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Program objective and technical 
approach

• The purpose of this collaborative R&D project is an 
investigation of HTS conductor design optimization with 
emphasis on stability and protection issues for YBCO 
wires and coils applied to electric power devices. 

• Work by MIT and FSU is supported via ORNL 
subcontracts. 

• ORNL has conducted studies in thermal stability and 
quench propagation of cryo-cooled YBCO tapes.

• ORNL is also studying 2nd generation conductor design 
issues such as ac loss optimization, copper stabilization 
layers, tape joining techniques and impact of insulation 
on burn-out heat fluxes.
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Motivation/background

• Stability and protection are crucial issues for HTS tapes 
and coils applied to electric power devices. 
–Both in normal operation (for example, conductor motion during a

transient, conductor hot spot)
–From an external event such as a short circuit or loss of cooling

• Minimization of AC losses is a key issue for the 
economic argument for HTS AC applications like cables 
and transformers. 

• Conductor design is important to optimize several 
diverse parameters such as cost, performance and 
reliability (protection, stabilization).
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Outline of ORNL program
Program objectives and technical approach

• Accomplishments/results since last peer review
– Normal zone propagation (invited paper at ASC 2002)
– Stability margins
– AC loss measurements in YBCO tapes 
– YBCO cable
– Burn-out and fault current testing of HTS tapes

• FY 2004 Plans
• Research Integration

Talks by Profs. Iwasa and Schwarz will follow this ORNL 
presentation.
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Stability and quench experiments are performed in 
a conduction-cooled environment

• YBCO (circa 2002) on nickel 
RABiTS substrate (3 µm of Ag, 50 
µm Ni)

• The 20-cm YBCO tape sample was 
mounted between an insulated Cu-
block and a G-10 block as shown 
on the left.

• A fairly uniform distribution (in the 
eight ~ 2-cm long zones) of critical 
currents from 12-17 A were 
measured at 78 K, and from 62-75 
A were measured at 43 K.

• Critical currents increase linearly 
as the operating temperature 
decreases.
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To study the quench behavior, an over-current 
pulse was applied to create a normal zone

• The transient pulse energy was 
varied by changing the magnitude, 
Ip or the duration of the pulse.

• The figures show at T= 45 K and at 
an Iop of 33.7-A and a 2-s over-
current pulse duration:
– an Ip of 117.4 A caused a quench 
– an Ip of 116.5 A did not.

• Distinctive normal zone propagation 
was observed when there was a 
quench.

• The inserts show the temperatures 
measured by a PRT at the center of 
the sample.
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Propagation velocities were measured from 45-80 K

• Normal zone propagation 
always starts from the middle 
(zone 4) of this sample.

• Normal zone propagation 
velocities were found to increase 
linearly with the current. 

• No more than 20 mm/s 
propagation velocity was 
measured when Iop was set 
below Ic. 

• A minimum propagation current 
was found at each temperature, 
which is attributed to the 
conduction cooling.
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Normal zone propagation speeds measured from 
40-80 K

• Agrees with modified traveling 
wave theory expression at a 
fixed current

• Propagation is on the order of 
1-20 mm/s (LTS ~10 m/s)
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Stability margins
• Measured by increasing the current 

pulse followed by a fixed operating 
current below the lowest Ic of the 
tape.

• At the highest recovery pulse 
current, the V-I product integrated 
over the initial pulse divided by the 
zone volume is used to estimate the 
stability margin.

• The measured stability margins 
increased from 16 to 120 J/cm3 as 
the temperature was lowered from 
80 to 45 K.

• Comparison with the specific heat 
integrals indicates a better fit to Tc
than to Tcs for the HTS tapes.

• Typical values for LTS are  few-100 
mJ/cm3
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Stability and quench protection of 
YBCO conductors

• Stability margins of YBCO conductors are very high – there should 
be no concern against transient heat loading such as wire motion in 
a winding.

• Normal zone propagation velocity is low in HTS conductors – a 
localized thermal runaway is a distinct possibility.

• Events such as a local bad spot, over-current, and loss of cooling 
should be anticipated.

• Stabilizer must be added to the YBCO conductor to lower the heat
production and prolong the time before thermal runaway
– a normal state resistance no more than 5 mΩ/m @ 77 K for a 100 A/cm-

width conductor is suggested.
• Electrically shorting the already existing Ni-substrate to YBCO is a 

possible approach to reduce normal state resistance.
– less effective for Ni-alloy substrates
– but more recent R&D on Cu substrates 

• Uniformity in the stabilizer, as well as in the Ic is imperative. 
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In s u la t io n

T y p e  E  
th e rm o c o u p le

V• Sample characteristics
– Ni 5%W 75 µm substrate
– Critical current of 110 A
– YBCO thickness of 1 µm

• Thermal measurement
– Comparison of thermocouple 

response from AC current to known 
heat input

• Electrical Measurement
– Spiral voltage tap configuration
– Q = I V cos(Θ)

AC losses (transport current only)
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AC loss (cont’d)
• Norris thin strip model + 

ferromagnetic loss from Ni-
5at%W  provided good 
agreement with both thermal 
and electrical data

• Ferromagnetic loss 
measured experimentally at 
T = 95 K > Tc for Ni-5at%W 
substrates

• For Ipeak/Ic < 0.5, 
ferromagnetic loss fraction is 
greater than 50%

Submitted to Supercond. Sci. Tech (to be published)
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1.25 m YBCO cable
• Commercial-grade demonstration YBCO 

cable, Ic ~4.2 kA, Iac ~ 2 kArms
• Copper-coated YBCO conductors

– 50 µm of copper laminated to silver-coated YBCO 
conductor from American Superconductor

– Average critical current >170 A over 24 tapes of 
1.5 m in length

– Tapes were quite robust
• Advantages of YBCO for electric devices

– Potentially lower ac loss relative to BSCCO
– Potential lower cost
– Higher performance in field
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1.25 m YBCO cable –AC losses

• Successful operation at up to 2500 Arms
• AC loss was measured electrically and 

thermally to be about 2 watt/m at 2000 
Arms, corresponding to Ipeak/Ic ~ 0.67

• Loss is enhanced due to large gap 
between YBCO conductor layers of 
order 600-700 microns.

• Need 3-5 mm wide tapes to reduce radial 
build in multi-layer cables
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An HTS prototype cable was burned out 
during a test in Europe

• The cable was 
made of Ag-alloy 
matrix BSCCO 
tapes 

• The cable was 
burned out during 
an open bath ac 
loss 
measurement 
when Ipeak/Ic was 
set to 1.6.
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Burn-out tests of AMSC 
Ni/Cu plated BSCCO and 
YBCO tape 
(current on for 60 sec)

BSCCO tape
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Fault current magnitude and duration 
determine required Cu stabilization for 
given peak conductor temperature
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FY 2004 plans

• Impact of various YBCO conductor substrates and 
stabilization layers on ac losses and over-current tolerance 
will be studied (in collaboration with AMSC).

• In addition, normal zone propagation and stability margins 
will be measured in a series of copper-stabilized, YBCO 
coated conductors 
– with different copper thicknesses and joining techniques. 

• A 1-Tesla HTS coil will be made with YBCO conductor and 
tested to determine operating envelope and stability 
margins.
– similar to a study with a BSCCO coil in 1994: “Stability measurements 

of a 1-T HTS magnet,” J. W. Lue, R. E. Schwall et al.
• Plan to make a YBCO cable with ~ 4-mm wide 2G tape.
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Research integration
• There is coordinated internal interaction between ORNL/MIT/FSU 
• There is also a close interaction with the 2nd generation HTS wire 

developers. 
• All three institutions presented papers at the 2002 Applied 

Superconductivity Conference including an invited paper by ORNL.
• Dr. Iwasa, MIT and Dr. Trociewitz, FSU attended the Workshop on 

Thermohydraulic Transients in Superconductors, September 2002 
– published articles based on their talks on HTS magnet stability and 

protection in Cryogenics (Vol. 43). 
• The FSU team presented a talk on YBCO normal zone creation and 

propagation at the DOE 2003 Wire Workshop. 
• ORNL and FSU were on a coated conductor applications panel at the 

MURI workshop in June 2003. 
• ORNL is working to communicate the relevant YBCO results to the SPI 

teams interested in YBCO replacement of BSCCO:
– a test of a 1.25-m cable made with YBCO tapes is in progress.
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MIT/FBML “Year 3” (01/01/03-05/31/04) Programs 

• Experimental and analytical study of quench/recovery of YBCO samples,  
“bare” and Cu-laminated, cooled by LN2, subjected to over-current pulse:
Task 1: Stability enhancement with solid N2.
Task 2: Quench/recovery with LN2 bath cooling.  
Task 3: Detection of “hot spots” with acoustic emission (AE) technique. 

• Personnel: Y. Iwasa; J. Jankowski; H. M. Kim; H. Lee; J. Bascuñán

Test Sample Sources

• AMSC (Alex Malozemoff; Steve Fleshler)
• IGC (Venkat Selvamanickman; Jodi Reeves)
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Task 1: Stability Enhancement with Solid N2 (09/01/03-05/31/04)

Stability enhancement by using Cp(T ) of solid N2 in the range 20-50K.
Stability enhancement diminishes “protection-initiated” system disruptions. 

Tasks Proposed
30-cm long YBCO test samples subjected to an over-current pulse or local
heating, either with or w/o a thin (~0.5mm) layer of solid N2.  Tinitial: 30-50K.
If 1-m long tape available, a 3-turn YBCO coil.
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Task 2: Quench/Recovery (01/01/03-05/31/04)

• AMSC & IGC test samples, under over-current pulse, LN2 bath 77K. 

Variations from Year 2: 
• Samples laminated with a Cu strip (50–76 µm);
• Surface insulated from LN2.

Task 3: “Hot Spot” Detection with AE Technique (08/15/03-05/31/04

• Development of  “hot spots’’ detection technique based on acoustic 
emission (AE) signals for HTS coils in the temperature range 30-77K.
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Technology Integration

• Presentation at GE Global Research Center, Niskayuna, NY
on 10/16/2002: “HTS Magnets: Stability; Protection; Cryogenics;  
Economics; Protection/Stability Research Activities at FBML”
(Included MIT’s tasks to be proposed for FY2003).

• Presentation at IGC-SuperPower, Schenectady, NY
on 10/17/2002: “HTS Magnets: Stability; Protection; Cryogenics;  
Economics; Protection/Stability Research Activities at FBML”
(Included MIT’s tasks to be proposed for FY2003).

• Presentation at AMSC, Westborough, MA on 11/22/2002
“Stability and Protection of YBCO Tapes and Coils: ‘Year 3’
MIT-FSU Program (01/01/03-05/31/04)-- Tasks Proposed by MIT”
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Technology Integration (Cont.)

• 1-2 hour group meetings at MIT with Steve Fleshler of AMSC
to discuss the MIT experiment and review results:
12/17/02; 02/27/03; 04/01/03.

Publications

• Y. Iwasa, H. Lee, J. Fang, and B. Haid, “Quench and recovery  
processes  of YBCO tape: Experimental and analytical results,”
IEEE Trans. Appl. Superconduc. Vol. 13, 1772-1775 (2003).

• Y. Iwasa, “HTS magnets: stability; protection; cryogenics;   
economics; current stability/protection activities at FBML,”
Cryogenics 43, pp. 303-316 (2003).
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Detection of a Local Hot Zone with AE Signals — A Review

• AE: Acoustic signals emitted by sudden mechanical or thermal events in a 
body being loaded/unloaded & heated/cooled.

• Used in high-performance LTS magnets to distinguish quenches by  
mechanical disturbances (AE) from those at Ic (no AE).

Task 3: Performance Results (08/15/02-12/31/02)

• Preliminary study of AE detection of “hot spots” in HTS coils.  
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Signal Block Diagram & Double-Pancake Bi2223 Test Coil  (2002)

AE Sensor
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Experimental Setup
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I(t ), V(t ), and AE(t ) Plots @ 77 K

AE background noise

Vc=5 mV

Ic=34 A

No AE signals @ Ic transition
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Heating-Induced Data: Iop=15 A

AE signals

AE signals

AE signals
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Tasks 2 & 3: Experimental  Results (01/01/03-06/30/03)

• AMSC samples, bare (Ag only) & Cu-laminated; 10-cm long
• Ic (77 K, self field; measured by AMSC): >110 A
• Subjected to an over-current pulse (3-5× Ic) while carrying

steady-state DC current (~0.9Ic)

t [s]

Iop

I (t )

~3

~0.3–1.0
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YBCO Composite Front Cross Section View
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5 parallel 100-A supplies



Y. Iwasa                            
MIT/FBML

2003 Annual Superconductivity Peer Review                       
July 25, 2003, Washington DC

15

AE sensor

Voltage taps

5 cm

Thermocouples



Y. Iwasa                            
MIT/FBML

2003 Annual Superconductivity Peer Review                       
July 25, 2003, Washington DC

16

Cu-Laminated Sample

YBCO: 1 µm
Ag: 3-8 µm
Cu lamination: 76 µm
Measured Ic: 107.5 A (AMSC) 

113 A (MIT; initially)
110 A (MIT; after pulsing)
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Peak Joule Flux:0.24 W/cm2

No AE Signals (∆T < 3 K)

Thermocouples not responding
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Peak Joule Flux: 2.52 W/cm2

Joule heating = Cooling
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Peak Joule Flux: 8.3 W/cm2

Poor & delayed signals from thermometers

AE signals (∆T > 3 K)
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Peak Joule Flux: 10.91 W/cm2

AE Signals (∆T > 3 K)

Delayed responses

Joule heating = Cooling
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Peak Joule Flux: 10.84 W/cm2

AE Signals (∆T > 3 K)

Joule heating = Cooling
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Ccd (T ) ∂T

∂ t
= ρ cd (T ) Jcd

2 −
f p Pcd

Acd
q(T )

Task 2: Simulation  Results (05/01/03-06/30/03)

• Circuit model: matrix resistor (Rm) // superconductor resistor (Rs).
• Cooling: nucleate boiling.

Matrix Rm

Superconductor Rs

Im= It− Ic(T)

It

o o+   Vcd –

It

Ic(T )

Ic0

Top Tcs Tc

It

T

Superconductor

Current-sharing

MatrixIc(T)
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Rs

Rn

0                                  Ic

Ideal ( n=∞)
Model

Superconductor Resistance Model
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Matrix Resistance Model

      

Rm (T ) =
RAg(T )RCu (T )

RAg(T ) + RCu (T )
RAg (T ) = ρ Ag (T )l

wAgδAg

; RCu(T ) = ρCu(T )l
wCuδCu

                                       Rm(T ) = Ro + α (T − 77K)
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Parameter Values for Cu-Laminated Sample #CC51-R540-0-10

• Superconductor
Vc=5 µV (voltage taps,   : 5 cm)
Ic(77 K, self field)=110 A
n = 18.5.

• Matrix:

 l

    Rm(T ) =0.100+0.007× (T−77 K) mΩ
    (T ≥ 77 K)

• Cooling

0.1

1

10

100

1 10 100
T - Tsat [K]

Range Used In 
Simulation



Y. Iwasa                            
MIT/FBML

2003 Annual Superconductivity Peer Review                       
July 25, 2003, Washington DC

28

Joule heating = Cooling
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Task 2 Conclusions on Results (01/01/03-06/30/03)

• Cu lamination definitely enhances conductor stability.
At least with a 76-µm thick lamination, it was not possible to quench the 
sample with a max. pulse current of  500 A (~5× Ic): heating = cooling.

• No degradation of Ic even after repeated over-current pulsing.
• Lamination optimal thickness likely to depend on over-current amplitude 

and duration—to be investigated.
• “No cooling” simulation shows 76-µm thick lamination insufficient against

a 500-A over-current pulse.
• Simulation: “apparent” nucleate boiling cooling fluxes, based at least on 

one laminated test sample, below an “accepted” cooling curve. 
• Thermal resistance (sample surface/temperature sensors) too high.
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• Ic transition does not generate AE signals.

• Localized heating (∆T ≥ 4 K) detectable with AE signals 
even with a test coil immersed in LN2.

• Low AE signal detectability. 
• AE signals observed—so far “small” because ∆T small;

large ∆T expected in non-recovery and thus AE signals.

Task 3 Conclusions on Results (08/15/02-06/30/03)
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Plans  (08/30/03-05/31/04)

• Task 1: Experiment with 1—3 turn YBCO coils with or w/o solid N2.
• Task 2

Use 4-mm wide, 15-cm long samples to force quenching with a 500 A. 
Insulate the cooling surface.
Improve thermal resistance  between sample surface & sensors.
Continue with simulation work.
Simulate selected FSU/NHMFL results.

• Task 3: Install AE sensors in Tasks 1 & 2 experiments.
Improve signal detectability.
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Outline for today’s presentation

• Brief review of last year’s results
• FY03 plans 
• FY03 results
• Plans for remainder of FY03 and FY04
• Research integration



Quench Nucleation & Propagation 
Experimental Details 

• Experimental procedures
– Sample mounted and instrumented with multiple voltage 

taps, Cernox temperature sensors
– Localized heat pulse supplied by NiCr wire driven by a 

power supply and pulse generator
– Heat pulse amplitude or duration increased until quench 

occurs (vs. I/Ic)
• Last year:

– AMSC YBCO, 50 A@77 K (circa Fall 01)
– Sample cooled by N2 gas convection (~81-83 K)

• This year: 
– AMSC YBCO, ~140 A@77 K (circa Aug 02)
– Sample cooled by cryocooler



Wiring Schematic Quench Experiments (07/02)

 

Keithley
2001 DMM*

Keithley
2001 DMM*

Keithley
2001 DMM*

Keithley
2000 DMM

Keithley
2000 DMM

Keithley
2000 DMM

Keithley
2000 DMM*

HP 6286A
DC-P/S

HP 8112A
pulse generator

HP 6681A
DC-P/S

Keithley
2000 DMM

Keithley
2001 DMM*

500 A / 100 mV

V3 V2 V1 Vcernox1 Vcernox2

Vtot

V(I)

GPIB

HTS sample NiCr heater

Vcernox3

*set on buffer read for increased speed/resolution



0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

0 1 2 3 4 5 6 7 8

Time (s)

Vo
lta

ge
 (V

)

Voltage-time-location during quench at 19 A 
(07/02)

V1

V2 V3

V4 x 100
Primary
Heater pulse

T=80.6 K



(07/02)



FY03 Plans 
※Ic– B – T characterization, including high field data
※Sample homogeneity measurements 

(for propagation velocity studies)
※Modifications to experimental approach
※cryocooled environment for lower temperature
※higher Ic sample

Significantly higher currents (~15-25X)
※additional voltage monitoring

※MQE and QPV experiments 



FY03 Progress & Results
Aug 02 – May 03

Completed runs at ~81K in N2 gas and analysis of results
Presented results at ASC ’02, CHATS, publ. in Cryogenics
Installed facilities for cryocooler from MIT
Designed, procured & tested cryostat for cryocooled operation
Designed & constructed sample holder for cryocooled operation
Ic-B measurements at high field
Modified LabView software for new hardware and anticipated
N.B. Proposal for FY03 funds requested & submitted in Mar03

May 03 – Jul 03 
New funding received (~35k$ of FY03$ spent)
Additional hardware acquired
System integration and testing
First runs on YBCO CC sample
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Short sample Ic(4.2 K, B) up to 33 T
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48.5 K, I=0.80Ic (330 A)
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New found experimental issues to address

Measuring propagation more difficult than last year
– reduced temperature & improved sample quality 

increased Ic significantly
Increased I increased V during quench power 

supply trips before quench propagates sufficiently 
to determine QPV

Temperature gradient (steady-state) ~ 4 K along 
sample 
Temperature gradient after pulsing – leads to heater 
coming off of sample (but did NOT damage the 
sample)



Plans for remainder of FY03 and FY04
Complete on-going measurements
Temperature variation via heater on sample block
Ic variation using magnetic field 
Ic variation using slit samples
Ic variation using “latest and greatest” samples
Monitor voltage on Ni-side to assess current sharing
Identify maximum hot-spot temperature via energy to 

degrade sample (and causal mechanisms)
Expand variety & geometry of sample types 

(manufacturer, buffer layer architecture, AMSC’s NA, ... )
Expanded heater length
Additional experiments responsive to community needs



Research Integration
Publications & Presentations

F. Trillaud, H. Palanki, U.P. Trociewitz, S.H. Thompson, H. W. Weijers, J. 
Schwartz, “Normal Zone Propagation Experiments on High Temperature 
Superconductor Composite Conductors,” Cryogenics 43(3-5) 271-279 (2003)

“Stability and Quench Propagation of HTS Conductors,” 2002 CHATS 
Workshop, Karlsruhe, Germany (Sept. 2002) 

“Normal Zone Creation and Propagation in YBCO Coated Conductors,”
U.S. DoE Coated Conductor Workshop, St. Petersburg, FL (January 2003) 

“10 Things I Hate About Coated Conductors,” MURI Coated Conductor 
Workshop, Madison, WI (June 2003) 

Abstracts submitted to 2003 EUCAS, CEC/ICMC, and MT

Graduate Student Theses
Ms. H. Palanki, M.S. Mechanical Engineering, completed December 2002, 

“Critical Current Variability and Thermal Quench Studies on High 
Temperature Superconducting Tapes” Currently w/ Florida Power & Light

Frederic Trillaud, Ph.D.,  Saclay, in progress


