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FY 2003 Objectives
• Research and develop faster, potentially lower cost, and simpler RABiTS 

buffer-layer architectures that are compatible with ex-situ YBCO 
processes

• Develop a viable high rate process to fabricate high quality buffer layers

• Collaborate with LANL and ANL to develop suitable buffer architectures 
on IBAD-MgO and ISD-MgO substrates for compatibility with ex situ 
YBCO

• Continue fundamental studies of epitaxial growth on textured non-
magnetic substrates, including copper and copper alloys

PURPOSE:PURPOSE: To develop a basic understanding of and practical 
synthesis paths for epitaxial buffer layers on biaxially 
textured metal tapes for YBCO coated conductors.
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FY2003 Performance/Outline

• FY 2003 Results

Reactive sputtering of YSZ buffers (Parans)
Solution buffer layer development for YBCO                      
Compatible-buffer-layer development for MgO-based 

tapes (LANL IBAD MgO & ANL ISD MgO)

Buffer layer development for Cu substrates                      (Claudia)

• FY 2003 Performance and FY 2004 Plans (Claudia)
• Research Integration
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RABiTS Templates for YBCO Coated Conductors

Ni-W
Simplified Buffers

YBCO

FY2005FY2002

Ni-W  (50µm)
Ni (1.5 µm)

Y2O3 (~ 50 nm)

YSZ (~ 200 nm)

CeO2 (~20 nm)

YBCO (~ 0.3-1 µm)

Ni-W  (50µm)
Ni (1.5 µm)

Y2O3 (~ 50 nm)

YSZ (~ 200 nm)

CeO2 (~20 nm)

YBCO (~ 0.3-1 µm) Deposition Methods:
•YBCO: ex-situ BaF2 process 
•YSZ and CeO2 : rf sputtering 
•Y2O3: e-beam 
•Ni: dc sputtering

OBJECTIVE:
Research and develop faster, potentially lower cost, and simpler RABiTS 
buffer-layer architectures that are compatible with ex-situ YBCO processes

APPROACH:
Reactive sputtering of YSZ buffers
Metal-organic deposition (MOD) process

La2Zr2O7 (LZO) (seed & barrier; alkoxide); CeO2 (cap; acac)
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High Rate Reactive Sputtering of YSZ 
Buffers for Standard RABiTS Templates

• 2” pulsed 1 kW dc/rf sputter system 
• Differential pump RGA  
• H2O and O2 (as reactive sources)
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Reactive Reactive YSZ Buffer Layers by Buffer Layers by rf-sputtering
Jc > 1 MA/cm2 on reactive YSZ demonstrated using an alloy target
Deposition rate = 2 - 2.5 Å/sec (4-5 times higher than rf-oxide)
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YSZYSZ by by dcdc--reactive sputtering on Yreactive sputtering on Y22OO33 seedsseeds
Dep. rate is 5-10 Å/sec 

(10-20 times higher than rf-oxide sputtering)
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HighHigh--JJcc on reactive on reactive YSZYSZ Buffer Layers by Buffer Layers by 
dcdc--reactive sputtering (better texture templates)reactive sputtering (better texture templates)
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Dep. Rate is 10-20 times higher
than rf-oxide sputtering

YSZ thickness = 100 nm

smooth & dense coating

Jc of 2 MA/cm2 on reactive YSZ demonstrated using an alloy target
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Solution Buffer Layer Development

•Epitaxial LZO can be grown directly on 
textured Ni-W 3% substrates

•Pursued both reel-to-reel dip-coating
•Double sided coating

•20 nm/coat seeds; highly reproducibleSEM LZO surface

AFM LZO surface

Ra = 1.8 nmRa = 1.8 nm
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High Temp. in-situ XRD Analysis of 
LZO Buffer Layer Growth
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•LZO (00l) starts to
nucleate @ 850 °C

•No (222) peaks
•LZO thickness:20 nm
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•XRD @ 1100 °C
& different time 
•LZO (002) peak
saturates @6min
•(004) peak 
width constant
after 6 min

LZO (004)

Scintag PAD X

Buhler HDK 2.3
Pt20%Rh Strip heater
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Ra = 1.8 nm

LZO/Ni-W; 1100 °C; 6 min Q

AFM LZO surface RHEED 600 °C

Ra = 2.6 nm

LZO/Ni-W; 1100 °C; 60 min Q

AFM LZO surface RHEED 600 °C

MOD LZO Nucleation & Growth on Ni-3%W

•LZO grows in 6 min at 1100 °C (key for scale-up efforts)
•Smooth MOD LZO layers were produced
•Surface roughness increases as the process time increases
•Polycrystalline LZO phases were not observed at both surfaces
•Successfully used RHEED as a tool to study the MOD surface
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Over 1.4 meter long, double-sided, reel-to-reel dip-coated LZO seeds 
on textured Ni-W substrates with uniform texture were produced
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Future directions: 
Two-sided coatings; wide substrates

Dip-coating unit
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Line scale profile at LZO/Ni-W interface

SAD pattern of LZO/Ni-W indicates that LZO 
grows cube-on-cube texture on Ni-W

LZO on Ni-W
High resolution TEM images

→LZO/Ni-W interface
is clean and sharp
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Successfully replaced e-beam Y2O3 seed with MOD LZO seed
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4 coats

MOD LZO as Barrier Layer
→Multiple coating
to produce thick
buffers (80-100 nm)

→RHEED: no 
evidence of
polycrystalline
LZO at the 
surface
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MOD LZO (4-coats)/Ni-W cross-sectional TEM image

Pores but
not connected

Interface is
very clean
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MOD LZO as Seed and Barrier Layer
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CeO2 (sputtered)

YBCO (0.8µm)

77K, SF:  Jc=1.68 MA/cm2, Ic=135 A/cm-w; Tc=90.5 K, ∆Tc=1 K
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YBCO films with an Ic of 135 A/cm-w were 

grown on MOD LZO seed/barrier
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Successfully replaced both e-beam Y2O3 seed and sputtered
YSZ with MOD LZO
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MOD CeO2 Nucleation & Growth (HT in-situ XRD)
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•CeO2 growth studies
•XRD @ 1100 °C & different time 
•CeO2 (002) peak saturates @ 5 min
•(002) peak width constant after 5 min

Ra = 3.9 nmRa = 3.9 nm

AFM CeO2 surface

•CeO2 nucleation studies
•XRD @ various T
•CeO2 (00l) starts to

nucleate @ 600 °C
•No (111) peaks observed
•CeO2 thickness : 20 nm
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Good c-axis YBCO Epitaxial Growth

YBCO films with an Ic of 141 A/cm-w were 

grown on MOD CeO2 cap 

77K, SF:  Jc=1.76 MA/cm2, Ic=141 A/cm-w; Tc=88.4 K, ∆Tc=1.2 K
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This demonstration shows that MOD CeO2 cap is compatible
with MOD YBCO
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AFM of MOD CeO2 surface 

on MOD LZO (2 coats)/Ni-3%W

All MOD buffers with 
CeO2/LZO/Ni-3%W substrates

Ni-3%W

MOD-LZO (100 nm)

MOD CeO2 (20 nm)

YBCO (0.8 µm)
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77K, SF:  Jc =0.6 MA/cm2, Ic=45 A/cm-w

A Jc of 600,000 A/cm2 was achieved on
on all MOD buffers and YBCO conductors

Ni-3%W

MOD-LZO (1-coat; 100 nm)

MOD CeO2 (1-coat;20 nm)

MOD YBCO (0.8 µm)
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SummarySummary
Successfully developed methods to produce LZO seed 

and barrier layers and CeO2 cap layers
Successfully replaced Y2O3 and YSZ with MOD LZO
MOD YBCO films were grown on solution buffers

Ic 184 A/cm-w CeO2/YSZ/MOD LZO/Ni-W
Ic 135 A/cm-w CeO2/MOD LZO/Ni-W
Ic 141 A/cm-w MOD CeO2 cap/std. RABiTS

Jc of 600,000 A/cm2 on all solution YBCO
and buffers was achieved
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Developed LaMnO3 Buffers for MgO-
IBAD & MgO-ISD Substrates

• IBAD-MgO (LANL)
− LaMnO3 buffers are highly compatible 
− High Ic YBCO films were grown on LaMnO3 buffers 

• Both PLD YBCO and Ex-situ MOD YBCO (with CeO2 cap)
• ISD-MgO (ANL)

− LaMnO3 grows cube-on-cube 
− PLD YBCO films are tilted; Jc of 250,000 A/cm2 at 77 K so 

far
− PLD YBCO films are c-axis aligned (ANL) on CeO2 layers; 

Developing the CeO2 cap layers for LaMnO3/ISD-MgO          
(in progress) 
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SrTiO3, LaMnO3, and SrRuO3 buffers 
for IBAD-MgO substrates

LaMnO3 buffer

SrRuO3 buffer

SrTiO3 buffer
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Jia et al., Appl. Phys. Lett. 81, 4571 (2002).

STO: Low deposition rate
LMO: High deposition rate
SRO: Expensive & target

preparation is difficult
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LaMnO3/MgO-IBAD: Surface and Texture
rf sputtered LMO: H2O/Ar, T=650-750 ° C, t ~250 nm

∆φLMO(112) =6.5°

∆ωLMO(004) =2°
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Highly textured and smooth LaMnO3 buffers on IBAD-MgO
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High Ic of over 230 A/cm achieved on PLD YBCO films 
deposited at LANL on LMO buffered IBAD-MgO substrates

Thick YBCO films with 
dense microstructures 
were produced using PLD

Steve Foltyn
M. Paranthaman et al. JMR (in press)
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YBCO / LaMnO3 / Homoepi MgO / IBAD MgO / 
amorphous Y2O3 seed / Al2O3 barrier / Ni-alloy

Silver

YBCO
LMO

LMO

Homoepi MgO /
IBAD MgO / 
Amorphous Y2O3 /
Amorphous Al2O3 /
Ni-alloy

Terry Holesinger

(020) MgO

(004) LMO

(220) LMO(002) MgO

•Alignment of LaMnO3 on IBAD MgO
−[100] MgO || [110] LMO
−(020) MgO || (110) LMO
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Clean interface between 
the PLD YBCO and LaMnO3

buffer layer

YBCO

LaMnO3

Terry Holesinger 

YBCO/LaMnO3/IBAD-MgO/Ni-alloy
PLD YBCO
Sputtered LaMnO3
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MOD-YBCO/LaMnO3/MgO-IBAD: a-axis YBCO

Mixture of a-axis and c-axis grains of YBCO on 
LMO/MgO-IBAD using TFA-MOD conversion
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Sputtered CeO2 cap layers were developed

CeO2/LMO
RMS=0.45 nm

∆φ111~5.5°
∆ω002~1.8°
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•Smooth CeO2 layers were deposited
on LMO buffered MgO-IBAD

•Achieved a Jc of 3.4 MA/cm2 on
CeO2 cap (PLD YBCO)
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YBCO: ∆φ103= 2.5° ; ∆ω005= 2.5°

CeO2: ∆φ111 = 5.5° ; ∆ω002 = 1.8°

LMO: ∆φ 110 = 6.5° ; ∆κ 004 = 2°
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FY2003 Performance/Outline

• FY 2003 Results

Reactive sputtering of YSZ buffers (Parans)
Solution buffer layer development for YBCO                      
Compatible-buffer-layer development for MgO-based 

tapes (LANL IBAD MgO & ANL ISD MgO)

Buffer layer development for Cu substrates                      (Claudia)

• FY 2003 Performance and FY 2004 Plans (Claudia)
• Research Integration
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Development of suitable buffer 
layers for Cu-based RABiTS

• Reduce costs of CC’s
− less expensive metal substrate (40% of total CC cost)

• Improve performance in ac field
− non-hysteretic substrate

• Improve JE

− electrical coupling between buffer and low-resistivity substrate

Project Objectives

C. Cantoni, T. Aytug, J. R. Thompson, M. Varela, H.Y. Zhai,                     
A. A. Gapud, D. K. Christen                                     (ORNL,CMSD)
A. Goyal, E. D. Specht, S. Kang, Y. Xu                          (ORNL,M&C)
M. Paranthaman (ORNL, CSD)

Collaborations:
K. Kim, D. P. Norton                                    University of Florida
C. Thieme, U. Schoop                                   AMSC Crada NEW !
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Approach
• identify issues (e.g.: poor Cu oxidation resistance, sulfur-mediated 

epitaxy, etc.)
• use controlled experiments and high quality characterization to single 

out and solve specific problems (eg.: rapid Cu diffusion, high Cu thermal 
expansion, role of GB’s, interfacial reactions)

• work on textured tapes to address specific substrate requirements
• address requirements for all-conductive architectures and FM losses

Project milestones
high Jc and clean interfaces on prototype single-crystal samples  (2002)
high Jc on textured pure Cu tapes                                      (2003)
high Jc on textured Cu alloys                                          (2003)

• high Ic on 1µ-thick YBCO on Cu or Cu-alloy                                    (2004)
• all-conductive structure with low interfacial resistivity           (2005)
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Motivation for Cu-based RABiTS:

advantagesadvantages
No ferromagnetic losses
less expensive (up to 6 time 
for a commercial alloy)
high thermal conductivity
high electrical conductivity

II CuCu II

CuCu
conductive buffer

Cu coating
0.0001

0.001

0.01

0.1

1

0.1 1I peak / Ic

Lo
ss

es
 [W

/m
]

Electrical data
Thermal data
Norris Ellipse Model+FM
Norris Thin Strip Model + FM
Norris Thin Strip
BSCCO

FM loss only

Ni-WNi-W

Duckworth, MURI Review, June 2003

Substrate only

YBCO only

AMSC tape
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Challenges

rapid oxidation
high ionic diffusion

high thermal expansion
soft

direct epitaxy only with NaCl type structure on 
clean surface (TiN, MgO) 

Ni-W
NiWO4

Y2O3

O2-

Ni diffusion barrier 
limits NiO growth 

Ni diffusion barrier 
limits NiO growth 

Cu

O2-

Cu2O

High Cu diffusion leads 
to detrimental Cu-O 

growth 

High Cu diffusion leads 
to detrimental Cu-O 

growth 
• residual strain in buffers

and YBCO
• substrate bowing

• strengthening by
alloying/precipitates

• Alternative approach:
metal overlayers

• Alternative approach:
metal overlayers
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Last year results
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2003 Results on pure textured Cu tape
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      T (K)
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Tc = 88.5 K
Jc 77K= 0.7 MA/cm2

nonnon--optimal transport properties due to:optimal transport properties due to:
Buffers are not sufficient barrier to Cu and O diffusion?Buffers are not sufficient barrier to Cu and O diffusion?
Strain in YBCO?Strain in YBCO?
Structure/morphology problems in buffers?Structure/morphology problems in buffers?
Cu preferential diffusion through GB’s?Cu preferential diffusion through GB’s?

Magnetic measurements
J c

(M
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2 )

textured Cu

MgO 0.1 µm
LMO 0.3 µm

TiN 0.2 µm

PLD YBCO 0.3 µm

Cu2OCu2O

∆ω = 5°
∆φ = 6°
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500Å

c
Interfaces are clean: no unwanted oxides or interdiffusion  

YBCO LMO

High angle ADF (HAADF): Direct compositional contrast
The heavier the atom, the brighter it appears

CuTiNMgOLMO

What can be learned from single 
crystals experiments EELS detects no O

C. Cantoni et. al., JMR, in press

500 Å
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BaO plane

YBCO/LMO interface is straight 
and coherent

YBCO

LMO

Ba
Y

Mn
LaCu

O

BaO pl.

c

CuO chainsY plane.

CuO2
pls.

c
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Strain analysis in buffer layers by high
resolution XRD

• Lattice strain is progressively relieved along the c-axis
• Small compressive residual strain in YBCO

11.64
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11.68

11.7

11.72

11.74

11.76

3.83 3.84 3.85 3.86
ab (Å)

c
(Å

)

Cu xtl

Cu xtl 
O2 ann

Cu film/MgO xtal

Ni-3%W

YBCO data

0.04 % -1.31 % 1.5 mm-thick 
Cu crystal

1.01 %- 0.66 %Cu/MgO

MgO
(a- c) / a

TiN
(a- c) / a

Substrate

No lattice strainNo lattice strain
εzz = 0.25% vs. εzz = 0.45% εzz = 0.25% vs. εzz = 0.45% 

LAADF

LMO
MgO TiNTiN Cu

LAADF



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

500Å500Å

c

MgO TiN

LMO

Structure and morphology of 
buffers on single-xtal 

12 µm

12 µm

Ra = 9 nmRa = 9 nm
Rough 

interface

2.54°1.03°YBCO

0.227°0.184°Cu
2.56°1.47°LMO

∆φ∆ωlayer

Cu film

MgO

YBCO
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Excellent epitaxy and smooth surfaces 
on Cu tapes 
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• sharper out-of –plane texture
• substrate and buffers roughness are comparable
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Cu Diffusion studies on TiN/Cu 

t = 150 nmt = 150 nm

t = 37 nmt = 37 nm

Annealed at 750 °C, 1 h Annealed at 750 °C, 1.5 h

as grown 150-nm film
TiN = 22 ± 1 at%
Cu = 29 ± 2 at%

as grown 150-nm film
TiN = 22 ± 1 at%
Cu = 29 ± 2 at%

TiN = 20 at%
Cu = 29 at%
TiN = 20 at%
Cu = 29 at%TiN = 0 at%

Cu = 100 at%
TiN = 0 at%
Cu = 100 at%

TiN = 21 at%
Cu = 30 at%
TiN = 21 at%
Cu = 30 at%

single-crystal 7° bi-crystal

t = 150 nmt = 150 nm

t = 37, 75, 150, 370, 600 nm

150-nm thick TiN film blocks Cu diffusion in long, high temperature processing

20 µm

10 µm

10 µm
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Transport Jc data on Cu 7° bi-crystal
• Very high Jc across GB ⇒ GB’s are o.k. in Cu tape
• First observation of non-monotonic Jc predicted by AJ vortices pinning

STO
Cu
TiN

MgO
LMO

YBCO 0.2 µm

[001]

θ = 7°

A. Gurevich, PRB 50 (1994) 13563
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YBCO grain mosaic spread: 
∆ω = 1°, ∆φ = 2°



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Conclusions:
• Fast Cu oxidation likely occurs starting at 

exposed back side and edges, causing stress 
and eruptions in the YBCO

• Rolling defects in tape are critical regions 
(clean room being installed)  

Solutions:

• Metal Ni overlayer on textured pure Cu

• Alloy Cu with a more oxidation resistant 
metal

oxidation rate limited by NiO
very sharp texture ~ 4°

ferromagnetic contribution
soft

stronger, non-magnetic, 
more oxidation resistant

resistivity is high unless 
particle dispersion is used

5 
µm

Deep holeDeep holeDeep hole

Cu AFMCu AFMCu AFM

rolling direction
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LSMO (111)

Cube % = 98.4

High High JJcc on conductive on conductive YBCO/LSMO/Ni/CuYBCO/LSMO/Ni/Cu
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Texture
YBCO: ∆ω= 6.5o, ∆φ= 7.1o

Cu: ∆ω= 5o,   ∆φ= 6o

Ni 1.6 µm

LSMO 200 nm, ρ (77K) < 1000 µΩ cm

T. Aytug et. al., JMR 18 (4) 872 (2003).

^
copper

n̂c

PLD YBCO 0.2 µm
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Electrical connectivity in Electrical connectivity in YBCO/LSMO/Ni/CuYBCO/LSMO/Ni/Cu
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Jc = 2MA/cm2 on AMSC Cu-Ni-Al alloy

J. Budai,Nature Materials (2003)

• Composition: Cu-Ni48% with 1-1.5%Al, Yield Stress = 130 MPa
• Substantial ∆ω improvement occurs in TiN
• PLD YBCO 0.3 µm thick

For TiN/Cu:
df = 2.11 Å > ds = 1.82 Å !

df < ds

6.452.814.00YBCO
6.483.304.01LMO
5.542.742.99MgO
5.722.573.01TiN
8.056.5210.73alloy
∆φ∆ω,r∆ω,t

Substrate (111)
98.6% cube

TiN (111)
98.9% cube

0

2

4

6

8

1 0

4 8 1 2 1 6 2 0 2 4 2 8 3 2

V(0 .0T )
V(0 .01T )
V(0 .02T )
V(0 .03T )
V(0 .05T )
V(0 .10T )
V(0 .20T )
V(0 .30T )
V(0 .50T )

Vo
lta

ge
 (µ

V)

I (A )

Jc (0.5 T) = 0.4 MA/cm2



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Buffers prevent Cu-alloy oxidation during 
YBCO deposition
• External oxidation forms γ-alumina, very reactive
• No sign of Al-O, Ti-O, Cu-O or Ni-O in x-ray scan
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• Initial Al-O was removed by chemical etching or ion-sputtering
• To prevent Al-O formation a nucleation layer of TiN was deposited at 

400 °C using enhancement of epitaxy by ion-sputtering (Ar+, 400 eV)
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Summary

• LMO/MgO/TiN is a suitable barrier for 0.3 µm PLD 
YBCO on Cu

• Results on textured tapes are limited by softness, 
oxidation from unprotected side, and rolling pits

• Jc = 2.3MA/cm2 on Ni/Cu
• FM Losses from a Ni overlayer are comparable to 

those of Ni-5%W
• Jc=2MA/cm2 on CuNiAl 
• Need a stronger, low resistivity Cu substrate
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FY 2003 PerformanceFY 2003 Performance
FY2003 Plans

• Research and develop faster, 
potentially lower cost, and 
simpler RABiTS buffer-layer 
architectures that are compatible 
with ex-situ YBCO processes

FY2003 Performance

Used Metal-organic deposition 
(MOD) process for buffers
High quality LZO seeds were 
produced in meter lengths
In-situ XRD of nucleation and 
growth of MOD LZO and CeO2
Successfully replaced PVD Y2O3
and YSZ with MOD LZO
High quality MOD-YBCO on MOD 
buffers

High Ic of 184 A/cm-w on LZO 
seeds
High Ic of 135 A/cm-w on LZO 
seed & barrier
High Ic of 141 A/cm-w on MOD 
CeO2 cap
Ic of 45 A/cm-w on all MOD
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FY2003 Plans (cont’d)

• Develop a viable high rate 
process to fabricate high quality 
buffer layers

• Collaborate with LANL and ANL 
to develop suitable buffer 
architectures on IBAD-MgO and 
ISD-MgO substrates for 
compatibility with ex situ YBCO

FY2003 Performance

Increased the deposition rate of YSZ 
by 10-20 times using reactive 
sputtering of metal alloy targets
YBCO films with a Jc of 2 MA/cm2

have been achieved on reactively 
sputtered YSZ barriers

Developed CeO2/LaMnO3 buffers for 
IBAD-MgO substrates
MOD-YBCO films with an Ic of 194 
A/cm-w have been achieved on 
CeO2/LMO/IBAD-MgO substrates in   
collaboration with AMSC
CeO2/LaMnO3 buffer for ISD-MgO
substrates (with ANL; in progress)

FY 2003 Performance Cont’d.FY 2003 Performance Cont’d.
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FY2003 Plans (cont’d)

• Continue fundamental 
studies of epitaxial growth 
on textured non-magnetic 
substrates, including 
copper and copper alloys

FY2003 Performance

Base line developments
TiN/MgO buffers block Cu and Oxygen 
during annealing at 750 °C
Cu bi-crystal studies established 
adequate grain boundary passivation

High Jc of 2 MA/cm2 have been achieved on 
AMSC’s Cu-Ni-Al alloys with an 
architecture of LMO/MgO/TiN/Cu-alloy
Feasibility studies of all conducting buffers 
on Cu have been initiated

High Jc of 2.3 MA/cm2 have been       
achieved on LSMO/Ni/Cu

FY 2003 Performance Cont’d.FY 2003 Performance Cont’d.
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• Develop all solution buffer architectures that are compatible with MOD TFA 
processes

• Achieve over 200 A/cm-w on solution LZO seeds
• Develop two-sided LZO layers
• Extend to 4 cm wide substrates

• Continue the collaboration with LANL and ANL to develop suitable buffer 
layer architectures for IBAD-MgO and ISD-MgO templates

• Continue research and develop robust and simpler RABiTS buffer-layer 
architectures that are compatible with ex-situ YBCO processes

• Focus on processing high Ic (approaching 200 A/cm-width) YBCO films on 
Cu or Cu-alloy by in-situ or ex-situ approach

• Continue fundamental studies of epitaxial growth of both PVD and solution 
buffers on textured non-magnetic substrates, including copper and copper 
alloys

• Strengthened, more oxidation resistant, and low-resistivity Cu-alloy
• Conductive architecture

FY 2004 Plans
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• ORNL – AMSC CRADA: YBCO on Cu-alloy substrates; MOD 
YBCO on Solution Buffers

• ORNL – University Student Interactions
− Resident students from Houston, Florida & Tennessee supported through 

AFSOR program (H. Weinstock)
• ORNL – LANL – AMSC collaboration: Demonstrated high Ic MOD YBCO 

films CeO2/LMO/IBAD-MgO substrates
• ORNL – ANL Collaboration: Buffers for ISD-MgO
• Transferred all the strategic buffer layer technology to all of our CRADA 

partners
• Published over 10 journal articles based on this work during FY 03; 

Posted our annual reports on the Web; 2 patents have been filed;
Several invited talks; Organized MRS and DOE workshops; Editorial 
board: Supercond. Sci. & Tech.; Technical Editor: ASC 2002

Research Integration


