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EXECUTIVE  SUMMARY

The U.S. Department of Energy (DOE) leads the national effort to bring the advantages of High
Temperature Superconductivity   (HTS) to the way electricity is generated, delivered and used.  The
Office of Utility Technologies Superconductivity Program for Electric Systems conducts multi-
disciplinary, cost-shared research to obtain high currents in electrical wires made of HTS materials
and to design high efficiency electrical devices using these wires.   The strategic plan is contained
in Superconductivity for Electric Systems Program Plan (FY 1996 - FY 2000).  Device design
activities have been supported since FY 1993, when wire manufacturers were first able to provide
long (over 100 meter) lengths of superconducting wire made of the ceramic HTS compounds.  Over
150 kilometers were supplied last year to program participants designing motors, generators, power
cables, current controllers and other devices.

Meanwhile, exciting program discoveries were made at Los Alamos National Lab in FY 1995
and at Oak Ridge National Lab in FY 1996 for a second generation HTS wire that meets
performance and cost goals for commercial versions of the devices now being designed.  The first
generation wire is made by packing a silver tube with HTS powders and then following a series of
thermal and mechanical processing steps to obtain long lengths with the ability to carry electric
current.  The new, second generation wire, method is to prepare metal strips so that HTS coatings
deposited on the strips will be highly aligned and able to carry very high currents. 

Interest in advancing this new technique is intense; in this country as well as in Europe and
Japan.  Several research consortia are already working with the national labs, each with a potentially
promising coating method.

This roadmap has been prepared to guide and accelerate this research by laying out the
individual steps that experts believe need to be taken in order that coated conductors fulfill their
promise.  The University of Tennessee Space Institute has led this roadmapping effort which has
been carried out by a team of experts from private companies, the national labs, and universities.
The intent is that by knowing the entirety of what needs to be accomplished, work on these various
tasks can proceed in parallel and reduce the overall development time to the window in 3 - 5 years
set by companies intending to begin commercial development of a broad range of commercial
products using HTS wire in the time period 2000 - 2010.

Background
Superconductivity describes the ability of certain materials to carry, or conduct,  large amounts

of electric current without resistance energy losses.  This mysterious state of grace was originally,
and unexpectedly, discovered in 1911 when a research lab in the Netherlands gained the ability to
reach temperatures near the absolute zero possible (-459.67 Fahrenheit).  The electrical resistance
of a sample of mercury was found to vanish when it was cooled to these very low temperatures.
Excitement swept the world over the possibility of transmitting electricity with near-perfect
efficiency and building better electrical equipment of all kinds.  A Nobel prize in physics was
awarded.  This experience was repeated in the late 1980's by the discovery of high temperature
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superconductivity; a new class of ceramic materials that lose electrical resistance when cooled to
the relatively balmy temperatures of atmospheric liquid nitrogen (- 321 Fahrenheit).  The news
made front page headlines all over the world because of the possibility of using electricity with
near-perfect efficiency and a Nobel prize in physics was awarded in 1987 for HTS.

Prior to the recent discoveries, widespread use of superconductivity in electric applications was
impractical.  The problem was first the inability to make usable electric wires during the period
1911 to the 1960's, and then the problem became the unacceptable costs of refrigerating wires to
the near absolute zero temperatures required.  HTS seemed to be the answer to the latter, until 1990
when the difficulty of making flexible, high current wires from the HTS ceramic material seemed
intractable - even to the hundreds of highly talented PhDs working on the problem all over the
world.

Fortunately, in 1991 a group at Vacuumschmelze in  Germany found that the  Powder-in-Tube
or PIT method described above made possible long wires using one of the HTS materials,
bismuth-strontium-calcium-copper oxide.  Companies in the US and Japan quickly duplicated these
results and long lengths of wires with quite good performance became available to engineers
wanting to design devices by 1993.  Two difficulties remain with the bismuth wires; they need to
be cooled far below liquid nitrogen temperature to be used in devices needing magnetic coils, such
as motors or generators.  Second, the predicted cost for manufacturing wires (now near $3 per
ampere-meter) by this method appear to be a barrier to their wide-spread use in a broad range of
applications where a cost near $0.01 per ampere-meter is desired.

Objectives
Second generation wire processing can potentially make use of any of the several known HTS

compounds, while PIT was only found to work with the bismuth compounds.  The present leading
candidate material, yttrium-barium-copper oxide, has the advantage of being able to carry high
currents in strong magnetic fields while being cooled by liquid nitrogen. This advantage is shared
by other rare earth substitutes such as neodymium as well as by thallium compounds.  Cost
projections for eventual long length manufacturing are presently close to that desired for widespread
application. 

The problems associated with wire development can best be understood by considering the
most critical performance measure - current density.  Current density is simply the amount of
current, expressed in amperes, flowing through a cross-section of wire, expressed in square
millimeters.  For comparison copper or aluminum wires are usually operated between 2 and 5
amperes per square millimeter in order to avoid overheating the wire and to avoid incurring large
resistance energy losses.  HTS wires, in a direct comparison, will operate at 500 amperes per square
millimeter with no resistance energy loss. Presently, the superconducting coating of coated
conductors has a current density of 10,000 amperes per square millimeter in short lengths.
However, when the thickness of the metal strip is considered (as it must be), the current density is
100 amperes per square millimeter - still far better than copper, but below the ultimate potential.
The challenges to development of coated conductors are:
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C minimizing the thickness of the metal strip while still providing mechanical strength and
providing a template for aligning the superconducting coating.

C developing a scalable coating process that provides 10,000 amperes per square millimeter
in the coating in short lengths and can potentially provide long wire lengths at or near $0.01
per ampere-meter.

C developing a coating process that provides 10,000 amperes per square millimeter in
coatings thicker than 1 µm (perhaps 5) to increase both current density and current.

C developing an encapsulation method that provides the needed  mechanical strength and
chemical stability while still attaining operating current densities of 500 amperes per square
millimeter or better in kilometer lengths of wire.

 
This document details a roadmap for preparing the metal strip (including substrates and buffer

layers), coating processes, encapsulation (including passivation) and process development based
on technical requirements for each performance characteristic of the final wire form.
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ROADMAP

1.  Introduction

1.1 Program Definition:

The U.S. Department of Energy (DOE) conducts research in high-temperature
superconductivity (HTS), as one of the programs of the Office of Utility Technologies.  That
program focuses on power applications of HTS which are of interest to electrical utilities and
industrial equipment suppliers.  In addition to research conducted at various national laboratories,
DOE has assigned the University of Tennessee Space Institute (UTSI) the task of developing a
roadmap indicating how to get from the research laboratory to commercial production of second-
generation HTS wire.  UTSI conducts their work under the auspices of the Federal Energy
Technology Center (FETC) in Pittsburgh.

Figure 1.1 is excerpted from Superconductivity for Electric Systems Program Plan (FY 1996 -
FY 2000), which is the plan for the DOE Superconductivity Systems Program [1].  This figure is
a portion of Figure 3 of that report.  Here we are concerned with one specific subset of the overall
superconductivity program:  making wire capable of carrying over 100 A/mm2 (Je) in magnetic
fields of 5 tesla (T) at liquid nitrogen temperatures.  No such wire exists yet, and it is the purpose
of the second-generation wire program to develop it.   Specifically, the goals of the program
envision commercially successful wire that is made entirely by the private sector.  (Low-
temperature superconducting wire made of NbTi enjoys exactly that position today.)

In the following sections, we strive to lay out a roadmap by defining a large set of �issues�
deserving attention, and clustering these issues into categories of obstacles to be dealt with.  The
issues are tabulated in Table 1.1, and are discussed in sections 2 and 3 below.  The primary
milestones are collected in section 4.  It must be recognized that competing technology does not
stand still, and this is covered in section 5.  The explicitly technical priorities of the program are
stated in section 6.  Section 7 is a summary; ancillary supporting information appears in the
appendices.

1.2  History
The foremost characteristic of a good roadmap is to avoid �detours� and �washed out bridges�.

Accordingly,  it is necessary to look over the horizon and anticipate what difficulties will likely be
encountered along the way. The history of HTS research leading to first-generation wire provides
background and offers guidance for the future [2].

In 1986 two IBM scientists, Georg Bednorz and Alex Müller [3], announced the discovery of
a material that was superconducting at 34 K, 11 degrees warmer than had ever before been
observed.  Within a year, scientists in the U.S. and Japan created new compounds with yet higher
superconducting transition temperatures.  In fact, by March 1987 eight new materials were
produced that are superconducting above 77 K, the boiling point of liquid nitrogen at standard
atmospheric pressure.  (Liquid nitrogen is an efficient cryogen, inexpensive, easy to insulate,
inexhaustible, readily available, and non-polluting.)  One of these, YBa2Cu3Ox (YBCO), has all the
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desired characteristics for use in the electronics industry but lacks one feature essential for use in
power applications: ability to be formed into wires by thermo-mechanical means.

In the late 1980's, scientists turned their attention to the Bi(Pb)SrCaCuO superconductor, a
family of HTS that has plate-like grains that align easily when wire-forming processes are used.
This family of wires is produced by what is commonly referred to as the oxide powder-in-tube
(OPIT or PIT) process.  For this, a silver or silver alloy tube is loaded with precursor powder.  The
tube is then sealed and drawn into a fine wire.  These round wires are cut and re-stacked into
another hollow tube and, after a series of additional drawing, rolling, and heat treatment steps,
multi-filamentary ribbons (or �tapes�) are produced with the desired superconducting phase
assemblage and texture.  Lengths of BSCCO wire as long as 1 km are now routinely produced by
companies in the U.S. and Japan. At liquid nitrogen temperatures, these wires can have overall
engineering current densities in excess of 100 A/mm2 with no applied magnetic field.  This
performance degrades by an order of magnitude at 77 K upon application of just a few tenths of a
tesla magnetic field.  Thus, in order to use these wires in electric machinery, such as motors,
generators, transformers, and energy storage magnets, the wires must be cooled to temperatures in
the neighborhood of 20-30 K using helium gas or a closed-cycle cryocooler.  Since
superconducting, rotating electric machines may need fields as high as 5 tesla, and since today�s
magnetic resonance imaging machines typically generate fields of 1 to 4 tesla, new wires are needed
that can take advantage of the simpler, less-costly cryogenics requirements associated with
operation at liquid nitrogen temperatures (65-77 K).

The YBCO compound has the unfortunate problem that its grains are difficult to align.  In
HTS, electric current doesn�t flow well from grain to grain through high-angle grain boundaries.
Coatings on silver and silver alloys have also proven to make poor superconductors, due to low
superconductor densities and poor grain alignment.  So, while YBCO is useful for making thin
films on single-crystal substrates for electronics applications or for small discs for bearings,
something else is needed for wires.

In 1988 Lawrence Berkeley National Laboratory [4] initiated work to form YBCO tape
conductors by depositing films on metal substrates.  This was a modest effort, and was regarded
as risky since it seemed likely at the time that a way would be found to make more conventional
wires of the YBCO compound.  However the weak link problem, caused by incomplete alignment
of film crystallites, proved highly intractable.  It thwarted the conventional approaches, and nearly
prevented success with deposited film conductors as well.  Fortunately, YBCO film growth itself
was not a problem; there were literally hundreds of papers reporting the successful growth of
high-current films by epitaxial film growth on single-crystal substrates.  Single-crystal substrates
are useful for electronic applications.  However, for electrical applications (that is, long wires)
strong temperature-resistant nickel-alloy substrates coated with yttria stabilized zirconia (YSZ)
buffer layers took the place of the single-crystal substrates.  The films of YBCO and YSZ were
deposited with the pulsed laser deposition (PLD) technique.  The YBCO crystallites readily formed
with the correct c-axis orientation normal to the substrate, but the in-plane orientation was random.
As a result the critical current density of YBCO films on metal [5] and polycrystalline YSZ
substrates investigated by Oak Ridge [6] appeared to be limited to about 100 A/mm2 (77 K, 0 T).
Thus, in-plane orientation appeared to be necessary.

Ion beam assisted deposition (IBAD), as applied by Lawrence Berkeley National Laboratory
[7], and an independent group at Fujikura in Japan, proved to be a solution to the texturing problem.
This increasingly popular technique utilizes the bombardment of a growing film with energetic
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ions, resulting in improved texture.  While a normally incident beam is usually used (but see [8]),
the Berkeley group found that an oblique ion beam can introduce the needed in-plane orientation
in the YSZ buffer layer.  Epitaxial growth of the superconducting YBCO film then resulted in
critical current densities up to 6,000 A/mm2 [7], an enormous improvement.   

Two new processes have been under development since 1991 that promise a new way to
manufacture flexible, high current density wires made from YBCO, something that has eluded
researchers since the discovery of YBCO in 1987.  These wires offer impressive performance
opportunities at liquid nitrogen temperatures.  In both cases, the key is to prepare a textured
substrate, or �template,� on which the YBCO may be deposited as a thick film.  Done correctly, the
YBCO grains are well-aligned, mimicking the alignment of the underlying substrate, resulting in
the prospect of long-length wires that are strongly-linked.  Biaxially-textured substrates, where the
atomic planes of the grains in each layer of the substrate are well-aligned in the surface of the tape,
represent one potential solution to the shortcomings to fabrication of long-length YBCO wires. 

The national laboratories attacked the YBCO weak-link problem in two different ways.  The
Los Alamos group worked to improve the IBAD process, refining the quality of the angular
alignment of the YSZ crystallites, and introducing an additional cerium oxide buffer layer which
eliminates the tendency of a few YBCO grains to crystallize with a 45 degree misalignment angle.
The  Los Alamos process is illustrated in Fig. 1.2.  With this process current densities reached 8,000
A/mm2  in 1994 [9] and 13,000 A/mm2 in 1995 [10].

Oak Ridge National Laboratory researchers turned their attention to developing sharp biaxial
textures in metals, such as nickel and copper, and then depositing on them additional, chemically-
benign metal layers with epitaxial orientation similar to that of the underlying metal strip.  In the
most recent architecture, Oak Ridge deposits the oxide buffer layers directly on the nickel tape, with
no intervening metal coating on the nickel.  Like Los Alamos, the thin oxide buffer layers are
placed on top in order to transfer the alignment to the superconducting layer while avoiding
chemical degradation, but Oak Ridge relies on the alignment of the first metal strip instead of the
IBAD process to provide the template for the superconductor (see Figure 1.3).  Oak Ridge calls its
substrate technology �RABiTS�,� or rolling-assisted, biaxially-textured substrates [11,12,13].

The Oak Ridge group produced the simplest version of their substrate using a dual metal oxide
buffer layer architecture and a common industrial film growth technique, called electron beam
evaporation. For this, extremely thin layers of two ceramic materials are rapidly deposited
sequentially using a laboratory-scale electron beam system.  A cerium oxide layer as thin as 100
angstroms is placed �almost instantaneously� on the rolled nickel, followed by a 140 nm layer of
yttria-stabilized zirconia.  In the lab environment, this layer takes about 20 minutes to grow.  The
ceramic layers in the RABiTS sandwich are, therefore,  remarkably thin.

1.3 Second-Generation Wire
The �first generation� of HTS wire is made from BSCCO [14], and several companies have

succeeded in making long ( > 1 km) lengths [15,16].  However, it is still quite delicate and very
expensive, and cannot stand alone as the commercial product for all HTS applications.
Applications using such wire are under development by various companies engaged in CRADAs
with national laboratories, so there is still a substantial government subsidy.

BSCCO is by no means an ideal material, since it carries  little current when used at 77 K in
high magnetic fields.  BSCCO needs to be refrigerated to near 20 - 30 K to carry high currents in
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high magnetic fields.  Therefore, researchers have continued to search for other forms of wire using
HTS materials such as YBCO and Thallium-Barium-Calcium-Copper-Oxide (TBCCO).  Such
efforts using the OPIT approach have, to date, been disappointing because these compounds do not
readily form wire like BSCCO.

As described earlier, the key to attaining high current capacity in YBCO is to achieve good
grain alignment, which begins with alignment of the substrate material [17,18,19].  For preparing
the substrates, the two leading candidate technologies are known as IBAD (Ion Beam Assisted
Deposition) [7,9] and RABiTS (Rolling Assisted Bi-axially Textured Substrates) [11,12].  The
question at hand is: can either of these methods lead to a manufacturing technology for long lengths
of wire that will ultimately be a profitable product? 

High critical current densities have been achieved using the RABiTS and IBAD substrates.
The magnetic field dependence of the critical current density is shown in Figure 1.4 for the RABiTS
and IBAD samples recently produced by the laboratories.  LANL has produced short samples with
absolute critical currents of 200 amperes (75K, self-field) and critical current densities in excess
of 10,000 A/mm2.  The sample was 1 cm wide and 4 cm long.  ORNL�s RABiTS sample (3 mm
x 15 mm) produced a critical current of over 30 amperes (77 K, self field) and a critical current
density of over 7,000 A/mm2 ; a 1 mm wide bridge was used for the self-field measurement.  At 75
K (the boiling point of liquid nitrogen at Los Alamos), the Oak Ridge samples yield Jc�s of >10,000
A/mm2.

The Superconductivity Technology Center at Los Alamos National Laboratory has been
developing continuous coating processes for both the IBAD textured layer, and for buffer layers and
YBCO by pulsed laser deposition.  The current IBAD system has been routinely producing 20 cm
long stationary tapes using a 20 cm linear ion assist gun, and modified to deposit the textured YSZ
layer on a continuous loop of tape 113 cm long.  The YBCO coating must be applied at elevated
temperatures, so a system was developed to transport the 113 cm loop over a heated roller.  The
laser generated vapor plume is then directed at the heated portion of the tape.

Using these systems, a number of 20 cm by 1 cm superconducting tapes have been fabricated.
The best results to date (75K, self-field) are an Ic of 70A over a measurement length of 12 cm (the
measurement length is less than the original tape due to the splices used to complete the loop, and
the current lead attachments).  For this tape the YBCO thickness was 1.7 microns, so the average
Jc was over 4,000 A/mm2.  To investigate uniformity, the tape was cut into 1 cm lengths and
patterned into 500 :m by 5 mm bridges.  The highest bridge Jc was 8,000 A/mm2.  On a separate
tape with a thicker YBCO film, an Ic of 96A was measured over a 1 cm length: considering the
0.004 inch thickness of the sample, the engineering current density was nearly 100 A/mm2.  The
next step is to produce full 113 cm lengths, which will begin as soon as the IBAD system
modifications are completed. 

The LANL samples have bend strain tolerance.  The sample will sustain a maximum tensile
strain of 0.5% and can be bent around a 2.5 centimeter mandrel with no current degradation.  At
1 tesla, critical current densities of 1,500 - 3000 A/mm2 (77K) have been measured across the full
sample width at both laboratories. 

The sample wires produced to date, while short (a few centimeters in length), have generated
tremendous interest among those who would use these wires in applications requiring strong
magnetic fields.  The coated conductors operating in the liquid nitrogen regime outperform the
metallic superconductors (NbTi, Nb3Sn) at 4.2 K.  Moreover, even in the worst field direction (H
|| c) and for temperatures below 65 K, the short-sample YBCO coated conductors operated in an
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eight tesla background field have at least a factor of three higher critical current density than pre-
commercial BSCCO-2223 wires with no applied field (Figure 1.5).

 Tapes coated with YBCO thick films offer many advantages over alternative superconducting
wire technologies.  The ability of these coated tapes to carry large electric currents with low
resistive losses when cooled with liquid nitrogen is a major benefit.  Another distinct advantage of
coated conductors is the combination of the  high current density, Jc (77K), of over 10,000
amps/mm2 with the absolute current of 200 amperes observed in a 2 mm thick film that is one
centimeter wide.  Possible deposition of such films on both sides of thin tapes (1-2 mils thick)
offers the opportunity to achieve very high engineering current densities.  One of the most exciting
opportunities these new conductors may offer is the prospect of a single layer transmission cable
with fewer tapes than are required with the OPIT materials and with greatly reduced AC losses.
In addition, the excellent behavior of the YBCO-based tapes at liquid nitrogen temperature and
subjected to high magnetic fields directed along the tape plane is also a distinct advantage over
alternative HTS materials.  

In addition to cables, there are many potential applications for YBCO coated tapes.  Due to
their ability to support high currents in magnetic fields above 2 tesla, several HTS applications
(such as motors, generators, transformers, current limiters, and magnetic energy storage)  may
eventually be commercially feasible due to the ability to operate at liquid nitrogen temperatures (65-
77K).  Magnetic separators based on HTS coils could be efficiently applied to recover commercially
valuable materials and to improve environmental remediation efforts.   Magnets for high-energy
particle accelerators, magnetic resonance imaging, and energy storage systems may also be feasible
in the liquid nitrogen temperature environment.

2. Wire Properties
The word �wire�, as commonly understood [2], normally implies long length, flexibility and

high current capacity.  Not surprisingly, many of the �issues� that we identify deal with the very
important goal of preserving these characteristics of the conductor.

2.1 Performance
The word �performance� applied to superconducting wire refers to the critical current density

Jc of the wire.  The early elemental (Type I) superconductors [20] were never of practical interest,
mainly because they carried very little current; and a magnetic field of a few hundred gauss (0.03
tesla) would quench superconductivity completely.  Type II superconductors have the very
important property of having high Jc even in magnetic fields of several tesla [21].  All the HTS
materials fall within the Type II category.  Samples of YBCO, BSCCO, etc. from 1988-1990 were
plagued with crystal imperfections and mechanical irregularities, and showed Jc values below 10
A/mm2.  The advantage of contemporary BSCCO wire is that it has Jc  > 1,000 A/mm2 (at
sufficiently low temperatures and modest magnetic fields).  YBCO coated conductors made via
IBAD techniques have Jc > 10,000 A/mm2 in short samples.  RABiTS technology is equivalent in
Jc in short samples, and may offer other advantages, which are further discussed below.

The high performance of these samples is due to very good grain-alignment, which in turn is
due to the substrate conditioning achieved by IBAD and RABiTS.  If the alignment of consecutive
grains deteriorates (i.e., misorientation of adjacent grains by more than 5 to 10 deg.), the value of
Jc drops sharply [10], and the material is no longer useful for high-current applications.  One
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objective of the second-generation wire program is to extend these coated conductors to very long
lengths ( > 1 km) while still preserving high Jc values.

It is far too early to forecast an outcome based on �either/or� IBAD/RABiTS methods.  In
1997, it would be shortsighted not to devote some effort to technically well-founded, small high-
risk, high-payoff ideas.  However, after 1997, it should be possible to eliminate or scale back
support of any HTS film-deposition techniques which cannot produce Jc > 5000 A/mm2 (at 77 K
and 0 tesla) on single crystals as they would not be acceptable in the multi-grain substrate.

The substrate technology is currently a technology driver as a separate entity, because many
unresolved technical issues remain before 100-m or greater lengths of the substrate, ready for
deposition of the superconductor, are available with the quality (texture, smoothness) required for
YBCO deposition.  However, the success of coated conductors also depends upon successful
development and deployment of affordable processes for YBCO deposition.  Whether or not a
particular process will scale to commercial systems is the object of considerable debate within the
technical community.  Nevertheless, most industry-led teams are feverishly searching for high-rate,
low-cost alternatives to the pulsed laser process.  This roadmap accounts for the fact that the
substrates may be ready for commercialization well before the superconductor process.  It is this
parallel path approach that allows for continued progress and broader access to "good" substrates
for pilot plant runs that will be needed prior to introduction of YBCO "coated conductors" into the
marketplace.

It is instructive to take the development of first-generation BSCCO wires into perspective in
order to extrapolate the development cycle of second-generation wires.  For example, the first
synthesis of the BSCCO-2223 compound occurred in 1989.  In early 1991, short lengths of less than
100 A/mm2 wire were available (Figure 2.1).  By mid-1996, kilometer lengths of wire with
engineering current densities approaching 200 A/mm2 had been produced, and at least one company
had fabricated over 100 km of the wire during the previous 12 months.  The estimated price
(unreported, but estimated from industry teams currently working in the DOE program) of the pre-
production wire delivered in 1995-96 to various systems' developers, ranged from $1000-3000/kA-
m, with typical Ic's of 20-30 amperes (77K, H=0) and piece lengths greater than 100 meters.
However, YBCO coated conductors require a completely new type of production equipment and
"thin film" processing techniques (common in the metallized can label, snack food bag, and
recording tape industries but quite different from much of the equipment used to make BSCCO-
2223 �OPIT� wires).  This capitalization represents a barrier to the YBCO coated conductor
development business that few companies can afford to overcome without strategic partnerships
with other companies, the national laboratories, and universities.  For example, estimates of the
capital cost to install a pilot line for coated conductors range from as low as $5 million to as high
as $50 million.  Clearly, the selection of  the "right" substrate and deposition technology has
become an important consideration.

2.2 Real Wire Considerations
Increasing the thickness of the conductor film is an important issue.  Total current, as

contrasted to current density, is what is needed in practical applications, and so a high Jc must be
accompanied by a large film cross sectional area in order to deliver the total current.  Typically, thin
films are perhaps 0.4 :m in thickness, so even a 1 :m film borders on the category of �thick�.
These conductors may require thicknesses (total) of 5 or 10 µm to achieve the total current needed
(unless values of Jc can be increased substantially), and this introduces a new worry.  As the YBCO
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layer thickens, is there a possibility that mis-oriented grain growth will occur, defeating the purpose
of the original textured substrate?  Also, will film mechanical properties (cracks in YBCO film over
3-5 µm thick) similarly limit the overall thickness?  It may turn out that 1 or 2 :m is the maximum
practical thickness.  Carrying out the experiments needed to answer these questions is one critical
step along the roadmap.

Any real wire includes some �overhead� for insulation, etc., and therefore we distinguish
between the critical current in the superconducting material itself Jc , and the �engineering� critical
current Je.  For practical applications, the figure of merit is Je , not Jc, because Je relates to how
much actual current flows through a real conductor with a certain cross-sectional area.  In the case
of BSCCO made by the Powder-in-Tube (PIT) method, the amount of silver surrounding the
BSCCO reduces Je compared to Jc.  In the case of YBCO coated conductors, the thickness of the
substrate and buffer may be ten times the thickness of the YBCO itself, in which case the reduction
from Jc to Je will exceed a factor of 10 -- the penalty for �overhead� is very severe.  Among samples
made thus far, a factor of 100 is typical.

Therefore, this aspect of the program plan demands the achievement of four simultaneous
objectives:  long length of thick film on thin substrates, while keeping excellent grain alignment
so that Jc remains high.  Only in this way will Je be sufficient to win out over competing conductors.

Referring to the issues chart (Table 2.1), for the first two lines (Jc and Je), the dots indicate that
Jc is an issue in the HTS material only, whereas Je is an issue involving the substrate, buffer and the
superconductor.  The dots throughout the remainder of Table 2.1 were placed through similar
reasoning for each issue.

Table 2.2 enumerates the properties of wire needed for a variety of applications.  The second
column shows the required current density of the wire, that is, Je.  This has important consequences.
The numerical values of Jc > 1,000  and Je > 100 A/mm2  together imply that the HTS material must
be at least 10% of the final wire cross-sectional area.  Allowing a very thin insulation of a µm or
two, this implies that the substrate can only be about 8 times thicker than the YBCO layers (2-5 µm,
one on each side) -- perhaps 32 to 80 µm, compared to 50-125 µm today.  This is going to be a
difficult goal to achieve; and when manufacturing considerations are added (see Section 3 below)
the severe mechanical strains may stand out as a major obstacle.

Furthermore, the uniformity of cross-section of both the buffer and the YBCO layer must be
maintained to within some tolerance over the full length of the wire.  In one sense, this is an
element of manufacturing quality control, but it must be understood that variations in thickness
uniformity affect Je.

From the viewpoint of setting priorities, this combination of Jc and Je numerical goals for long
length practical wires is necessarily first.  Below 100 A/mm2 (Je), we simply do not have practical
wire.  The second-generation wire program cannot compromise or water-down these goals.
Because this is such a critical objective, the likelihood of reaching a show-stopper is higher here
than in any of the other cluster of issues. 

2.3 Magnetic Properties
Moving down to slightly lower priority issues, we consider the cluster of issues relating to

magnetic behavior.  It must be recognized at the outset that the competing product BSCCO may
be adequate [22] for transmission lines, where the self-field is a small fraction of a tesla.  Here we
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are interested in operating at liquid nitrogen temperatures in magnetic fields of several tesla where
BSCCO cannot operate.

In the first generation of wire, the sheathing material (silver) is non-magnetic.  Using RABiTs,
the first thing to note is that the substrates are often magnetic materials (e.g., nickel).  Therefore,
it is important to investigate the interactions between substrate and HTS in a magnetic field.  (The
dots in Table 2.1 so indicate.)  It is a matter for experimental measurement to determine how the
critical current Jc(H,T) will behave when finite magnetic fields are applied to the combined coated
conductor.  Alternative choices of substrate (Hastelloy, stainless steel) may be examined to
minimize adverse effects of external magnetic fields, although it is expected that these alloys may
be difficult to align by rolling.

The subject of AC losses is complex and depends on the application.  Experimental
measurements are usually needed to verify theoretical expectations.  Often differences between
theory and experiment are interpreted in terms of conductor non-uniformity.  Generally, AC losses
are associated with changing magnetic fields.  Self-field losses are those which occur due to the
magnetic fields produced by the conductor acting on itself.  Other losses are caused by the
interactions of the different components of a system.  For a tape conductor, the orientation of the
magnetic field is important; the losses are usually larger when the field has a significant component
normal to the plane of the conductor.

Eddy current losses are due to currents induced in normal metal as the result of time-varying
magnetic fields.  In conventional motors, generators, and transformers, for example, these losses
are reduced by the use of laminated steel for the magnetic circuit and the use of thin conductor
strands for the copper conductors.  The steel is formulated with high electrical resistivity and
minimum magnetic hysteresis in mind.  Transposition of the copper conductors also can be used
to reduce eddy currents.  Second generation coated conductor technology offers reduced eddy
current losses relative to BSCCO powder-in-silver tube technology due to the higher resistivity of
the nickel or nickel alloys (relative to silver) used to support the superconductor.  However, the
ferromagnetism of pure nickel may lead to hysteretic losses if it is used as a substrate.

The AC hysteresis losses in the superconducting phase are generally described theoretically
with the use of the well-known Bean and Norris models.  The physical picture is that changes in
the externally imposed magnetic field cause flux penetration into the superconductor.  The losses
are proportional to the frequency, since the loss per cycle is fixed, and are also proportional to the
inverse of the critical current density.  Since second generation conductors are expected to have
high critical current densities, the inverse dependence of loss on Jc is a beneficial aspect.  Initial
measurement of self field losses on YBCO coated conductors seem to be encouragingly low and
probably interpretable with the Bean/Norris model [23].  

The geometry of a broad tape conductor may lead to deleterious circulating currents which
move along one edge of the tape and return along the other edge.  Such currents can be reduced by
reducing the width of the tape or by introducing narrow non-superconducting regions so that the
tape is effectively a group of narrower tapes.  

To date, only a few measurements have been made of AC losses in HTS materials [24,25].
Some applications have designed around the AC problem [26], as in the HTS electric motor project,
where the synchronous rotation of the HTS windings allows them to �see� a predominantly DC
field.  That won�t work in other applications, such as transformers.  For many cases, the AC losses
of the actual engineered conductor must be measured early in the design stages, so that the
operating penalty in energy losses is well-understood.
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In the case at hand,  the close proximity of a thick magnetic material (the substrate) demands
that attention be given to the determination of AC losses [27,28] for tapes processed by the
RABiTS approach.  It is expected that AC losses may not be a problem with IBAD tapes.  The
effect of hysteresis in nickel and related alloys cannot be ignored.  In this program plan, we
recommend that a sub-program of AC-loss measurements be carried out, using whatever length
RABiTS samples are available.  If some particular construction of the conductor is going to be so
lossy as to have no useful application, it is better to find that out early in the development effort.

Among other things, the AC-loss measurement program should be accompanied by a series of
design calculations to figure out what amount of losses are acceptable in various applications.  Once
the baseline loss data for actual samples is in hand, the projection to estimated operating costs in
practical devices should be a straightforward calculation.

2.4 Geometry
The geometrical considerations have mostly to do with the matter of flexibility.  Truly useful

wire will be bent in most applications [2], as shown in the column labeled �bend radius� in Table
2.2.  In some cases, the bend radius is as small as 1 cm.  The parameters of layer thickness, bend
radius, bending strain, and tensile/compressive strain all come together under the umbrella of
�geometry�.

At first, it seems desirable to coat the substrate with a very thick film of YBCO.  Doing so
increases Je, hopefully without sacrificing Jc.  But this is not assured.  The total current flowing in
the full conductor is the key figure of merit; if very thick films accumulate defects and then
succumb to poor grain alignment, for example, the anticipated Je will not be realized.  Maximizing
the useful film thickness is a key goal, and exploring the limits of various deposition technologies
is an important part of this program plan.

The variation of Je with film thickness needs to be experimentally investigated in this program.
The consequences of the findings could be severe.  If it should turn out that only thin films carry
high current, then a change of direction toward multi-layer sandwich conductors would be
indicated.  If Jc remains uniform as thickness increases, then the program should proceed to attempt
to maximize the YBCO layer thickness of the manufactured product.

Bending:  When a layer is 5 :m thick, and bent on a radius of 5 cm, the strain is of the order
of 1 part in 104.  However, these coated conductors including substrate may have total thicknesses
as large as 100 :m, and it is the total conductor that will be bent around the specified radius in each
application.  It is unrealistic to say �bend it only one way, not the other� in an attempt to spare the
YBCO layer from strain.  Accordingly,  in Table 2.2, we indicate strain tolerances of a few parts
in 103, rather than 104.  These numbers are not too severe for YBCO.

The tension/compression strain is a relative of the bend strain.  Results specific to coated
conductors are in agreement with the bulk results [10,33].   Data from TCSUH by Salama and co-
workers [29] has clearly demonstrated that, like all ceramics, the HTS materials can tolerate much
higher strain in compression than in tension [30].  In contemplating a film coating one kilometer
long, it makes sense to think about ways to �pre-stress� the substrate, so that the YBCO is in
compression during normal handling of the finished conductor.  It is well to remember that no one
has yet made a thin film 1 km long; stretching or buckling of the film as the substrate changes shape
may prove to be a very difficult obstacle.
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2.5 Monitoring of Information
The above categories of research do not involve the kind of specialized technical features that

manufacturers keep proprietary.  Therefore, it is anticipated that progress in these categories will
be widely disseminated through technical meetings and refereed journals.

As one example, it can be observed that progress in both IBAD and RABiTS technologies have
been sufficiently encouraging to warrant the attention of prospective wire manufacturers.  At the
moment, Oak Ridge [11] and Los Alamos [31] teams seem to be slightly ahead of European
researchers [32,33], and Japanese researchers are reporting progress toward longer length coated
conductors [34,35]; but we cannot become complacent about our knowledge here.  The
contributions of distinctly separate groups are often crucial to finding a pathway to a research
objective.  Keeping track of all these pieces is an important step in moving from research results
to ultimate commercial success.

2.6 Diagnostics
Both the materials and the process technologies envisioned here are exceptional, compared to

ordinary chemical and metallurgical substances.  Thus it is plausible to expect that there will be
entirely new physical measurements that will provide useful information about the behavior of the
YBCO-substrate combination.  Accordingly, this plan envisions a series of studies in the laboratory
which are explicitly aimed at discovering those exceptional diagnostic measurements.  Techniques
such as ellipsometry, RHEED, PREEL, Raman spectroscopy, and many other instruments [36] will
be part of the repertory of measurements.  New and innovative ways of measuring the important
parameters of HTS wires will be needed for robust manufacturing processes. An expanded
discussion of diagnostic technology as it relates to process control and measurements is contained
in Appendix B. 

3. Manufacturing Considerations
In any manufacturing process, there are trade-offs among process speed, down-time, cost, and

yield.  It no longer suffices to have everything scrutinized by the researchers; to be profitable, a
manufacturing process must run in a highly automated way.  Controllability of the process is
paramount, for without it, profits will vanish rapidly.  When manufacturing criteria are imposed
upon the products of a research laboratory, a major step upward in difficulty is taken.  The DOE
superconductivity program recognized this reality in the first generation of conductors, and this plan
anticipates the same requirements for second-generation conductors.

3.1 Process Scaling
Researchers are able to make short lengths of conductor using either IBAD or RABiTS

methods.  However, useful wire needs to be a kilometer or more in length for most power/utility
applications.  Clearly, the foremost objective of the scale-up effort here is to increase the length of
product.  The requirement is for about 4 orders of magnitude improvement in 5 years.  This is the
most ambitious goal in the entire DOE superconductivity program.  This cannot possibly be done
by a research laboratory alone, which is why this program is a cooperative one with industry from
the start.

Experiments to demonstrate scale-up of  film deposition will be costly.  Therefore, careful
preparation is required to qualify film deposition processes for prototype manufacturing.  In the near
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term, focus should be on demonstrating high rate, high quality film deposition with small-scale
modified research apparatus.   The stages of  process qualification include:

(1) Prepare HTS films thicker than 1 :m, with Jc above 10,000 A/mm2 (77 K, 0 T), on single
crystal substrates.  This figure corresponds to Ic greater than 100 A/cm of tape width.  (The
5-year goal is to reach a 100 A wire operating at liquid nitrogen temperatures and 5 T, which
may be achieved with thicker films and/or further improvements in Jc.)

(2) Demonstrate on a lab scale similar technology on metal substrates, using suitable buffer layers
and a high temperature superconducting coating.

(3) Determine the maximum specific film deposition rate (:m per minute) which can be achieved.
Identify the barriers (defects) which limit high rate growth, and work to eliminate them.

(4) Determine the window in various processing parameters (such as substrate temperature,
working pressure, deposition rate, etc.) which is available for high quality film growth.

(5) Proceed to continuous processing of  short tape samples (less than one meter in length).
Experiment with progressively thinner substrate tapes, and determine appropriate film and
substrate thicknesses.  Considerations here are film mechanical properties, the observed
dependence of Ic on film thickness, and difficulty handling very thin substrates.

(6) Based on the results of steps 1 to 5, plan a pilot plant facility, compare estimates of
manufacturing costs with the requirements of the various applications, build a facility and
produce �samples�.
Up to the present time the IBAD and RABiTS processes for producing textured substrates, and

the pulsed laser deposition technique for buffer and HTS film deposition, are the techniques of
choice for laboratory investigation of small prototype samples.  This choice is based on the fact that
the resulting prototype samples satisfy criteria 1 and 2 above, and work is in progress on items 3
to 6.  However, reaching the cost goals at which applications will be attractive will most likely
require process improvement, process modifications, and process substitutions.  For example, the
film deposition steps for both the IBAD and RABiTS substrate preparation alone, are presently too
slow.  Pulsed laser deposition of the thick HTS layer is also prohibitively slow and must be
radically improved or be replaced by some other process such as e-beam evaporation, MOCVD,
or wet chemical processes (e.g., sol gel).

In the following paragraphs, we address some of the specific issues involved in scale-up.

3.1.1 Thickness
Manufacturing of coated conductors requires that high-quality films be deposited on substrates

at high rates.  The superconducting layer will be relatively �thick�, in the range of 1 to 10 :m;
whereas buffer layers, diffusion barriers, passivation layers, etc., can be thinner.  Since the thinnest
commercial metal tape substrates (e.g., of oxidation-resistant nickel superalloys) are about 1 mil
(25 µm) in thickness, it is important (as stated in Section 2 above) to obtain a thick superconducting
film.
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The maximum permissible thickness is not yet known.  Thicker layers are stiffer and more
prone to fracture; they are also more prone to delamination due to differential thermal expansion
during processing.  However, it is clear from  more than one study [10,37] that films several :m
thick may be acceptable.

3.1.2 Speed
The speed of the production process is of paramount importance; �production time� is an

interchangeable term.  The manufacturer�s question comes down to: How many meters of wire were
produced today?  Most YBCO films fabricated to date have been deposited over cm-sized
substrates during a period of a few minutes to hours.  In these laboratory studies, the primary
consideration has been film quality, not deposition speed.  Straightforward scale-up entails
deposition on larger area substrates, and increasing the power to the deposition-apparatus to boost
rates until film quality just begins to degrade.

As noted previously, scale-up for tape conductor manufacturing requires high rate film
deposition of buffer layers, superconducting layers, and any passivation layers, such as a top silver
layer.  Small-scale laboratory deposition rates are typically only a few angstroms per second; the
growth of a :m thick film then requires roughly an hour.  Since one would like to deposit at least
a few square meters per hour, the size of the deposition equipment would need to be rather large.
An order of magnitude increase in deposition rate can permit the deposition chamber dimension to
be reduced by a factor of  3, and the cost of the chamber correspondingly falls by a factor of about
30.  Thus, there is a significant incentive to increase deposition rates.  For very thin buffer layers,
the deposition rate is less critical.

Each film deposition process will have some maximum rate, beyond which defects or other
problems such as supplying source material or removing by-products are limiting.  For example,
diffusion of the depositing atoms on the growing film surface requires time.   If the deposition rate
is too high, then some atoms will not have time to diffuse to their proper sites.  Research is ongoing
to determine what these maximum rates are for various processes. 

A few specific examples can indicate some of the increased rates achieved so far.  For pulsed
laser deposition, YBCO coatings have been formed at rates higher than 1 µm per minute.  This is
done by increasing the pulse rate of the laser.  Unfortunately, the size of the laser plume is such that
only a small number of square centimeters of  substrate can be coated by a single laser, so that
larger lasers and multiple lasers would appear to be required.   With photo-assisted MOCVD, rates
on the order of 1 µm per minute of YBCO have also been achieved [38].  In this case, the present
high cost of the precursor metal-organic compounds is presently an issue.  Electron-beam
co-evaporation is believed to have considerable potential for large area deposition at high rates.
One recent paper [39] reports a technique for coating substrates up to 9 inches in diameter with
YBCO, at nominal rates of 24 nm/min.  For co-evaporation, an important issue is the accurate
balance of evaporation rates from the separate Y, Ba, and Cu sources.

For relatively thick YBCO films, grown at high speed, it can be expected that oxygen annealing
will require attention.  In small scale growth, the films are generally cooled slowly from a high
deposition temperature (above 700EC) in oxygen.  During this cooling oxygen is absorbed by the
films (at 400E - 500EC), and the non-superconducting tetragonal phase is converted to the
superconducting orthorhombic phase.  Since this oxygen diffusion is a relatively slow process,
particularly in the c-axis direction, it is anticipated that spools of YBCO tape may need to be batch
annealed to ensure adequate oxygen uptake.
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For IBAD buffer layer growth, the present laboratory rates (a few angstroms per second) are
too slow for straightforward scale-up, since the required thickness is nearly a :m.  Researchers need
to speed up the deposition, or produce good biaxial orientation with much thinner layers, or both.
Recent results from Stanford [40] on ultra-thin IBAD MgO buffer layers are promising in this
regard.

The buffer layers for RABiTS can apparently be rather thin, certainly less than a :m.  The
maximum buffer layer growth rate may be determined by the fact that fully epitaxial growth must
be maintained.  The texture from the metal substrate must be passed through each buffer layer to
the HTS layer.

At a minimum, any viable manufacturing technique must produce a few square meters per
hour.  This contrasts with current laboratory rates of a few cm2/hour.  Thus, film-deposition rates
must increase by about four orders of magnitude.  (Despite the high areal rate, the amount of YBCO
to be deposited is only a few tens of cm3/hr.)

We are starting from thin-film techniques, which are used under laboratory conditions to
produce centimeters of material; we want to get to an automated technology churning out thousands
of kilometers annually.  That is a huge step.  We have to face squarely the possibility that �you can�t
get there from here� in an economically acceptable manner.

The phrase �industry-driven program� is nowhere more pertinent than here.  Companies who
are prospective wire manufacturers have to call the shots when discussing scale-up.  The national
laboratories can understand basic properties, and can innovate process methods, but they are not
geared to doing full-scale manufacturing. 

3.1.3 Cost
An issue closely related to speed is cost.  A key question is whether long lengths can be

manufactured economically.  In Section 5 we present a few simple calculations to illustrate how the
cost of capital equipment must be amortized over the total wire produced.  In fact, that amortization
can be represented as a cost-per-unit-length, which underlines the importance of having a
manufacturing method which produces long lengths of conductor quickly.

The cost of materials used in the coating process will also have a significant impact on the final
product cost.  Some processes require exceptionally pure materials and quality control will be an
issue in the delivery of these materials in large quantities.  Hopefully larger quantities will provide
economical benefits as opposed to the small lots being purchased for lab scale work at present.

For the process of actually depositing the YBCO film, some of the equipment being
contemplated is very expensive.  At the research level, pulsed laser deposition is used to produce
the YBCO films, because pulsed-laser deposition preserves the chemical stoichiometry of the
material being transferred from target to substrate [41].  The favorable results on short samples
were obtained by this route.  However, serious production may likely demand some other cheaper,
faster method of deposition.  Electron-beam deposition is being studied [42].  Macroscopic coating
techniques for thick films, such as the Doctor-blade method are known, but the question of
preserving good grain alignment must be addressed.  Right now there is no candidate technology
that is known to be cost-effective.  Therefore, this issue stands out as a critical item on the roadmap,
which must be solved through innovation by the participating teams of national labs, universities
and wire manufacturers.
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3.1.4 Quality Control
Every industrial process depends for its commercial success on a very dependable quality-

control system.  Generally, the computer algorithm for real-time process control uses certain
actuators to regulate parameters of the process line.  To do so, feedback of real time data from on-
line sensors is needed.  To assure stability of the process, the combination of sensors, control
algorithm, and actuators is arranged into a closed feedback loop to keep parameters within a safe
operating area..  It is instructive to examine how modern conventional commercial vacuum film
deposition is performed as an example [43].  This article discusses systems for thermal evaporation
from resistively heated boats, electron beam evaporation, magnetron sputtering and plasma-
enhanced chemical vapor deposition.  A typical example is the deposition of a thin metal coating
on a polymer film (the �web�) for the manufacture of capacitors.  Substrate thickness ranges from
20 µm down to less than 1 µm.  Metal coatings 30 nm thick are deposited on 800 mm wide
substrates at rates of roughly 10 meters per second.  Immediately after coating, as the film moves
to the rewinding drum, the coating quality is monitored with suitable diagnostic equipment.  In this
case of simple metal films, optical transmission, optical reflectance, or sheet resistivity are often
monitored.

HTS film and buffer layer coating processes are more complex, since the materials are more
complex.  For YBCO film deposition the substrate temperature is one of the key parameters
requiring control.  Temperatures which are too high cause film roughness and contribute to
undesirable interdiffusion of film and substrate materials;  temperatures which are too low lead to
nucleation of a-axis grains instead of the desired c-axis orientation.

As another example, consider the electron-beam co-evaporation of  yttrium, barium, and copper
metals, which in the presence of oxygen, can produce YBCO films.  The deposition rate of each of
the metals must be controlled to produce the correct 1:2:3 ratio of the cations.  One proposal for
tightly controlling these rates is to use atomic absorption spectroscopy to monitor the individual
rates [44].

Several questions immediately arises: what sensors? what measurements? what parameters?
what actuators?  Here is where the diagnostic tools discussed in Section 2 above have their impact.
Based on what is learned through laboratory measurements with diagnostic tools, it will be possible
to select certain physical phenomena that are quite sensitive to critical properties of the tape or wire
being produced.  Then a relatively simple measurement package can be placed on-line which
determines that property with sufficient accuracy to enable a control strategy to be implemented.
 In the later stages of this program, we envision partnerships (CRADAs) between industry and
national laboratories to create a series of on-line measurements that will ultimately provide the
necessary control strategies to make coated conductors at speeds that are cost-effective and
profitable.

3.1.5 Splices
The requirement that YBCO coated conductors be a kilometer or more in length is a major

manufacturing challenge.  Furthermore, there are applications that need much more than one
kilometer.  Therefore, it is necessary to investigate the matter of connecting pieces of this wire.
Two complementary issues arise here.  What is the minimum lot length that is acceptable as output
of the process line?  And how much current capacity is lost when two pieces are spliced together?
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Clearly, if splices can be made with very low losses, shorter production runs become tolerable; and
conversely.

In the past, splicing of either YBCO or BSCCO has not generally been considered �successful�,
because the junctions had mismatched grains and thus had sizable losses.  Research ongoing now
[45] which includes careful grain alignment will hopefully yield splices of better quality and lower
losses.  Fairly early in this program, some specific numerical goals for acceptable splices should
be established and incorporated into the collection of milestones.  For some applications a few low
resistance joints may be acceptable.

3.2 Endurance
In Table 2.1, a series of issues are listed under the heading �endurance�, including

encapsulation, shelf life, thermal cycling, etc.  These are all issues of importance to wire
manufacturers, and will certainly affect profitability somewhere downstream.  Presumably scientists
from the national laboratories may be valuable advisors in addressing them.  However, none of
these issues are likely to produce a �show stopper�, and therefore do not appear to pose obstacles
along the roadmap.  Here we give them very little attention, preferring to allow private-sector
partners to consider these issues in due time.

3.3 Life Cycle Costs
Referring once again to Table 2.1, certain issues have been identified under the category of Life

Cycle Costs.  Specifically, the operating costs of using this wire (as compared to competing choices
of wire), as well as the capital costs of manufacturing equipment, each need to be considered.  The
total cost of transmitting current is a combination of factors.  For wire to be sold at a profit, that
total cost must be less than the value added by the application in which this wire is used.
Otherwise, no truly commercial sales will occur, and the only uses will be in projects supported by
subsidies of some kind.

Basically, these issues are matters of competitive costs, because at some price level, YBCO
will cease to be the technology of choice.  Section 5 deals with competing technology, including
the capital cost of manufacturing (Section 5.1) and the advances in other wire technologies (Section
5.2).  Considerations within this category are handled best by the private sector, where making
decisions about investing in various technology options are a standard part of doing business.  In
this program, we expect that as research objectives are met and manufacturing concepts start to
receive attention, the private-sector partners will contribute the necessary analyses of life-cycle
costs.

4. Milestones
This program plan defines a roadmap (Figure 4.1) that will lead to practical coated conductors

for specific applications.  Any good roadmap has checkpoints along the route, to provide feedback
and evaluate progress.  The same is true in this program plan.  Our expectations are that gradually,
over a period of several years, a product will evolve that is considered a true, useful conductor.
Enroute to that, a number of subordinate technical accomplishments may be defined.  
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4.1 Wire Properties
Table 4.1 proposes  a collection of numerical objectives for the various properties of the YBCO

coated conductor, to be reached by the annual dates indicated.  These numbers apply to a �generic�
second-generation wire.  By contrast, the �final-state� properties of wire serving various specific
applications are displayed in Table 2.2.  Comparing those two tables reveals that the �generic� wire
is fairly representative of the properties needed for most applications.

If the numerical goals in Table 4.1 are reached on time, then there will be wire at the end of
the tunnel.  These numbers are certainly challenging; but they are generally agreed-upon by
technical experts at the participating national laboratories and corporations [46].

4.2 Participation Milestones
Because the long-range goal of the second-generation wire development program is to end up

with wire for sale commercially, it is reasonable to expect that corporate partners will become more
active in the program as the technical milestones are reached.  Their level of interest is a criterion
for evaluation by DOE management.  Accordingly, certain milestones for private-sector
participation are proposed here, to allow a measurement of that interest.

By the start of FY1999, there should be significant private sector participation in place (i.e.
CRADAs) which focuses on YBCO coated conductor development.  No specification is made here
of who the corporate team members should be; the likely partners envisioned today may have a
�full plate� of other interests when FY1999 gets here, and other partners will step up instead.
However, if interest in forming CRADAs is very weak by then, it is a signal that a cornerstone
principle of the program is lapsing, and that condition calls for re-evaluation of the entire effort.
In all likelihood, the level of CRADA activity will reflect the achievement of technical milestones
toward real wire.

By the start of FY2001, the participation of private companies should reach a level that will
enable industry to ramp up to a manufacturing plant a year or two later.   Table 4.2 is a summary
of cooperative agreements industry has on the �Second Generation� wire.  Once again, this level
of interest will easily happen when (not �if�) the technical milestones are achieved.

5. Competing Technologies
There are very real constraints on the allowed cost of any new product, and these constraints

constantly tighten with improvements in alternative methods of reaching the same objective.  HTS
coated conductors are no exception to this rule.

5.1 Upper Limits
For any product, there exists an upper limit on price, above which sales vanish.  For many

products now in commercial use, the manufacturing cost of the first few units was so high that no
one but the military had a deep enough pocket to afford it.  The C5A military transport plane comes
to mind; eventually it evolved into today�s commercial airliners.  But the front end cost was far too
high to attract venture capital.  Closer to home, the modern MRI machine (containing a
superconducting magnet) is standard equipment in many hospitals now, but only a decade ago these
machines were expensive research tools.  MRI was implemented on a wide scale only because the
�value added� associated with medical care is considered very high; and because nearly all medical
bills are paid by a third party (often Medicare = the federal government).
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When we consider power applications of superconductors, neither national defense nor health
care stands ready to justify a high price.  The utilities who will be the ultimate customers for
second-generation wire have other choices, including the status quo (i.e., using copper wire).
Replacement of existing technology will only occur when the total costs (capital plus operating) are
substantially lower and the risk is no higher.

Suppose, hypothetically, that when all the losses are rolled together, expensive YBCO coated
conductors have perhaps 2 % of the resistance of copper wire at 77 K.  The higher capital cost for
the YBCO can be weighed against the higher operating cost for copper.  �Capitalizing� an operating
cost can be done by treating the annual operating cost as an annuity [47], and asking how much
principal is required to produce that cash flow (at typical interest rates).  If one assumes an
�annualized cost of capital� rate of 10%, then in order to generate $100,000 annually, it is necessary
to set aside $1,000,000.  Thus an annual operating cost increment of $100,000 balances against a
capital cost increment of $1,000,000.  When a different  rate is chosen, the numbers shift around
somewhat, but the idea is the same.

Calculations of this type need to be carried out in order to find the crossover points at which
HTS conductors cease to be attractive.  Such calculations will refine the existing ball-park estimates
about the acceptable price of wire, by including comparisons between copper and HTS conductors
with realistic operating parameters.

Once an upper limit on price is established, that in turn will constrain the choices of
manufacturing techniques.  Consider a simple example:

Suppose a hypothetical manufacturing process requires $30,000,000 worth of plant and
equipment to make 100 km of wire each year, and the wire carries Ic = 103 amperes ( = 1 kA).  Is
this an acceptable cost?  Starting with an opportunity-cost-of-money of 14%, then a capital
investment of $30 million is equivalent to an annual outlay of $4.2 million.  That outlay must be
amortized over the 100 km of wire produced.  Therefore, $4.2 x 106 / (105 m x 103 A) = $ 0.042 /
A-m, or $42/kA-m.  This is the equivalent cost of capital alone.  We have not even mentioned either
the raw materials cost, depreciation of the capital equipment, or the annual operating cost of the
factory.  All of these drive the $42 figure still higher.  (The target price is $ 10/kA-m.)  This price
is far too high.  To solve this dilemma, either the machinery must be a lot cheaper or run a lot faster.
The upper limit on wire price has thus set certain constraints on the manufacturing process.

Coming at it from another direction, if the value of a superconducting tape 1 cm wide is
roughly $ 1/meter, then a small manufacturing plant with a value of $ 30,000,000 must produce
several million meters of tape per year to justify the investment.

Detailed cost analysis of this type is always done by entrepreneurs before committing their
resources to a process.  Within this program plan, we anticipate that an important contribution of
the private-sector partners will be to consider all the financial aspects carefully.

5.2 Alternatives
Alternative technologies also advance over time, and so YBCO coated conductors will be

challenged by improvements in competing products.  At the moment, the cost figure of $10/kA-m
is a convenient target for thinking about manufacturing HTS wire, but that number is likely to
decline in the years ahead.  There are several different categories of competitive improvements.
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5.2.1 Refrigeration
Ten  years ago, the only temperature-choices were 77 K or 4 K, and there was no reason to

think about operating at intermediate temperatures such as 20 K or 50 K.  Today, with advances in
Gifford-McMahon refrigerators [48], it is easy to run at such temperatures, and so BSCCO wire
enjoys a substantial useful range.  However, from Figure 1.5 it is obvious that YBCO enjoys a
decided performance advantage over BSCCO,  Nb3Sn and NbTi materials, at a given temperature
and magnetic field.  The refrigeration system employed will be determined to a large extent by the
application used.  In some cases it will be necessary to use liquid nitrogen, or helium, for practical
reasons.

5.2.2 BSCCO
Advances in BSCCO wire compete with YBCO coated conductors.  To date, BSCCO-2212,

which has Tc = 80 K, carries very little current in magnetic fields of 1 tesla or more, and its
applications are confined below 30 K.  However, BSCCO-2223 [(Pb,Bi)2Sr2Ca2Cu3O10] has a higher
transition temperature of 105 K, and there is hope that improvements in pinning will enhance its
usefulness in the 40 - 60 K range.  Researchers  have pioneered an improved form of PIT (Powder-
in-Tube) technology, which features inserting a silver wire in the center of the tube, so that the
BSCCO-2223 forms an annulus.  A key research discovery here was that nearly all the current is
carried in the boundary region of BSCCO close to the silver.  Hence, by increasing the fraction of
such boundaries in the cross-section, the critical current Jc increases.  Of course, BSCCO wire is
still very sensitive to the alignment of the magnetic field (H || ab vs. H || c axis) [49], so this is no
panacea.  Still, it illustrates that there is progress in BSCCO technology.

5.2.3 ReBCO
Over the horizon, the choices are not necessarily limited to YBCO and BSCCO. Today, the

thallium compounds are very difficult to work with, because the high vapor pressure of thallium
contaminates apparatus.  Moreover, TBCCO lacks the important property of micaceousness that
allows BSCCO grains to be so well-aligned.  Hence the prospects for making TBCCO wire are
considered bleak today.  However, it may be that the IBAD or RABiTS processes will produce
substrates on which TBCCO crystals will form with good alignment. In that case, TBCCO-1223
[50,51,52] may become a competitor to YBCO coated conductors.  Thallium films with Jc�s of
10,000- 100,000 A/mm2 have been demonstrated by SUNY-Buffalo and by Midwest
Superconductivity on single crystal LaAlO3.  The Tl-1223 precursors were deposited by PLD.
Thallium films develop texture in the post-annealing step, so epitaxy during precursor deposition
is not required (as is the case for YBCO deposited by PLD), a potential advantage for thallium.  The
higher Tc may also be important to certain power applications.  With a suitable lag time for
conducting basic research, the same speculation may be offered about the mercury [53] compounds.

5.3 Implications
At our present early stage, we need not take a position on any of these future possibilities.

When the time comes, the private sector companies who will eventually be the manufacturers of
various forms of superconducting wire will be better able to judge economic trade-offs.  Right now
we are dealing with a research program, and our roadmap strives to define a set of milestones that
can enable future decisions to be made.  One possible decision is always to say �Give up and stop�;
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but the more likely scenario is that as milestones are reached, the need for specific further
development work will be better understood, and the details of the road map will be refined.

6. Technology Requirements and Priorities
Every program of research ultimately is made up of a collection of technical activities, each

focusing on one particular component of the overall goal.  This program, spanning several national
laboratories and involving many industrial collaborators,  contains a wide variety of technical tasks.
In this section we briefly discuss some of the highest priority technical questions, and then present
three tables that list the tasks cited by the Steering Committee as essential to achieving the final
product: practical YBCO coated conductors.

The first set of questions deals with how the performance of the YBCO film depends upon:

C YBCO Deposition rate
The highest rate at which epitaxial films can be grown on the buffered substrate is not
known.  Rates of the order of 1 µm/min or higher are needed for commercial purposes.
Microstructural studies must accompany transport critical current density measurements to
establish the limit to the YBCO growth rate.

C YBCO Coating thickness

The engineering current density, Je, and the economic viability of the superconducting tape
will be driven by the thickness of the superconductor.  Beyond a certain thickness value,
presently not well-known, the Jc may deteriorate to a point that additional YBCO is not
valuable to the structure.  The effect of rate of deposition also plays a role in the Jc versus
thickness equation.  In addition, compositional variations as a function of deposit thickness,
substrate texture, substrate smoothness,  and chemical contamination from underlying
layers at the YBCO deposition temperature are all expected to play a role in determining
optimum thickness.  Mechanical properties  and stresses will depend on thickness and these
will be issues to consider in determining the maximum thickness.

C Magnitude of composition variation away from stoichiometric Y-123
The composition window can be an important driver, depending on the deposition process
being used.  A certain composition window, with yttrium or copper slightly rich and the
barium deficient, is known from the literature to be acceptable.  However, the outer
boundaries for this composition window on coated conductors have not been established.
Naturally, a wider window simplifies the design of systems with feedback composition
control, such as electron beam evaporation.   The effects of the degree to which the YBCO
is off-stoichiometry on deposition rate and total thickness must also be determined.

A second category of questions deals with the metal substrate type and quality (textured nickel,
commercial Hastelloy, etc.)  The type of substrate will affect the overall cost and utility of the
superconducting tape.  For example, the high-purity nickel used for RABiTS may cost more per
unit weight than commercial Hastelloy.  Certain applications may require a non-ferromagnetic tape
substrate, ruling out today's RABiTS altogether.  Finally, the pure nickel used for RABiTS is
extremely soft at the YBCO deposition temperature, making design and operation of a continuous,
non-contact heating and deposition system challenging due to handling issues.  The development
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of strengthened, non-magnetic metal substrates might be an important aspect of any technology
roadmap for RABiTS.   The effects that substrate materials have on AC losses need to be
determined for the coated conductor configurations being developed.  A trade-off study yet to be
undertaken would compare the costs of preparing the metal substrates used by both the IBAD and
RABiTS processes.

Third, the selection of any deposition technique necessarily implies certain other subordinate
technical questions.  There is no perfect technique.  For example, when contemplating MOCVD,
pulsed laser deposition or high-rate sputtering, there are major worries about the ultimate deposition
rate achievable.  Pulsed laser deposition has a very high capital equipment cost, and target/plume
stability issues; high-rate sputtering raises questions of compositional control; MOCVD has major
issues with precursor quality and cost.  

Electron beam evaporation, by contrast, faces obstacles associated with melt pool stability, on-
line composition monitoring (by atomic absorption), an activated oxygen delivery system, control-
algorithm development, the beam density at the substrate, and several other variables.

Wet chemical deposition techniques have been demonstrated with Jc�s of 10,000 A/mm2 [54]
on single crystal substrates and, if applicable to metal substrates, could present an attractive
alternative to vacuum-based deposition.  This choice could result in a cheaper overall substrate if
buffer layers were deposited entirely in ambient conditions.

There are certain technology issues that are common to all techniques: for example, substrate
heating and handling at 700E-800EC.  Also, there is a need for physical modeling of the deposition
process to optimize composition control, coating uniformity, process yield, and so on.

6.1  Summary of Principal Technical Issues
This program plan recognizes at the outset that the development of second-generation

conductors is to be an industry-driven program.  The ultimate goal of commercial success will be
achieved by clever and practical innovators, and this will occur downstream.  At this writing, it is
only possible to enumerate examples of the type of technical obstacles to be overcome - first at the
R&D level, and later at the manufacturing level.  Here we present tables 6.1 and 6.2, listing selected
(but not exclusive) technical issues of high importance for both the substrate and the
superconducting layer development.  In addition, there are wire-related issues that must eventually
be addressed, especially by the private sector partners as they move toward commercialization.
These issues are listed in table 6.3.

7. Summary
The foremost objective of the second-generation wire development program is to establish

enabling coated conductor technology from which the private sector can proceed toward
commercialization. 

In the sections above, we have described the various issues that must be addressed in order to
reach the desired goal of commercial wire.  In this section, we try to put all these pieces together
into a unified story that explains the roles of DOE, the national laboratories, and the private sector
partners.

Figure 7.1 is a sketch of the progress envisioned in this program.  We begin with a basic
understanding of how to coat substrates, but no capability to make wire.  In the early stages ahead,
the work to be done is research, and will be done predominantly by the national laboratories; the
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private sector companies will provide guidance, based on their knowledge of what must lie ahead
in any manufacturing process.  As the program meets its early milestones, we anticipate that
additional CRADAs will form, and private-sector participation will equal that of the national labs
(i.e., 50/50, as in normal CRADAs).  At an intermediate point, probably in FY1999, one or two
preferred methods of making long lengths of coated conductors will emerge.  After that, the
CRADA mechanism will continue as pilot production lines become established.  During this later
phase of the program, company trade secrets will become the central distinguishing features of
competing processes; the national lab scientists involved will respect confidences throughout this
phase, just as they have already done as they worked on developing BSCCO wire.  Finally, in future
years beyond the scope of this plan, private-sector companies will refine their own preferred
manufacturing techniques to make truly commercial wire.

For practical wire, the engineering critical current Je is much more important than the critical
current in the YBCO layer Jc. Je is a  smaller number, owing to the inclusion of the thickness of the
substrate, the buffer layers, and an outer coating of insulation.  Even if that insulation is only a
one-mil thick coating of varnish, still these layers of "baggage" may add up to nearly 100 µm,
compared to a YBCO film thickness of 1, 2 or at most 5 µm.

The penalty in the Je / Jc ratio is severe.  Certain applications (electric motors, for instance)
require engineering critical currents above 200 A/mm2; therefore, researchers need to strive
diligently to maintain Jc above 10,000 A/mm2 in the YBCO film.  Also, while getting the film
thickness up near 5 µm is obviously desirable, it is equally important to maintain very high Jc for
the entire thickness of the film -- a point which has not yet been demonstrated.  At the wire
manufacturing companies, emphasis must be placed on ensuring the survival of a very thin substrate
(one mil = 25µm), and encapsulating the finished product with a very thin coating.  At the end of
the tunnel, numerical goals in these categories may well determine the success or failure of these
coated conductors for several applications.

Challenges remain in maintaining outstanding high temperature superconducting properties
obtained on short samples of YBCO coatings on biaxially textured substrates while increasing film
deposition rates on longer tape lengths in a continuous approach.  To be commercially feasible, the
coated conductors must be produced in an effective manner that is reliable for large scale
production. Los Alamos has been developing IBAD and PLD units to deposit on one meter long
tapes and has now achieved Jc(77K) values of over 1,500 A/mm2 on selected regions of these longer
tapes.  It is expected that considerable progress will be made in this area during the near future.
Both the IBAD and the RABiTS processes must be scaled up to longer lengths: the underlying
substrates must be produced in a cost-effective manner with the quality (biaxial texture) over the
full length and width necessary for long-range, high-current conduction.  Another issue is the joint
between lengths of coated conductors: can the joint be engineered in such a manner that there are
few high-angle grain boundaries at the intersection?  In addition, strengthened, non-ferromagnetic
base metal strips for use in high-magnetic field applications of RABiTS may need to be developed.
Finally, passivation coatings to protect the wire from failure due to exposure to moisture or other
contaminants must be developed.  

Figure 7.2 presents a time frame over which the many identified issues may be pursued in the
years ahead.  Clearly, the greatest emphasis is on the development of long lengths of conductor; as
stated above, the improvement needed is 4 orders of magnitude, so this is the central make-or-break
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issue of the entire program.  The numerical accomplishments indicated in Table 4.1 are shown
along the time-lines for conductor development.

Subordinate issues of concern to manufacturers are not immediately important until the
question of making long lengths is under control.  However, several other issues, including
diagnostic measurements to learn how to control the process, proceed in parallel during the early
stages, because they directly affect whether or not the intended long lengths can ever be realized.
It is particularly important in the early stages to settle questions of magnetic behavior, thermal
compatibility, and strain tolerance, which could conceivably seal the fate of certain pathways.

Appendix C is a compendium of the statements throughout the text above which designate
specific research activities that need to be done.  There are also a number of management decision
points, which follow from the output of each of these activities.  The most important decision points
are keyed to the numerical goals stated in Figure 4.1;  these goals focus on the most difficult and
challenging aspects of the second-generation wire program.  If this set of goals is met, other
problems will diminish in significance.

This program plan attempts to specify a roadmap to guide the transition from the state of R&D
today to the eventual production of commercially successful wire.  The roles and expectations of
national laboratories and corporate partners alike are set forth in a balanced way that relies upon
continuing cooperation among colleagues who share a common goal.  It is not possible to guarantee
success, but it is possible to proceed in a way that recognizes risks and obstacles, and faces them
squarely.  The progression described here from laboratory research to cooperation with industry
(CRADAs) to wire manufacturing has built into it a high degree of optimism, without which R&D
never even gets started.  Nevertheless, there are sufficient checkpoints and feedback to enable
management to monitor progress continually and to allocate resources optimally.



23

REFERENCES

1. Superconductivity for Electric Systems Program Plan (FY 1996- FY 2000), U.S. Department
of Energy (publ. by OSTI, Oak Ridge TN:  1996).

2. T.P. Sheahen,  Introduction to High Temperature Superconductivity (Plenum Press: 1994).

3. J. G. Bednorz and K. A. Müller, Z. Physik B 64, 189 (1986).

4. M. Balooch, D.R. Olander, and R.E. Russo, Appl. Phys. Lett. 55: 197 (1989).

5. R. P. Reade et al.,  Appl. Phys. Lett. 59: 739 (1991).

6. D. P. Norton et al., Appl. Phys. Lett. 57: 1164 (1990).

7. R. P. Reade et al., Appl. Phys. Lett. 61: 2231 (1992).  Also, U. S. Patent No. 5,432,151
(1995).

8. L.S. Lu et al, Appl. Phys. Lett. 47: 932 (1985).

9. X. D. Wu et al., Appl. Phys. Lett. 65: 1961 (1994).

10. X. D. Wu et al., Appl. Phys. Lett. 67: 2397 (1995).

11. Goyal, A., et. al., Appl. Phys. Lett. 69, Sept. 16, 1996.

12. Norton, D. P., et. al., Science, 274, Nov. 1, 1996.

13. Paranthaman, M., et. al., �Growth of Biaxially Textured Buffer Layers on Rolled-Ni
Substrates by Electron Beam Evaporation,� Physica C 275, 266 (1997).

14. K. Heine et al, Appl. Phys. Lett. 55, 2441 (1989).

15. L.R. Motowidlo et al, Applied Superconductivity 1, 1503 (1993).

16. A.P. Malozemoff et al, Advances in Cryogenic Engineering (Materials) 40, 313 (Plenum
Press: 1994).

17. P.C. Chou et al, Physica C 254, 93 (1995).

18. W. Schmidt et al, presentation at EUCAS �93, (Gottingen, FRG, Oct 4-8, 1993).

19. C.H. Joshi et al, Physica C 266, 235 (1996).

20. M. Tinkham, Introduction to Superconductivity (Krieger Publ. Co., Malabar FL: 1980).



24

21. E.W. Collings, Applied Superconductivity, Metallurgy and Physics of Titanium Alloys
(Plenum Press: 1986).

22. P. Haldar and L. Motowidlo, J. Metals 44 (10), 54-58 (October 1992).

23. Oak Ridge National Laboratory and Fujikura, Ltd., Workshop on AC Losses, April 3-4, 1997,
San Francisco, CA.

24. J. Orehotsky et al, Appl. Phys. Lett. 60, 252 (1992).

25. A. Oota, T. Fukunaga and T. Ito, Physica C 270, 107 (1996).

26. C.H. Joshi and R.F. Schiferl, IEEE Trans. Appl. Superconductivity 3, 373 (1993).

27. W.J. Carr,Jr. AC Loss and Macroscopic Theory of Superconductors (Gordon & Breach:
1983).

28. M. Wilson, Superconducting Magnets (Oxford Univ. Press: 1983).

29. D. Lee and K. Salama, Jpn. J. Appl. Phys. Lett. 29, 2017 (1990).

30. J.E. Gordon, The Science of Structures and Materials, Scientific American Library series
(W.H. Freeman: 1988).

31. D.E. Peterson, presentation at DOE Industrial Overview Committee meeting, Los Alamos
NM, (November 1996).

32. V. Betz, B. Holzapfel and L. Schultz, paper presented at Applied Superconductivity
Conference, Pittsburgh PA (August 25-30, 1996).

33. H.C. Freyhardt et al, paper presented at Applied Superconductivity Conference, Pittsburgh
PA (August 25-30, 1996).

34. Y. Iijima et al, �Development of High Jc Y-123 Tapes with Textured Buffer Layers by IBAD
Method�, MRS Spring Meeting, R1.1, San Francisco, CA (1997).

35. K. Hasegawa et al, �In-Plane Aligned YBCO Thin Film Tape Fabricated by All Pulsed Laser
Deposition�, MRS Spring Meeting, R1.5, San Francisco, CA (1997).

36. B. C. Winkleman, �Real Time Process Control for HTS Manufacturing Processes�,
presentation to 3M, ORNL, DoE/FETC, UTSI, October 8, 1996.

37. A. Usoskan, H.C. Freyhardt, W. Neuhaus, and M. Damaske, Critical Currents in
Superconductors, (Singapore World Scientific: 1994).



25

38. A. Ignatiev, et al, Appl. Phys. Lett. 70, 1474 (1997).

39. B. Utz et al., �Deposition of YBCO and NBCO films on areas of 9 inches in diameter�, 1996
Applied Superconductivity Conference, Pittsburgh, PA.

40. C.C.-C. Wang et al, �YBCO Growth on Textured Buffer Layers Prepared by Ion-Beam-
Assisted Deposition�, R2.7, MRS Spring Meeting, San Francisco, CA (1997).

41. T. Venkatesan et al, Appl. Phys. Lett 52, 1193 (1988).

42. R.H. Hammond, paper presented at ISS �95 (Hamamatsu, Japan: 1995). 

43. R. Kukla, R. Ludwig, and J. Meinel, �Overview on modern vacuum web coating
technology,� Surface and Coatings Technology,  86-87, 753-761 (1996).

44.  W. Wang, R. H. Hammond, M. M. Fejer, C. H. Ahn, M. R. Beasley, M. D. Levenson, and
M. L. Bortz, Appl. Phys. Lett.,  67, 1375-77 (1995).

45. U. Balachandran and A.N. Iyer, �Status of High-Tc Superconductors�, to be published in
Materials Technology.

46. Coated-Conductor Steering Committee Meeting, Washington DC, Sept. 11, 1996.

47. R. Brealey and S. Myers, Principles of Corporate Finance, (McGraw-Hill: 1981).

48. R. Li et al, Cryogenics 30, 521 (1991).

49. P. Haldar et al, Advances in Cryogenic Engineering (Materials) 40, 313 (Plenum Press:
1994).

50. D.H. Kim et al, Physica C 177, 431 (1991).

51. T. Doi et al, Physica C 183, 67 (1991).

52. R.N. Bhattacharya, P.A. Parilla and R.D. Blaugher, Physica C 211, 475 (1993).

53. A. Schilling et al, Nature 363, 56 (1993).

54. M. J. Cima et al, J.Appl.Phys., 71 (4), 1868 (1992).



26



���������

	
��
�����
������������������

���������

��	����������


���������� !�
�����"��

#��!����!�� !�
�����"��

���
$�
���

%������!&
$���

'()'�

 !����������������#��!����!�

���������*

27



���������	

������
��


������������������������
���

���������	


�������
������

������

������� �!��

"���#�$���

���������##�#$�������%����!���%$����
��&#$��$�#

Figure 1.3  Architecture of Oak Ridge RABiTS substrate with buffer layers and YBCO coating.
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Figure 1.4.  Magnetic field dependence of the critical current density for a range of 
short-sample YBCO conductors produced using either IBAD or RABiTS substrates.  
These data are compared with typical values obtained for NbTi and Nb3Sn wires at 4.2 
K. 
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Table 2.1  Issues for Development of Practical Coated Conductors 
for High Field Applications

Issue Conductor Manufacture Application

Substrate Buffer HTS

1.  Preserving Current Capacity
Jc >1000 amperes/mm2 (B = 5T) !

Je >100 amperes/mm2 (B = 5T) ! ! !

2.  Magnetic Properties

Behavior of Jc (H,T) ! ! ! !

      AC Losses ! ! !

3.  Geometry
Thickness - Optimum ! ! !

Strain (bending) ! ! ! !

Tensile/Compressive Strength ! ! ! ! !

4.  Scale-up
Production Time !

Chemical Compatibility ! !

Effect on Environment !

Cost ! ! ! !

Quality Control ! ! ! ! !

Minimum Lot Length ! !

Splices !

Thermal Expansion Mismatch ! !

5.  Endurance
Encapsulation ! ! ! !

Effect of Environment ! !

Maintenance !

Shelf Life ! !

Thermal Cycling !

6.  Life Cycle Costs
Operating Costs of:

This Wire !

Competing Wire !

Capital Equipment Costs !



T
ab

le
 2

.2
 H

ig
h 

T
em

pe
ra

tu
re

 S
up

er
co

nd
uc

tin
g

A
pp

lic
at

io
ns

: W
ir

e 
Pe

rf
or

m
an

ce
 R

eq
ui

re
m

en
ts

Ap
pl

ic
at

io
n

C
om

m
er

ci
al

 H
TS

 W
ire

 R
eq

ui
re

m
en

ts

J e
(A

/m
m

2 )
77

K
, s

el
f-f

ie
ld

C
os

t/t
ap

e
($

/k
A-

m
)

Fi
el

d
(T

)
Te

m
p o

p
(K

)

I c/
ta

pe
(A

) 7
7 

K
se

lf-
fie

ld
AC

 lo
ss

(m
W

/A
-m

)

B
en

d
R

ad
iu

s
(m

)
St

ra
in

 (%
)

W
ire

Le
ng

th
 

(m
)

Fa
ul

t-C
ur

re
nt

Li
m

ite
r

10
 - 

10
0

30
->

10
(a

)
.3

 - 
3

40
->

65
10

0
0.

4
0.

15
-0

.0
5

0.
2-

0.
4

20
0-

10
00

M
ot

or
10

0
10

4
>2

5
30

0
N

A
(b

)
0.

05
0.

2-
0.

3
10

00

G
en

er
at

or
(1

00
 M

VA
)

10
10

4-
5

20
->

65
10

0-
20

0
N

A
(b

)
0.

1
<0

.2
50

0-
10

00

C
ab

le
10

 - 
10

0
10

-1
00

<0
.2

>6
5

>3
0(c

)
0.

15
0.

01
>0

.4
10

0-
10

00

Tr
an

sf
or

m
er

10
 - 

10
0

20
->

5
0.

15
20

-6
5

20
0

0.
25

0.
1-

0.
2

0.
1

25
0-

30
00

H
ig

h 
Fi

el
d

M
ag

ne
t

10
 - 

10
00

5-
>1

>2
0

4.
2-

>6
5

30
0-

50
0

N
A

0.
01

0.
5

50
0-

10
00

M
ag

ne
tic

Se
pa

ra
to

r
1

10
2-

3
77

50
0

N
A

0.
5

0.
2

10
00

Ta
bl

e 
D

ev
el

op
ed

 a
t 1

99
7 

D
O

E 
W

ire
 D

ev
el

op
m

en
t W

or
ks

ho
p 

an
d 

R
ep

re
se

nt
s C

on
se

ns
us

 o
f I

nd
us

tri
al

 P
ar

tic
ip

an
ts

.

(a
)  A

rr
ow

 re
pr

es
en

ts
 c

os
t d

ec
re

as
e 

ne
ce

ss
ar

y 
fro

m
 p

re
-c

om
m

er
ci

al
 to

 fi
na

l c
os

t n
ec

es
sa

ry
 to

 e
na

bl
e 

co
m

m
er

ci
al

 d
ev

ic
es

.
(b

)  F
or

 c
ur

re
nt

 fi
el

d 
co

il 
de

si
gn

.
(C

)  C
ur

re
nt

 fo
r i

nd
iv

id
ua

l w
ire

s;
 fu

ll 
ca

bl
e 

as
se

m
bl

y 
w

ill
 c

ar
ry

 3
-5

 k
A

.

U
nd

er
lin

ed
 it

em
s r

ep
re

se
nt

 h
ig

he
st

 p
rio

rit
ie

s f
or

 e
ac

h 
ap

pl
ic

at
io

n 
ac

co
rd

in
g 

to
 p

an
el

 p
ar

tic
ip

an
ts

.

33



Sh
ar

pe
n

Te
xt

ur
e

B
uf

fe
r 

La
ye

rs

Fi
na

l H
TS

C
oa

tin
g

Lo
ng

er
 -

C
on

tin
uo

us
1 

m
.

Pi
lo

t F
ac

ili
ty

10
 m

.

Pr
e-

C
om

m
er

ci
al

Fa
ci

lit
y

10
00

m

Si
ng

le
 C

ry
st

al
Su

bs
tra

te

Te
xt

ur
ed

 S
ub

st
ra

te
1 

cm
.

J c
> 

5,
00

0 
A

/m
m

2

J c
> 

1,
00

0 
A

/m
m

2

In
du

st
ria

l H
TS

 W
ire

 R
eq

ui
re

m
en

ts

G
eo

m
et

ry
J e, 

J c

R
at

e 
of

 G
ro

w
th

Q
ua

lit
y

Su
rf

ac
e 

R
ou

gh
ne

ss
J e, 

 J c
C

ap
ita

l R
eq

ui
re

m
en

ts
C

os
t

D
em

on
st

ra
tio

n
Sc

al
e-

up
 E

qu
ip

m
en

t
Pr

oc
es

s C
on

tro
l

O
pe

ra
tin

g 
W

in
do

w
M

at
er

ia
l S

up
pl

y
Q

ua
lit

y 
C

on
tro

l
J e C

os
t

N
on

-I
nt

eg
ra

te
d 

Fa
ci

lit
y

C
os

t
U

ni
fo

rm
ity

J e

A
rc

hi
te

ct
ur

e
Th

ic
kn

es
s

Sc
al

e-
up

Fe
as

ib
ili

ty
D

et
er

m
in

at
io

n

Fi
gu

re
 4

.1
 T

ec
hn

ic
al

 R
oa

dm
ap

 fo
r 

th
e 

D
ev

el
op

m
en

t o
f P

ra
ct

ic
al

 C
oa

te
d 

C
on

du
ct

or
s

IS
SU

ES
:

34



1997 1998 1999 2000 2001Characteristic

Jc (A/mm2 @5 Tesla  H||c)

Je (A/mm2 @5 Tesla H||c)

Length (m)

Ic (Amperes @5 T)

100 500 500 1000

1 1 100 100 1000

50 100

10 50 50 100

Table 4.1  Overall Roadmap Technology Characterisitics
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Table 6.1 Priorities: Substrate Technology Needs
Highest Priority:
        ! Produce lengths greater than 100 meters with requisite smoothness, texture, and 

thickness uniformity.
        ! Improve texturing to improve grain angle alignment
        ! Develop other substrate and buffer layer options, including non-magnetic materials.
        ! Scale up buffer layer deposition rate.
        ! Develop thinner buffer layers and metal substrates.
        ! Develop vacuum deposition process in addition to PLD.
        !  Develop a materials science understanding of the buffer layer function.

Secondary Priority:
        ! Specifications for acceptable buffered substrates (to include AC loss consideration).
        ! Develop non-vacuum or wet chemical process for buffer layer deposition.      

Table 6.2 Priorities: Superconductor Technology Needs
Highest Priority:
        ! Produce coatings on substrates of lengths greater than 100 meters that meet industrial

wire requirements.
        ! Develop alternate film deposition technologies.
        ! Develop means to achieve higher Jc values for a given thickness.
        ! Higher Jc, Je and Ic.
        ! Faster and lower cost HTS deposition methods.
        ! Determine conditions (process specific) needed for growth of YBCO coatings that

meet customer requirements.

Secondary Priority:
        ! Demonstrate 2-sided YBCO deposition.
        ! Develop better adhesion and mechanical properties.
        ! Develop deposition methods for HTS materials other than YBCO.

Table 6.3 Priorities: Wire Manufacturing Technology Needs
Highest Priority:
        ! Reduce Cost.
        ! Scale up to continuous processing.
        ! Improve Reliability.
        ! Develop in-situ monitoring tools for substrate and superconductor manufacturing

processes.
        ! Develop passivation/insulation layer(s).

Secondary Priority:
        ! Develop splicing/joining technology.
        ! Improve mechanical properties.
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Figure 7.1  Coated Conductor Technology Development Roadmap

��	
��
���
������������

�������

����������	
��
�������	
��

���
����
����������	
�������
�����
�������	
��������������	
���

�	��
���������
����

���������������������� 
���

���
���
���	����!	������������

�������������!	��������

���
���
���	�����"�
�������

����#��������

$#
��
�����
������
!��%����&�%
$'��
�%����'(��%

���)

"�	���	��������

*�����	 *++�����	 *+++�����	

,�-�
 -����

.
		��
�������

��������������	
�

�	�
������

��
����/�����0����%
�����������%��
��

(�����	


"�	���	��������

,������
�
���������
��������
		��	�
�����������������	
����	����

!	�������
�����

.
����
���
����	��!	��	
��
1��#�	������

� -�-�%�-�	�������

,�����	�
����#��������

�����	����!����
"
�����


$��
�������	����������������	
�����	
��	�%��	����	�%
�����������	
��%����)

38



��

����������		
� �

� �

� �


 ���� ���� ����

����������
���������	�������

�������������
���������	�������

������

������	���� ��	
��!���	

 ��������"��#�����	$���%&�'(

�����		� ��	�
�!���	

)������ ��	
��!���	

������
�
	�"��*
������)#��*

 ��
+���
�������	��%#���,�-!(

.
�������������

/��*
�����/�"���!����	

��+�-��������	��0�*
�����

��� ��� ����������
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are at liquid nitrogen temperatures at 5T)
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APPENDIX A

HTS COATING DEVELOPMENT

1.  Material
The reason for focusing the efforts on YBCO is based on its high irreversibility field (Hirr) at

77 K.  For operation at liquid nitrogen temperature YBCO is preferable to BSCCO which until now
has been the most popular wire considered for electric power applications.  YBCO retains high
critical currents in strong magnetic fields because there is stronger coupling between its copper-
oxygen planes than that in BSCCO. YBCO has much better intrinsic flux pinning than BSCCO, but
it has poor intergranular current flow because of weak links.  For YBCO, as well as other rare earth
based oxide materials (REBCO), the role of oxygen content on fundamental superconducting
properties is noted.  The proper oxygen partial pressure in cooling sintered YBCO and REBCO
materials is imperative for promoting the transformation from the tetragonal to the orthorhombic
phase, the latter having a Tc of 92 K.

For conductor applications, two other cuprates show promise.  Thallium barium calcium copper
oxide, known as TBCCO, has two candidates-Tl-2223 and Tl-1223 with Tc's of 110 K and 125 K
respectively.  TBCCO has properties that fall between those of YBCO and BSCCO.  It has links that
are stronger than those in YBCO, but its flux pinning is not as good as that of YBCO and it is not
obvious what buffer layer material would be used. TBCCO has caused some concern about toxicity,
but will be used if it has good performance and price.

2.  Processing
Initial hurdles of processing YBCO to satisfy high current applications were overcome by the

melt texturing process1 developed in 1988. This process yielded pseudo-single crystals that had
transport current densities of 1,000 A/mm2 in self-field and 10 A/mm2 at 77 K and 30 T2,3. These
results led to high level of optimism in the research and applications of HTS materials although
single crystals are not the objective for wires due to inadequate flux pinning.  The melt texturing
process involves the peritectic melting and solidification of the 123 phase.  When heated above the
peritectic temperature, solid Y-123 decomposes into solid Y-211 and a liquid phase that is rich in
Ba and Cu.  Slow cooling through the peritectic temperature allows the recombination of Y-211 and
the liquid phase to form melt textured Y-123.  In this compound the rate of recombination and
solidification is extremely slow since it is dependent on the rate of diffusion of yttrium from Y-211



4M.J. Cima, M.C. Flemings, A.M. Figueredo, M. Nakade, H. Ishii, H.D. Brody, and J.S. Haggerty, J. Appl. Phys.
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6X.D. Wu et al., Appl. Phys. Lett. 65, 1961 (1994).

7D. Dimos et al., Phys. Rev. Lett. 61, 219 (1988).

8A. Ignatiev et al., 10th Anniversary HTS Workshop on Physics, Materials and Applications, Houston, March 1996.
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to the melt, which was found to be very small4,5.  This is a serious drawback of melt textured YBCO
compound which severely restricts its application.

It was recently shown6 by the LANL Group that thick YBCO films can be deposited on flexible
metallic substrates.  In this procedure, an Ion-Beam-Assisted-Deposition (IBAD) process is used to
deposit a biaxially textured yttria-stabilized zirconia (YSZ) buffer layer onto nickel-based substrates.
Later, a YBCO thick film (2 µm thick) is deposited by pulsed laser deposition (PLD) onto the YSZ
layer.  The biaxial texture of the YSZ buffer layer is also present in the YBCO thick film and is
crucial in inhibiting the presence of large-angle grain boundaries, since it was observed7 that the in-
plane Jc decreases exponentially with increasing misalignment.  Typical YBCO/YSZ/Ni thick films,
with an average of only 6 degrees of in-plane misalignment, have critical currents above 10,000
A/mm2 in self field and 77 K.

A group at ORNL has announced a method called rolling-assisted biaxial textured substrates
(RABiTS) which results in near-perfect substrate bi-axial texture.  This system, which may include
buffer layers on the metal substrate, produces surfaces aligned within 2 degrees.  Current densities
greater than 10,000 A/mm2 have been achieved in films of thickness 1.0 µm.  YBCO technology
currently being developed at Los Alamos and ORNL promises to extend the range of application of
high-Tc wires, especially if the substrate thickness can be reduced and the HTS film thickness
increased.

Both approaches (LANL and ORNL) use PLD or laser ablation for depositing the HTS film on
the textured substrate.  There are other methods of laying down the HTS layer that show promise.
The group at the University of Houston has shown that photo-assisted metal organic chemical vapor
deposition (PhAMOCVD) could be used for YBCO thick film deposition at high growth rates (8000
Å/min) with Jc approaching 10,000 A/mm2.  Initially demonstrated on single crystal substrates, the
technique is now being extended for HTS deposition on substrates prepared by IBAD or those
substrates textured by rolling8.  For a photo-assisted process, the optimum light source (e.g. quartz-
halogen lamp?) has to be found.  Possible configurations, i.e. horizontal or vertical-flow modes,
would have to be considered.  Data or empirical equations relating growth rate to precursors, light
intensity and flow rate would be useful.  If data is absent, it would have to be generated and fitted
to rate equations in order to predict performance in continuous or batch operation.  Even then, the
MOCVD process has several problem areas which need to be addressed.  These are: deposition/loss
of HTS material at very low pressures on unwanted wall areas, non-uniformity of film coating,
control of stoichiometry, use of costly and probably toxic organometallic compounds, and involved
subsequent heat treatment.

Other approaches that could be considered are listed below:
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Sol-gel processing
Dip coating/metal organic decomposition
Aerosol/spray pyrolysis
Electro-deposition
Electrophoresis

Each of these will now be described along with their merits and drawbacks.  Table A-1 shows
Jc results achieved to date with these processes.  In analyzing the approaches, the following factors
are considered:

(1) Type of starting material used.  These include,

C Commonly used organometallic/inorganic precursors, as well as non-aqueous solvents to carry
them.

C Desirable features for precursors, as well as solvents, such as availability, purity, stability, ease
in preparing coating material, environmental concerns, potential of causing film defects, and
cost.

(2) With regard to candidate coating processes, the analysis will address

C Type of substrate studied/required and potential for producing in a continuous mode
C Areas of concern related to operation, corrosion, product quality, waste management, toxicity

etc.
C Limitations for scaling up to continuous wire manufacturing and possible solutions to resolve

them, and overall economics
C Desirable features in ideal coating processes

Sol-gel Processing:
Organic salts of Cu, Ba, Y are prepared in suitable organic medium and then treated with water

to form gel.  The gel containing desired stoichiometry of precursor salts is deposited by spin or dip
coating on suitable substrate or buffer at room temperature in absence of air and moisture.  The
coated substrate is pyrolyzed in air between 600°-800°C.  To get desired film thickness, coating and
pyrolysis steps are repeated a few times.  Areas of concern include poor gel/precursor structure, and
the fact that organometallic salts containing copper are not easily available.  The method could have
potential for continuous processing at an overall low cost if repetitive coating is eliminated, and
simple and widely available organometallic salts are used which do not need extensive preparation
steps to make precursor gel.
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Table A-1.  Critical current Density as a Function of Different
Conductor Coating Techniques

Conductor Coating
Technique

Highest Jc Achieved
(A/mm2)*

Remarks Reference
No.

Sol-Gel

Metal Organic Chemical 
Vapor Deposition (MOCVD,
CVD, 
      PE-MOCVD, etc.)

Metal Organic Decom-
position (MOD)

Electrodeposition

Aerosol/Spray Pyrolysis

Electrophoresis

2,000

190

50,000

23,000

1,400

63,000

200

2,500  (Unreproducible)

3,900

10            (100 at 4K)

        -       (5,000 at 4K)

>50,000

3.6            (40 at 4K)

        -        (40 at 4K)

        -       (51 at 4K)

        -       (5 at 4K)

        -       (55,000 at 4K)

550 at 76K

300

10-20

YBCO on YSZ with (100) Orientation

Tl-1223 on Silver Foil

YBCO on LaAl03 with (100)
Orientation by PE-MOCVD
YBCO on LaAlO3 with (100)
Orientation by MOCVD
YBCO by LS-CVD on Platinum
and Amorphous YSZ Prebuffer
Layers (Deposited over Hastelloy 
C-276 Metal Substrate by Sputtering).
YBCO on SrTi03 Single Crystal with 
(100) Orientation by OT-CVD
YBCO on Polycrystalline Silver 
Foils by MOCVD
YBCO on Polycrystalline MgO
Substrate by TC-CVD

YBCO on SrTiO3 with (100)
Orientation by D-P Process
YBCO by Spin-Coating on Single
Crystal of YSZ Using TFA Pre-
cursors
YBCO by Spin-Coating on Single
Crystal of SrTiO3 With (100) and
(110) Orientations Using TFA
Precursors
YBCO by Spin-Coating on Single
Crystal of LaAl03 With (001) Orientation Using
TFA Precursors

YBCO on 9.5 mol % Y2O3 Stabilized
Cubic Zirconia with (100)
Orientation Using Nitrates
YBCO on MgO Single Crystal with
(100) Orientation Using Nitrates
(under constant potential)
Same as above except under Pulsed 
Potential
YBCO on Nickel Strip/Wire and 
Silver Wire Using Nitrates
TBCCO on Silver-Coated LAO   
Single Crystal
Orientation Using Nitrates       

Under Pulsed Potential

YBCO on Polished MgO Substrate
Using Aqueous Nitrates

Silver-Coated (Sheathed) YBCO
on Nickel Alloy Wire

1

2

3

4

5

6

7

8

9

10

10

11

12

13

13

13

14

14

15

16

* Jc reported at 77K and no field.
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Metal Organic Decomposition (MOD):
Organometallic salts are prepared by reacting suitable metal salts (oxides or carbonates) with

trifluoroacetic acid (TFA) or purchased in desired forms.  In desired stoichiometry; these
organometallic salts are dissolved in non-aqueous solvents.  The solution containing organometallic
salts is coated using spin/dip coating method on a suitable substrate.  The coated substrate is
pyrolyzed in air around 400°-500°C (if the precursors are acetalacetonates) or baked in air at about
200°C to remove water of crystallization (if the salts are fluoroacetates).  To get the desired
thickness, the coating, baking (or pyrolyzing) steps are repeated a few times.  Substrates with desired
thickness of precursor coating are then decomposed in He or N2 containing water vapor at 400°-
850°C for fluoroacetate precursors.  In the case of precursors containing acetalacetonates, the coated
substrate is heat treated in a very involved sequence around 750°C in the Ar containing low (~10-4

atm) to high (~ 1 atm) levels of O2.  After heating for desired length of time, the material is then cooled
to room temperature or below 200°C in O2 atmosphere.  Areas of concern include the complexity
of the heat treatment, and possible corrosion due to liberated HF if fluoroacetates are used.  The method
has potential for large scale continuous processing if heat treatment steps are simplified and expedited
and can be carried out in a continuous or batch (wound on spool) mode, and if corrosion problem
due to HF can be successfully resolved.

Electro-deposition:
The process uses nitrates of Y, Ba and Cu dissolved in organic solvents such as dimethyl sulfoxide

(DMSO) or isopropanol (IPA).  In a 3-electrode configuration, with Ag/AgNO3 as a reference electrode,
Pt as a counter electrode and the substrate in suitable form (Ni, Ag-coated MgO, ZrO2, etc.), electro-
deposition is carried out between -2.5 V and -4 V.  The coated substrate is then heated in pure O2 around
850-1050°C for 1 minute.  The oxidized substrate is then cooled to room temperature in pure O2.
To get the desired film thickness of superconductor on the substrate, the deposition, annealing and
cooling steps are repeated.  Areas of concern include the possibility of incorporating sulfur when DMSO
is used as solvent.  Similarly, Ag can also enter the film from Ag-coated substrate.  Electrical conductivity
of non-aqueous solution is very low resulting in very low deposition rates.   This method could lead
to a low-cost and simple processing scheme if solution conductivity can be increased by choosing
a better solvent so as to increase the deposition rate and thereby avoiding repetitive steps of deposition,
annealing and cooling.

Aerosol/Spray Pyrolysis:
Aqueous solution of Y, Ba, Cu nitrates is prepared and then atomized (sprayed) using flowing

O2 or N2 to coat suitable substrate (which can be YSZ, SrTiO3, zirconia or polished MgO) held at
$ 800°C temperature in air in about 5 minutes.  The coated substrate is then heated in O2 to 900°C
for 5-120 minutes.  The oxidized sample is then very slowly cooled to room temperature.  To get the
desired film thickness, the steps of deposition, heating and cooling are repeated.  The disadvantages
are that Ba(NO3)2 crystals are formed in the film, the heat treatment step is not fully resolved, the nitrates
of Y, Ba and Cu decompose at different temperatures, and the desired stoichiometry in the superconductor
film can not be easily maintained.  Copper level in film is somehow enhanced.  The method can be
a potential candidate for large scale processing, if heat treatment and cooling can be simplified and
time duration for that can be shortened, i.e., a single temperature needs to be selected for decomposition
of all the nitrates, better control of film stoichiometry is possible, and densified film can be obtained
by depositing the nitrate solution at a higher substrate temperature, so that higher Jc value can be achieved.
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Electrophoresis:
Oxides and carbonates of Y, Cu and Ba are mixed in a solid phase and calcined and then ground

to 0.5-10 Fm size.  Ground-up powder is then slurried in a non-aqueous medium.  From a spool, a
Ni-alloy wire or tape is drawn at a predetermined rate into a vertical column filled with YBCO slurry,
where by electrophoresis, YBCO coating is formed.  The coated wire is then sintered at 950-1030°C
in O2 for 1-30 minutes.  The oxidized wire is then electrophoretically coated with silver powder slurry
in a non-aqueous medium.  The silver-coated wire is then sintered at 850-950°C in O2 atmosphere
for 0.2-10 minutes.  The sintered wire is then wrapped over a spool and further oxidized in a batch
mode in O2 atmosphere at 400°C for 1-3 days.  The resulting wire can be used as it is or in a multi-
filamentary wire form.  Currently the Jc obtained by this method is very low.  The method has been
already tested in a continuous  mode (1 meter/min rate) by General Atomics (GA) in the past.  However,
to make it attractive, improvements in heat treatment and texturing methods have to be made.
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APPENDIX B

PROCESS CONTROL AND MEASUREMENTS

There are two levels of diagnostics.  One is process control, which must be  simple, fast, and tailored
to detect the problems which typically occur with the process.  Thus,  experience is needed with the
process, before it can be  determined what type of monitor is needed.  The other is off-line, process-
improvement characterization.  For this, a very wide variety of tools---everything in the material scientist's
bag of tricks---is used.  This would include x-ray (theta-two theta scans, phi-scans, pole figures) and
electron diffraction for crystalline texture (e.g., RHEED), microscope synchrotron x-ray diffraction,
RBS, Auger profiling, scanning probe microscopes (STM,AFM, ...), SEM, TEM, optical microscopy,
film thickness and magneto-optical flux imaging.  For complete characterization it is necessary to
have  Tc, Ic, Jc, inductive magnetic measurements (ac and SQUID), and Jc measurements as a function
of strain and applied magnetic field.  Important for the magnet designer is how Jc depends on both
field strength and orientation.  In most cases Jc is strongly dependent on field angle, and futhermore,
the details of the dependence vary from sample to sample.

An understanding of how current flow is related to microstructure is essential for improving the
current carrying capacity of coated HTS tapes.  Magneto-optical flux imaging is used to study
superconductors in the presence of magnetic fields.  The applied field induces superconducting shielding
currents which flow in closed loops and are concentrated in regions of strong flux pinning.  Thus,
images identified in this way directly identify regions of high/low intragranular current density.  The
nature of transport current flow is largely determined by the intergranular current density, that is, the
connectivity between superconducting grains.  A grain with high intragranular current density will
carry no transport current if it is poorly coupled to the neighboring grains.  The transport current path
is a result of a percolation process among the superconducting grains and can be determined quantitatively
by imaging its magnetic pattern.  Combined with an electron microscope image, the method relates
variations in  current density to aspects of microstructure and can be exploited for mapping the path
of the current through the polycrystalline array in HTS coatings.  The images directly show the barriers
to current flow revealing both the influence of cracks and of the dislocations that form in low angle
grain boundaries.  The importance of measuring the crystalline misalignment angle stems from the
fact that Jc decreases as the misalignment angle increases.  In results to date for YBCO, coatings applied
up to 3Fm film thickness, increases in film thickness result in exponentially decreasing Jc.

Commercialization requires diagnostic techniques that can be developed into useful on-line diagnostic
tools for use in quality control.  Non-contact optical techniques using the highly developed instrumentation
of the optical industry promise both rapid real time measurements useful for control as well as quick
instrument development with off the shelf components.  Several optical techniques based on light
scattering would appear to be immediately applicable to  both research and process control needs by
assessing grain orientation, chemical composition, and surface morphology.  These techniques, Raman
spectroscopy, ellipsometry, and light scattering/surface imaging could in principle be applied to all
layers composing a coated conductor (i.e. substrates, buffers, superconductor, encapsulating) though
details and exact methodologies (wavelengths, incident power, etc.) can not be determined until the
coated conductor manufacturing technique is finalized.

Raman spectroscopy has the capability of measuring the local crystal orientation.  The technique
is based on the dependence of the Raman scattering amplitude of incident polarized radiation on the
relative orientation of crystal lattice and the incident radiation.  Normally the incident radiation is
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provided by a laser (such as an Ar+) and thus crystal orientation is determined over the spatial region
illuminated which can be made very small (~.25 Fm2 surface area for an Ar+ source with depths on
the order of 1Fm ) or allowed to cover large areas for rapid surveys subject to instrumentation limits
(i.e. optics and irradiation power).  Measurement of the Raman scattering intensity for a series of different
incident polarizations allows complete specification of the crystal orientation9.  Thus the absolute
in-plane orientation, intragranular orientation, and c- axis tipping can all be measured.  Furthermore,
the degree of in-plane correlation between granules could be assessed quickly over large regions by
using appropriate imaging optics and illumination regions.

Ellipsometry measures the change in the polarization characteristics of light reflected from a surface
as functions of wavelength, polarization direction, incidence angles, etc.  Basic ellipsometers are relatively
simple devices employing a source of radiation (possibly monochromatic), polarizer section (linear
polarizer and linear retarder), sample and holder, linear analyzer, and detector.  Automated and
spectroscopic ellipsometers are more complex requiring control systems and motor driven optical
components as well as a monochromator/spectrometer but have the advantage of making very rapid
measurements.

The intensity of the light reflected from the sample being analyzed by an ellipsometer is dependent
on the angular orientation of the surface with respect to the incident polarized light, the light's wavelength,
and the dielectric tensor of the material.  Thus ellipsometry gives insights into both surface structure
(via orientation) and chemical composition (dielectric tensor).  The dependence on the chemical
composition allows ellipsometry to be employed in studies of the spatial and temporal variation of
the chemical makeup of the surface.  Pseudodielectric functions derived from ellipsometric measurements
could be used to identify chemical compounds and the oxygen content of HTS layers10.  Also, since
the dielectric tensor is dependent on the physical state, it should be possible to use ellipsometry to
identify different phases of materials.

Ellipsometry instrumentation is simple, rugged, easily automated and thus suitable for on-line
measurements needed for quality control functions.   With its  overall capabilities it provides a valuable
research complement to x-ray diagnostics and has the potential of being an excellent on-line processing
diagnostic.

Simple light scattering/imaging techniques should be usable to provide continuous on-line detection
of defects in substrates and over layers of coated conductors.  Such real time continuous monitoring
is seen as crucial to scaling production processes up to commercial levels.  Currently, long lengths
of HTS wires (BSCCO) do not have the same performance as short lengths for reasons assumed to
be related to variations in properties along the wire length.  By detecting the variations during manufacture,
several possibilities become viable.  The process can be modified in real time eliminating or reducing
the observed defect, defective areas can be identified and then removed in a post production phase,
and the process may become well enough understood to reduce or eliminate defect generation.  Gross
defects such as breaks, gaps, excessive roughness in layers should be detectable and quantifiable with
simple light scattering techniques (i.e. amount of light reflected by the surface specularly for breaks
and diffusely for roughness) while very small scale imperfections if important may require more precise
imaging type measurements (i.e. Foucault) coupled with digital image processing.  Studies necessary
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to ascertain the types, numbers, and sizes of defects that are important will be necessary before definitive
answers on techniques are made.

Research on diagnostic instrumentation and techniques must be conducted to develop measurements
required both to support the research and development phase of coated conductor technology and
also to supply the needed process control equipment for full scale commercial manufacture.  Unfortunately,
the complete research needs cannot be specified until details of the coated conductors and manufacturing
process become finalized.  It is expected that fundamental approaches to the necessary measurements
will be available but significant research will be required for adapting and refining chosen techniques
to the specific requirements of the HTS industry.

However, some research requirements that are both pertinent and generic to the general needs
of coated conductors and their manufacture can easily be identified.  In general, this research falls
into the area of characterization of coated conductor layers and the relationships between layer parameters
and conductor performance.  It may be possible to accurately assess the quality and character of a
layer using measurement techniques described earlier.  However, without a thorough understanding
of the dependence of operational parameters (Tc, Jc, Hc, etc.) on the layer properties, such measurements
are useless for process control and manufacturing needs.  Thus a successful effort in developing the
relationships will be indispensable to the deployment of effective process monitoring techniques.
For the purpose of this plan, it can be considered that information to be obtained falls into the two
broad areas of global and localized (or defect) parameter variation.  While the division between these
areas is not always clear, global variations deal with the deviation of a parameter on average (i.e. the
desired layer thickness is 1 µm but the manufactured layer is actually 0.9µm) while localized variations
represent deviations from the mean.  (Clearly, the averaging interval affects the division between the
two areas.)  Global properties can be considered to be generally controllable while localized changes
or defects may only be detectable.  The following are areas where research must be conducted to elucidate
the relationships between conductor performance and these layer parameters.  The first two are global
in nature while the remainder fall in the local category.

Layer Composition
Chemical layer composition will need to be monitored during manufacture though the extent

and point of monitoring will be highly dependent upon the layer and manufacturing processes chosen.
For certain layers (i.e. a nickel substrate) use of raw materials of known character may obviate the
need for online monitoring once sufficient research has been done to allow specifications for the raw
materials to be determined.  As a further example in a process such as sol-gel, monitoring of the chemical
composition of the sol-gel may be sufficient to guarantee high quality conductors.

Layer Morphology
The physical changes in the layer structure such as thickness, crystalline state, grain size and

alignment clearly affect the final conductor and thus may need monitoring which again will be dependent
upon both the layer composition and the manufacturing process.  Other properties such as surface
roughness may effect conductor properties and thus will need to be identified and understood.

Defect Types
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Before methods can be developed to monitor for defects, the types must be identified.  Expected
defects would include physical changes (dimensions, physical state, inclusions, grain size, etc.) and
chemical changes (stoichiometry, impurities, etc.).  Such changes might exhibit themselves as cracks
or gaps in a layer, causing reductions in Je or regions without superconducting properties also reducing
Je.

Defect Size
In general, a particular defect will affect performance to an extent related to its physical size.

Research must be conducted to determine acceptable sizes (length, width, depth, orientation) for all
the defect types identified.  Once size parameters are determined, appropriate measurement technologies
can be identified for making the needed measurements.  Defect number or density collections of defects
either of same type or mixtures may not combine to produce cumulative effects in a straightforward
manner.  Some defects can be expected to be area dependent while others just surface phenomena.
The overall effect of a group of defects may be greater or less than a single defect of equivalent size.
In some cases, the total number of defects of a certain type along the entire length of the conductor
may be important whereas other defects may add together only when occurring locally.  Thus research
will be necessary to determine allowable defect numbers or densities if defects are found to be sufficiently
common to be acting collectively.
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APPENDIX C

SUMMARY OF REQUIRED TECHNICAL R&D STEPS

This list describes a summary of R&D tasks to achieve the planned outcome of this plan.

1.  General Principles of Collaboration:
The objective of the second-generation wire program is to extend existing coated-conductor

technology to very long lengths ( > 1 km) while still preserving high Jc values.   The program plan
demands the achievement of five simultaneous objectives:  long length, high critical current density,
high engineering current density, operation in high magnetic fields and low manufacturing cost.

Diagnostic measurements and controlled feedback are essential to any cost-effective manufacturing
process.  Accordingly, this plan envisions a series of studies in the laboratory which are explicitly
aimed at discovering suitable diagnostic measurements.  Subsequently, we envision partnerships
(CRADAs) between industry and national laboratories to create a series of on-line measurement
techniques.

2.  Experimental studies needed to resolve certain crucial technical questions:
Maximizing the useful film thickness is a key goal. So far we have presumed that if the substrate

and buffer layers have good grain alignment, the YBCO layer will do so as well.  For long conductors,
that point is not yet proven, and needs experimental verification.

The YBCO conductors need to be 5 or 10 µm thick, which introduces a new issue: As the YBCO
layer thickens, will new mis-oriented grains form?

The variation of Je with film thickness needs to be experimentally investigated in this program.
Developing the limits of various deposition technologies is an important part of this program

plan.  
Assuming a very thin passivation layer of a µm or two, the substrate can only be about 8 times

thicker than the YBCO layer.  Thinner substrates must be developed.
The uniformity of cross-section of both the buffer and the YBCO layer must be maintained to

within some tolerance over the full length of conductor.  That tolerance must be determined.
Experimental determination is needed of how the critical current Jc(H,T) will behave when finite

magnetic fields are applied to the combined coated conductor/substrate assembly.
AC losses of the actual engineered conductor must be measured early in the program.  We recommend

that a sub-program of AC-loss measurements be carried out, using whatever length samples are available.
The AC-loss measurement experiments should be accompanied by a series of design calculations
to figure out what amount of losses are acceptable in various applications.

Strain-tolerance of the entire conductor (substrate + YBCO coating) must be measured, for bending
in all possible directions, including measurements of stretching or buckling of the film as the substrate
changes shape.

As soon as moderately-long coated-conductor samples ( > 20 cm) are available, investigations
should begin to determine the thermal expansion properties of the assembly.
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3.  Manufacturing Process Steps:
A key question is whether long lengths can be manufactured economically.  In order to ultimately

achieve a cost-effective manufacturing process, several preliminary achievements are required.
These include:

(1) Prepare HTS films thicker than 1 µm, with Jc above 10,000 A/mm2 (77 K, 0 T), on
single crystal substrates.  This figure corresponds to Ic greater than 100 A/cm of tape
width.  (The long term goal is to reach 100 A/cm of tape width at liquid nitrogen
temperatures and 5 T, which may be achieved with thicker films and/or further
improvements in Jc.)

(2)  Demonstrate similar quality films on metal substrates, using suitable buffer layers.
(3) Determine the maximum specific film deposition rate (µm per minute) which can be

achieved.  Identify and eliminate the defects which limit high rate growth.
(4) Determine the process window for various parameters (substrate temperature, working

pressure, deposition rate, etc.) which will still permit high quality film growth.
(5) Proceed to continuous processing of  short tape samples (less than one meter in length).

Experiment with progressively thinner substrate tapes, and determine appropriate film
and substrate thickness.

Automation is an essential characteristic of cost-effective manufacturing.  Therefore one goal
is to achieve an automated technology producing thousands of kilometers annually.

Reaching the program�s cost goals requires process improvement, process modifications, and
process substitutions.  Manufacturing of coated conductors requires that high-quality films be deposited
on substrates at high rates.  The film deposition steps, via both IBAD and RABiTS substrate preparation,
are presently too slow.

Since the thinnest commercial metal tape substrates (e.g., of oxidation-resistant nickel superalloys)
are about 1 mil (25 µm) in thickness, it is important to obtain a thick superconducting film.  The
superconducting layer must be relatively �thick�, in the range of 1 to 10 µm; whereas buffer layers,
diffusion barriers, passivation layers, etc., can be thinner.

Specific numerical goals for acceptable splices should be established and incorporated into the
collection of milestones.

4.  Managerial Decision Points:
After 1997, it should be possible to eliminate or scale back support of any HTS film-deposition

techniques which cannot produce Jc > 5,000 A/mm2 (at 77 K and 0 T) on single crystals.


