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The Reversible Loss of Diborane is the 
First Step in the Dehydrogenation Process

• ~1.5 to 3.0 mmol of Al(BH4)3 material was collected in  
a liquid N2 cold trap adjacent to the reaction tube.

• Al(BH4)3 vapor ( vapor pressure = 359 torr at 25 °C)
was allowed to flow into the reaction tube which was 
constantly heated at selected temperatures.

• H2 and B2H6 levels were examined and removed from 
the reaction tube at regular (15 – 60 min.) intervals.
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Dehydrogenation of Al(BH4)3
theory 16.8 wt % H2

(Product distribution is temperature dependent – 3 to 6 hr reaction time)

Dark brown residue0.0415.0 (13.8 wt %)300

Dark brown residue0.0265.4 (15.3 wt %)350

Dark brown residue0.0215.9 (16.5 wt %)400

Dark brown residue with a trace 
of colorless residue

0.163.5 (10.0 wt %)250

Both light brown and colorless 
residue

0.361.3 (3.8 wt %)200

Colorless, sublimable residue,  
likely composition [AlH(BH4)2]2

0.681.4 (3.9 wt %)175

ResidueB2H6 per 
Al(BH4)3

H2 per Al(BH4)3

(wt % H2)
Temperature

° C
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Clues to the Al(BH4)3
Dehydrogenation Mechanism
• The Al and B elemental analysis of the residue 

formed at the higher temperature indicates that 
boron is more concentrated on surfaces facing the 
reaction gasses.

• The colorless residue found at low temperatures is 
suspected to be an [AlH(BH4)2]2 dimer or a complex 
hydrogen-bridged polymer.

• The first step in the Al(BH4)3 pyrolysis appears to be 
the release of diborane, followed by its own thermal 
decomposition to form H2.
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The IR Spectra of the Colorless 
Solid Formed at 175° C

• Top – The sample was 
deposited on the CaF2
plate in situ.

• Bottom – The colorless 
residue was dissolved in 
toluene, applied drop-
wise to the CaF2 plate, and 
then vacuum dried.

• Both are typical results as 
were previously reported 
found for the [AlH(BH4)2]n
polymer.*

* Oddy, P. R.; Wallbridge, M. G. H.; Dalton Trans., 572, 1978.
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Diborane Thermal Decomposition
A Complex Mechanism                         

Forming H2 in Several Steps:*
2B2H6 ↔ BH3 + B3H9

B2H6 + BH3 ↔ B3H9 ↔ B3H7 + H2
2B3H9 ↔ 3B2H6

BH3 + B3H7 ↔ B4H10
B2H6 + B3H7 ↔ BH3 + B4H10 ↔ B5H11 + H2

B3H9 + B3H7 ↔ B2H6 + B4H10
2B3H7 ↔ B2H6 + B4H8

B3H9 + B4H10 ↔ B2H6 + B5H11 + H2
B3H7 + B4H10 ↔ B2H6 + B5H11

H2 + B4H8 ↔ B4H10
BH3 + B4H8 ↔ B5H11

B3H9+ B4H8 ↔ B2H6 + B5H11
* L. H. Long, J Inorg Nucl Chem, 32, 1097, 1970. and references therein.
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The Potential for Reversible 
Hydrogen Storage

• The equilibrium observed between Al(BH4)3 and 
Al2H2(BH4)4 suggests one route of hydrogen storage 
reversibility.

• The complex diborane thermal decomposition 
mechanism also indicates several points of reversibility.

• These two anomalies combined may be key factors 
leading to the viable regeneration of metal borohydride 
hydrogen storage materials.
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Project Summary
• Pyrolysis of aluminum borohydride demonstrates how 

a substantial amount of hydrogen can be obtained 
from these complex borohydride materials.

• The equilibrium observed between Al(BH4)3 and 
Al2H2(BH4)4, in conjunction with the complex 
mechanism of the pyrolysis of  diborane, suggests a 
route for reversible hydrogen storage.

• Further studies of metal borohydrides (including those 
with Mg, Ca, and Ti) are planned to identify those 
materials having the most favorable hydrogen 
evolution and regenerative capabilities.
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requirements.
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Preparation of Al(BH4)3
AlCl3 +  3 LiBH3 → Al(BH4)3 +  3LiCl

A 50 - 130 °C, stepwise replacement 
reaction.*

The product is a volatile, 
pyrophoric liquid (120 torr at  0 °C, 
ρ = 0.55 g/mL) that can be isolated 
and purified on a high vacuum line.

Final product can be characterized 
by MS, IR, and NMR analysis.

* Schlesinger, H. I.; Brown, H. C.; Hyde, E. K.; J. Am. Chem. Soc.; 75, 209, 1953.

The key component in this reaction is to use a two fold excess of finely 
ground LiBH4, which is necessary in order to achieve a 94 % yield.
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Chemistry of Liquid and/or 
Volatile Metal Borohydrides
The thermal decomposition of Al(BH4)3, Ti(BH4)3, 
and Zr(BH4)4 are under investigation for H2 storage.
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These covalent molecular compounds have double 
bridge M-H-B bonding as illustrated for Al(BH4)3.*

* Aldridge, S; Blake, A. J.; Downs, A. J.; Gould, R. O.; Parsons, S.; Pulham, C. R.; 
Dalton Trans., 1007, 1997.
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The Al2H2(BH4)4 Dimer is One Possible 
Result From the Loss of Diborane

At the lower temperatures (<200° C), an equilibrium was 
established between Al(BH4)3 and Al2H2(BH4)4 as shown in: 

2Al(BH4)3 ↔ Al2H2(BH4)4 + B2H6
*

* (a) Maybury, P. C.; Larrobu, J. C.; Inorg. Chem., 2, 885, 1963. (b) Noth, H.; Rurlander, 
R.; Inorg. Chem., 20, 1063, 1981. (c) Demachy, I.; Volatron, F.; Inorg. Chem., 33, 
3965, 1994.
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• The liquid and volatile nature of some of these 
type of materials may aid mass-transfer in 
complicated on-board fuel systems.

• Although these materials tend to be pyrophoric 
and reactive in air, they can be easily handled
using established methods developed for the 
manipulation of air-sensitive materials.
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Project Outline
In collaboration with the Department of Energy’s 
Metal Hydride Center of Excellence (MHCoE) 
team, this project focuses on the development of 
the chemistry for a hydrogen storage system 
based on complex metal hydrides.
• ORNL is looking at new materials and methods for 

synthesis of borohydrides, amides/imides, alane, and 
the alanates of the light elements in the periodic table.

• This presentation focuses on a preliminary study of 
the dehydrogenation chemistry exhibited by aluminum 
tris(tetrahydroborane), Al(BH4)3.
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