high conductivity, cube-textured alloy substrate 
with at least a yield strength of 100-150MPa and 50% IACS conductivity

Cube texture formation in Cu is 
very sensitive to impurity and alloy 
additions.

- In solid solution alloys, small 
amounts of impurities result in 
complete loss of cube texture:
5wt%Zn, 1wt%Sn, 4wt%Al, 
0.5wt%Be, 0.5wt%Cd, 
0.0025at%P, 0.3at%Sb, 1.5at%Mg, 
4.2at%Ni, 0.18at%Cd, 0.047at%As

- Small amounts of oxygen result in              
complete loss of cube texture

- Most commercial alloys of Cu are 
not made using OFHC Cu and 
hence are not suitable

Commercially available grades of
oxide dispersion strengthened, OFHC,
Cu, which is both strong and conductive,
containing 0.15-0.6wt%Al2O3 particles 
stabilize the as-rolled texture and 
prevent full recrystallization. 

OFHC Cu-Nb multifilamentary composites
which also have high strength and 
conductivity have technical problems:
-Delamination at Cu/Nb interface 
during rolling due to limited solid solubility



For the same IACS,
ppt. strengthened Cu
alloys are desirable

Directions for future Work:
Work with precipitation strengthened
alloys: achieve cube texture first then 
form precipitates for strengthening &
re-gain conductivity

Composites such as powder-in-tube 
type approach.
- ORNL’s US patent No.:6,180,570 

Laminating textured pure Cu to 
strengthened and conductive but 
un-textured Cu-alloy.
- ORNL’s US patent No.:6,375,768 

Forming a 45°-rotated cube texture in
as-rolled strengthened & conductive
Cu-alloy.
- ORNL’s US patent No.:6,740,421 

Development of Cu-alloy substrates

Level of effort will depend on available funding
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Experimental details

Textured
Ni-Alloy Substrate

Y2O3 – 50 nm
YSZ – 200 nm
CeO2 – 30 nm
YBCO – 0.2 um

• AMSC RABiTS substrate used 
in this study

• YBCO deposited using PLD
- XeCl(308nm) excimer laser

Model LPX 305
- Rep. Rate: 10-20 Hz
- Subs. Temp. = 790°C
- PO2 = 120 mTorr

• All work on RABiTS substrates

Enhanced flux-pinning in YBCO films on RABiTS
via microstructural modifications

YBCO Irradiated with 
580 MeV Sn ions

Civale et al., Phys. Rev. 
Lett. 67 (5): 648-651, 1991.

0.E+00

2.E+05

4.E+05

-30 0 30 60 90 120

Angle from H||c-axis (deg)

J c
(A

/c
m

2 )

θ

T  = 77K
B φ = 5 Tesla
1 GeV Pb-ions

H a = 3.0 T

H||c H||ab

H||ion tracks

YBCO(0.2 µm)/SrTiO3    T c= 87.4 K

Motivation: Linear defects by heavy ion irradiation

YBCO Irradiated with 
1 GeV Au ions

Christen et al., ORNL

Wheeler et al., APL, 
63 (11), 1573 (1993).
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YBCO/RABiTSYBCO/RABiTS

YBCO/LAO APB from 
surface steps, Lowndes 
et al., Phys. Rev. Lett., 
74 (1995) 2355.

YBCO/LAO APB from 
surface steps, Lowndes 
et al., Phys. Rev. Lett., 
74 (1995) 2355.
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Jc drops by a factor 
of ~12 @ 1.5T

Natural defects in films and coated conductors
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Self-aligned nanodots in YBCO/RABiTS
Driscoll et al., Nature Mat., 3 (2004) 439.

BZO

5 mol% BZO
Or 2 vol% BZO

Enhanced flux-pinning in coated conductors

Massive enhancement in pinning is obtained

Misfit discloations

5-100 nm
Modal size ~ 10nm

BZO particle size: 2-5 nm
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Pinning by self-aligned BZO nano dots & rods: Jc in low fields

.01

0.1

1

0.01 0.1 1

Undoped, Normalized, H//c
2% BZO, Normalized, H//c
1% BZO, Normalized, H//c

Field (T)

BZO doped
α ~ 0.31

Undoped
α ~ 0.5

Change in α value for Jc ~ H-α

J c
/J

c(
sf

)

J c
(M

A
/c

m
2 )



OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

0.05

0.1

0.15

0.2

0.25

0.3

-40 -20 0 20 40 60 80 100 120

Undoped normalized
2% BZO normalized

Angle (deg)

Significant improvement in the angular dependence is 
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Significant improvement is observed in YBCO + 2vol% BZO
in higher fields and lower temperatures

1000

104

105

106

107

0 5 10 15

H (kG)

40 K

65 K

77 K

Pure YBCO

YBCO + 2vol% BZO
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Angular dependence of Jc at lower 
temperatures for YBCO + 2% BZO
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increased volume % of self-aligned BZO nanodots & rods
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Phase contrast AFM shows no apparent 
segregation of particles on surface

AFM: Tapping mode AFM: Phase contrast image

Phase contrast is determined by
differences in elastic constant
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Plan view TEM for 2% BZO-YBCO films showing BZO nanodots/rods

0 10 20 30 40 50 60
0

5
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15

20

25

Defect spacing

Bφ=(No. of defects/area)*Bφ0
~(1/(a0)2)*Bφ0
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CuO planes

BaO planes

BaO planes
ZrO planes

1.5 nm

Y/BaO planes
CuO planes

ZrO planes

2 nm

Z-contrast imaging in plan view confirms BZO nanodots/rods 
in plan view TEM and shows misfit dislocations



OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

Cross-section TEM shows self-aligned nanodots everywhere in 
the film.  No large particles or disc-like particles observed

5 nm

c

Z-contrast image of BZO nanodots

BF image, g=001 (YBCO), tilted away from [010]
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BZO nanorods are also present in the sample

Cross-section TEM Plan view TEM

YBCO stacking

BaO2

BaO2

Y
CuO2

CuO2

CuO

CuO

BZO stacking

BaO
BaO
ZrO2

ZrO2

ZrO2

5 nm
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BZO nanodots are epitaxial with YBCO 

YBCO[010] // BZO[010]

YBCO[001] // BZO[001]

Formation of self-aligned nanodots and nanorods oriented along the
c-axis of YBCO is perhaps a result of the heteroepitaxial growth 

along with large lattice mismatch for minimization of energy
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Enhanced pinning is also obtained for 
1 vol% CaZrO3 and 2 vol% YSZ over pure YBCO
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Pinning by 211 nano-particles in 
211/123 multilayer films on RABiTS

(2111.6nm/1236.6nm)x35
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1.6nm
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)x35 - transport J
c

“Island growth of Y2BaCuO5 nanoparticles in 
(211~1.5nm/123~10 nm)xN composite multilayer structures 
to enhance flux pinning of YBa2Cu3O7-δ films”, T. Haugan, 
P. N. Barnes I. Maartense, C. B. Cobb, E. J. Lee, M. Sumption, 
J. Mater. Res. 18, 2618 (2003) - Nov. issue.

Particle Density ~ 3x1011 cm-2

20 nm
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Angular dependence of Jc for
211/123 multilayer films on RABiTS
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Summary

Linear defects comprised of self-aligned nanodots and nanorods oriented 
along the c-axis of epitaxial YBCO films was shown possible for the first 
time

These linear defects including the aligned misfit edge dislocations around 
the nanodots and nanorods result in significant pinning for H//c

Best properties were observed in the range of 1-2 vol% BZO in YBCO

Enhanced flux-pinning was also observed for CZO and YSZ additions

Incorporation of 211 nano-particles in YBCO on RABiTS by deposition of 
211/123 multilayers in collaboration with AFRL was also shown to result in 
enhanced properties
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FY 2004 Plans and PerformanceFY 2004 Plans and Performance

FY2004 Plans
• Develop all-solution buffer 

architectures that are compatible 
with ex-situ / MOD YBCO 
processes
- Achieve over 200 A/cm-w on

solution LZO seeds
- Extend to 4-cm-wide substrates

• Continue fundamental studies of 
epitaxial growth solution buffers 
on textured substrates

FY2004 Performance
High quality LZO and CeO2 films 
were produced using solution 
deposition
Nucleation and growth kinetics of 
solution processed LZO and CeO2

layers were studied 
Achieved Ic of 213 A/cm-w on LZO 
seed layers using MOD YBCO
Demonstrated Ic of 140 A/cm-w on 
an all-solution LZO/CeO2 buffer 
architecture using MOD YBCO
Demonstrated epitaxy of LZO on 
4cm wide Ni-3at%W via dip-coating 
(data not shown but available for 
review)



FY 2004 Plans and FY 2004 Plans and PerformancePerformance
FY2004 Plans

• Continue fundamental studies of 
epitaxial growth of PVD buffers on 
textured substrates

• Develop a fully conductive buffer 
architecture on copper-based 
substrates

• Achieve high-Ic on copper 
substrates by in-situ or ex-situ
approaches

FY2004 Performance
Established feasibility of using 
metallic iridium (Ir) buffer layers for 
cation/oxygen diffusion barriers
Developed a fully conductive 
simple buffer architecture of 
La0.7Sr0.3MnO3/Ir on Ni-W tapes 
producing high-Jc PLD YBCO
Developed a buffer layer stack of 
CeO2/La0.7Sr0.3MnO3/Ir for 
compatibility with ex-situ (BaF2)
Implemented La0.7Sr0.3MnO3/Ir 
buffers on copper tapes as a fully 
conductive interface, yielding good 
Jc performance for PLD YBCO
Deferred to next FY year due to 
reduced budget and work scope
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FY 2004 Plans and FY 2004 Plans and PerformancePerformance
FY2004 Plans

• Enhance flux-pinning in YBCO 
films on RABiTS through growth-
controlled pinning centers

FY2004 Performance
Linear defects comprised of self-
aligned nanodots and nanorods
oriented along the c-axis of 
epitaxial YBCO films was shown 
possible for the first time
These linear defects including the 
aligned misfit edge dislocations 
around the nanodots and nanorods
result in significant pinning for H//c
Enhanced flux-pinning was also 
observed for BZO, CZO and YSZ 
additions
Incorporation of 211 nano-particles 
in YBCO was also shown to result 
in enhanced properties
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FY2005 Plans
Continue development of functional buffer layers on textured non-
magnetic substrates, including copper and copper alloys

Determine feasibility cube-textured Cu-alloys with a yield strength 
of over 100 MPa and a conductivity of at least 50% IACS

Establish viability of a fully conductive buffer architecture that is 
compatible with ex situ YBCO

Further develop all-solution buffers and demonstrate Jc
performance similar to that possible on vapor-deposited buffers

Continue optimization of flux pinning in YBCO in-situ and ex-situ
films on RABiTS:

Incorporation of second-phase pinning centers 
Development of growth defects from substrate surface modifications
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Research Integration

• University of Tennessee:
- Tolga Aytug, S. Sathyamurthy: Research Assistant Professors 

working full time at ORNL

• University of Tennessee: J. R. Thompson / H. Weinstock (AFOSR)
- A. O. Ijaduola, Ph.D. Dissertation work at ORNL

• University of Houston: K. Salama / H. Weinstock (AFOSR)
- M.S. Bhuiyan, Ph.D. Dissertation work at ORNL

• University of Florida: D. P. Norton/ H. Weinstock (AFOSR)
- K. Kim, Ph.D. Dissertation work at ORNL

Interaction with Universities



OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

Research Integration

• University of Wisconsin, Madison: Eric Hellstrom

- Student working during summer at ORNL

• University of California, Santa Barbara: Fred Lange
- Student pursuing Ph.D, one post-doc

• University of Missouri-Rolla: Jay Switzer

• University of Houston: Alex Ignatiev

• University of Kansas: Judy Wu

Interaction with Universities (continued)

Close collaboration
on DOE funded 
proposalSummer Interns:

- Jennifer Williams, Carter High School Teacher, Laboratory Science Teacher Professional 
Development Program 

- Nicolas Cunningham, Middle Tennessee State University, Research Alliance 
in Math and Science for Minorities

- Erin Stewart, Indiana University of Pennsylvania
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• Air Force Research Laboratory: T. Haugan, P. Barnes
• Sandia National laboratory: Paul Clem
• National Renewable Energy Laboratory: Raghu Bhattacharya

Interaction with National Laboratories

Research Integration

Communications:
• Many publications
• Numerous presentations
• Several patents issued as well as filed
• Information also dispersed via CRADA 

teleconferences/meetings/annual reports

Interaction with Companies
• American Superconductor Corporation

- sample exchanges, joint characterization/evaluation
• 3M: Dick Ericson



Extras
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Epitaxial MOD LZO coatings were produced on 
4 cm wide Ni-W substrates using a reel-to-reel dip-coating
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Growth of YBCO on Growth of YBCO on nanodotsnanodots

H=1Tesla

•• 2D 2D nanodotnanodot array grown on substrate surfacearray grown on substrate surface

ZrOZrO2 2 nanodotsnanodots
(20 (20 –– 30 nm 30 nm 
diamdiam. x 3nm . x 3nm 
height)height)

• Mechanism as yet unconfirmed

•• YBCO (0.2YBCO (0.2µµm) films deposited on the arraym) films deposited on the array
•• 2x enhancement of J2x enhancement of Jcc

YBCO

• Speculate growth defects in
YBCO nucleated atop dots

YBCOYBCOYBCO
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EBKP of surface of tape

Optimization of this texture could change the story with 
textured, strengthened Cu alloys with high conductivity

Brick Floor Morphology
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200
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($/troy oz)

July, 
2004

Cost of IridiumCost of Iridium
Cost of Ag overlayer
Ag: 6.5 $/troy oz
Ag price: 1.603 $/cc
Ic: 270 A/cm-width
Ag thick.: 3x10-4 cm
Ag vol./kA-m: 0.111 cc
Ag cost: 0.20 $/kA-m
Cost of Ni substrate
Ni-alloy: 20 $/lb
Ni price: 0.393 $/cc
Ic: 270 A/cm-width
Ni thickness: 5x10-3 cm
Ni vol./kA-m: 1.85 cc 
Ni-alloy: 0.73 $/kA-m
Cost of Cu substrate
Cu: 1.12 $/lb
Cu price: 0.022 $/cc
Ic: 270 A/cm-width
Cu thick.: 5x10-3 cm
Cu vol./kA-cm; 1.85 cc
Cu cost: 0.04 $/kA-m
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Ni-W (111)Ir (111)YBCO (103)

Cube % = 77 Cube %=98.6 Cube % = 98.2
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Limited Jc performance is due to the multiple domain oriented YBCO

Ni-W

YBCO(0.2 µm)

Iridium (400 nm)

Jc(77 K) = 1.25 X 105 A/cm2
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5 µm
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Electrical Coupling Degrades due to Interfacial Electrical Coupling Degrades due to Interfacial NiONiO FormationFormation
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Conductive Buffer Layers: Intrinsic StabilityConductive Buffer Layers: Intrinsic Stability
Stability is provided between the HTS coating and the metal substrate
either by a conductive buffer or by a conductive cap layer.

Ni alloy

YBCO and buffersStabilizing cap 
layer

I
JE

max ≈ 30kA/cm2, Kmax ≈ 400 A/cm
metal cap layer 50 µm thick

I Cu

YBCO and buffers

JE
max ≈ 65 kA/cm2, Kmax ≈ 400 A/cm

No stabilizing cap layer needed
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