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a b s t r a c t

The differential capacitance of electric double layers in ionic liquids and its correlation with the surface
charge density, ion size and concentration are studied within the framework of the classical density func-
tional theory (DFT). As prescribed by previous analytical theories, DFT is able to reproduce the transition
in the differential capacitance versus the surface potential curve from the ‘camel’ shape to the ‘bell’ shape
when the ionic density increases. However, DFT predicts alternating layers of cations and anions at the
charged surface that cannot be described by the classical Gouy–Chapman–Stern model and its
modifications.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The electric double layer (EDL) lies at the heart of our under-
standing of the interfacial behavior of ionic liquids (IL) at a charged
surface. This interface is especially important for energy storage in
the so-called electric-double-layer capacitors or more conve-
niently, supercapacitors. Recent experimental breakthroughs in
achieving high-capacitance and fast-charging supercapacitors
highlight the importance of controlling pore sizes, particle mor-
phology, and materials assembly [1–3]. The emergence of IL as a
new type of energy carrier also brought new life to theoretical
investigations of electrolyte/electrode interface in non-aqueous
environments [4].

The theory of the EDL in ionic liquids advanced greatly after two
complementary analytical studies [5,6] that yield similar equations
for the differential capacitance of the electrolyte/electrode inter-
face. The work by Kornyshev was focused on ionic liquid/metal
interfaces [5], and that by Kilic et al. targeted general electrolyte/
metal interfaces [6]. Both studies predicted that an increase of
the ionic concentration would result in a transition from the ‘ca-
mel’ (or M shape) to the ‘bell’ shape when the differential capaci-
tance is plotted as a function of the surface potential or the
applied electric potential. By contrast, the Gouy–Chapman theory
predicts only a U-shaped differential capacitance curve at all ionic
concentrations. Follow-on experimental work was conducted and
was able to produce both the camel and bell shapes in the differen-
tial capacitance curve for IL/electrode interfaces [7–11]. However,
experimental results are highly sensitive to the substrate details,
electrolyte condition, and temperature [12].

A number of theoretical studies and simulations have ensued
after the analytical works by Kornyshev [5] and by Kilic et al. [6].
For example, Oldham applied the Gouy–Chapman–Stern (GCS)
model to IL/metal interfaces and showed that the GCS model also
gave rise to the bell-shaped differential capacitance curve [13].
Lamperski et al. examined the transition from the camel shape to
the bell shape with an exclusion-volume-corrected Poisson–Boltz-
mann equation as well as the modified Poisson–Boltzmann theory
which treats both fluctuation and exclusion volume terms [14].
Fedorov and Kornyshev used both Monte Carlo (MC) and molecular
dynamics (MD) simulations to confirm Kornyshev’s previous theo-
retical predictions and examined the effects of ion-size disparity on
the interfacial behavior [15,16]. Whereas the classical GCS model is
now well documented to be inadequate to describe characteristics
of electrode/ionic liquid interfaces, there is still controversy
regarding the origin of the camel shape for the IL/metal interface.
MC simulations by Fedorov et al. and by Georgi et al. showed that
the camel shape evolves as a result of neutral tails in the cation of
the IL [17,18]. However, MD simulations by Trulsson et al. showed
that the camel shape in the differential capacitance is attributed to
the loss of van der Waals attractions among the ionic species near
the electrode [19]. Lauw et al. examined the EDL at the IL/electrode
interface with a numerical self-consistent mean-field theory and
showed that including an effective dielectric constant may also
lead to the camel shape [20]. Vatamanu et al. performed atomistic
MD simulations of a room-temperature ionic liquid at graphite
electrodes and investigated the dependences of the differential
capacitance on the electric potential and temperature; they also
obtained the camel-shaped curve [21].

It was shown in very recent MC simulations [22] that the bell-
shaped curve appears for a good metal electrode due to the strong
attraction between ions and their image charges, while the camel-
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shaped curve appears for the semi-metal electrode (such as glassy
carbon) because the finite screening length shifts the reflection
plane for the image charges into the electrode and reduces the
attraction. Moreover, Outhwaite et al. showed by using a modified
Poisson–Boltzmann theory that the effect of the image charges is
substantial at low temperatures [23]. However, experimentally,
the camel shape also appeared on a good metal [10]. Besides, the
experimental results on carbon electrodes are controversial: Locket
et al. reported the camel shape on glassy carbon [7], while Ohsaka
et al. observed only the U-shape on glassy carbon and graphite [9–
11]. It appears that the shape of the differential capacitance de-
pends on many other factors including the image charge effects.

In recent years classical density functional theory (DFT) has
evolved into a powerful and efficient computational tool to study
the structure and phase behavior of complex molecular systems
[24,25]. Although DFT has been used before to examine the struc-
tures of electric double layers in aqueous systems [26–28], we are
unaware of any published work on application of DFT to ionic liq-
uids. A main purpose of this Letter is to use DFT to investigate the
differential capacitance curve and its correlation with the point of
zero charge (PZC) and various ion–ion and ion–electrode interac-
tions. At the fundamental level, we ask: (1) Can we reproduce
the transition from the camel to bell shape in the differential
capacitance curve? (2) What are the microscopic structures of
the IL interfaces, especially in the high ionic concentration regime?
(3) How does the size disparity in cations and anions affect the dif-
ferential capacitance curve? Answering these questions would
pave the way for further applying DFT to studying differential
capacitance of EDLs at more complicated and realistic substrate
geometries and to systems at larger length scales.

2. Method

We use a primitive model of electrolyte solutions to represent
ionic liquids in a ‘good’ co-solvent, i.e., the dielectric behavior of
the solvent is the same as that of the pure ionic liquid such that
the cations and anions are fully dissociated and the thermody-
namic nonideality is dominated by electrostatic interactions. In
addition, we assume that the EDL is represented by the distribu-
tions of cations and anions near a charged planar surface with
the dielectric constant identical to that of the solvent. The cations
and anions are modeled as charged hard spheres and the solvent as
a continuum of dielectric constant e. Within these highly idealistic
assumptions, the pair interaction potential between ions is given
by

uijðrÞ ¼
1 r < ðri þ rjÞ=2
ZiZje2=er r P ðri þ rjÞ=2

�
ð1Þ

where r is the center-to-center distance, ri and Zi are the diameter
and valence of ion i, respectively, and e represents the unit charge.
The electrode is modeled as a rigid wall; the external potential of
the charged wall acting on the ions is given by

Vext
i ðzÞ ¼

1 z < ri=2
�2pZieQz=e z P ri=2

�
ð2Þ

where Q stands for the surface charge density, and z is the perpen-
dicular distance from the surface. While the surface is often consid-
ered as a metal electrode in a number of previous investigations, we
assume that it consists of a high-surface-area material (such as por-
ous carbon used in supercapacitors [1]) with a dielectric constant
comparable to that of the ionic liquid. In that case, we may ignore
the image charges due to the discontinuity of the dielectric constant
at the boundary.

Given the bulk ionic concentration and the surface charge den-
sity, the density profiles of cations and anions in the EDL,
qa(r),a = ±, are solved by minimization of the grand potential

X ¼
X

a¼þ;�

Z
drqaðrÞ kBT½lnqaðrÞ � 1� þ Vext

a ðrÞ � la

� �
þ Fex½qþðrÞ;q�ðrÞ� ð3Þ

where kB denotes the Boltzmann constant, T is the absolute temper-
ature, la is the chemical potential of ion a, and Fex is the excess
intrinsic Helmholtz energy functional arising from the electrostatic
interactions and excluded volume effects of ions. See Ref. [28,29] for
the exact expression of Fex and for the numerical details to solve
qa(r),a = ±.

From the density profiles, we can calculate the mean electro-
static potential (MEP) in the EDL by integrating the Poisson
equation

wðzÞ ¼ 4p
e

Z 1

z
dz0ðz� z0Þ

X
i

zieqiðz0Þ ð4Þ

Eq. 4 allows us to determine the surface electrostatic potential
and the point of zero charge (PZC), i.e., a position where the elec-
trical charge density is zero. By plotting the surface charge density
against the surface potential, we obtain the differential capacitance
numerically.

3. Results and discussion

We first consider a simple case where cations and anions have
the equal diameter (0.6 nm) and the solvent dielectric constant is
12.5, typical for an ionic liquid [30]. Figure 1 shows the DFT predic-
tions on how the surface charge density changes with the surface
potential for different reduced densities of the room-temperature
ionic liquid (q+r3). Because cations and anions have the same size,
the plot would be symmetric regarding the origin if one would ex-
tend the calculation to the negative surface potential. While the
surface charge density increases monotonically with the surface
potential, we observe noticeable change of the curvature as the io-
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Figure 1. The charge density (Qr2/e) of a planar surface as a function of the surface
potential (we/kBT) at various reduced bulk densities (q+r3) of a model ionic liquid.
Here both the cations and anions are monovalent and have the same hard-sphere
diameter (r = 0.6 nm); the solvent dielectric constant is 12.5 and temperature is at
298 K. DFT data points are shown for only q+r3 = 0.5; only a line is used for the
other densities. Reduced bulk density can be converted to mol/L by multiplying a
factor of 7.7. The surface potential can be converted to volts by multiplying a factor
of 1/39.
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nic density increases. At all ionic densities, the surface charge den-
sity increases linearly at high surface potentials and the slope is
nearly independent of the ionic concentration. As discussed later,
this linear behavior can be explained in terms of lattice saturation
[5].

The differential capacitance of the EDL is obtained by a deriva-
tive of the surface charge density with respect to the surface poten-
tial. Figure 2 shows both the positive and the negative branches of
the differential capacitance at the same conditions as those in Fig-
ure 1. We see that at low ionic densities, the differential capaci-
tance shows a minimum at zero surface potential and a
maximum (or a peak) at a non-zero surface potential. Over the en-
tire range (from negative to positive potential) the differential
capacitance curve exhibits two symmetric peaks, which affirms
the so-called camel shape of the differential capacitance [5]. At
high ionic densities, the differential capacitance reaches a maxi-
mum at zero surface potential, giving the so-called bell-shaped
curve [5]. From the camel shape to the bell shape, we may identify
a smooth cross-over density at q+r3 = 0.2. At this density, the dif-
ferential capacity curve shows an inflection point at the zero po-
tential. Apparently, our DFT calculations were able to reproduce
the transition from the camel shape to the bell shape predicted
by earlier analytical theories [5,6].

The camel-shaped curve of the differential capacitance can be
understood from the GCS model. The local-minimum region be-
tween the two peaks is dominated by the diffuse layer whose dif-
ferential capacitance follows the Gouy–Chapman model and hence
gives a U shape. With increasing electric potential, a compact Stern
layer is formed at the electrode surface, as shown in Figure 3 (at
w⁄=we/kBT = 10). Without specific adsorption, the total differential
capacitance (Ct) is related to the differential capacities of the com-
pact layer (Cc) for the ion-wall exclusion region and the diffuse
layer (Cd):

1
Ct
¼ 1

Cc
þ 1

Cd
: ð5Þ

Because Cd increases with the electric potential while Cc is relatively
constant, Cd becomes much greater than Cc at sufficiently high elec-
tric potential. In that case, Ct will be dominated by Cc. After the

maximum is reached, the decaying of Cd is dictated by lattice satu-
ration as discussed by Kornyshev and coworkers [5,16]. As a result
of the maximum in the local ionic concentration (cmax, including
both cations and anions) and charge neutrality (the charge on the
electrode is balanced by the integrated charge on the double layers),
Cd decays with the square root of the potential [5,16]. More specif-
ically, the capacitance of the EDL at high surface potentials can be
approximated by

Cd �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ee2cmax

8pkBT

s
1ffiffiffiffiffiffi
jwj

p ð6Þ

According to the the Gouy–Chapman–Stern model, Cc is inde-
pendent of |w|. As a result, Eqs. 5 and 6 predict that Ct

�1 should
be linearly dependent on |w|1/2. Such linear relation is affirmed
by the DFT calculation as shown in Figure 4 where we plotted
Ct
�1 against |w⁄|1/2 for two densities at large |w⁄| (>40). Therefore,

we conclude that the decaying wing in the camel shape can be ex-
plained by lattice saturation [5,16]. The camel shape arises from
initial compression of the liquid at small voltages, which provides
the rising branches of the capacitance, and then termination at lar-
ger voltages due to the onset of lattice saturation [5].

Figures 3 and 5 show the density profiles of cations and anions
at different surface electrostatic potentials. At low IL concentration
and small surface potential, cations and anions are distributed al-
most uniformly throughout the system. As expected, anions are
accumulated at and cations are depleted from the surface as the
electrostatic potential increases. At high surface potential, how-
ever, accumulation of anions is also seen near the surface, contra-
dictory to the predictions of the GCS model. The density profiles
are noticeably different at high IL concentrations (Figure 5). In this
case, the ionic excluded volume effects lead to strong oscillatory
distributions of both cations and anions. At close to zero surface
electrostatic potential (w⁄ = 0.1), multiple layers of cations and an-
ions are already formed near the surface, and each layer contains
approximately equal densities of cations and anions. This layered
structure was also observed in atomistic MD simulations [31]. Be-
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Figure 2. Differential capacitance versus surface potential (w⁄ = we/kBT) at various
reduced bulk densities (q+r3) of a model ionic liquid for systems the same as those
in Figure 1. Reduced bulk density can be converted to mol/L by multiplying a factor
of 7.7. The dimensionless differential capacitance can be converted to lF/cm2 by
multiplying a factor of 1733; the surface potential can be converted to volts by
multiplying a factor of 1/39.
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Figure 3. Density profiles of cations (red line) and anions (black line) within the
electric double layer of the model ionic liquid at bulk density q+r3 = 0.01 under
three different surface potentials (w⁄ = we/kBT). The parameters for the ionic liquid
are the same as those in Figure 1. Here z is the distance from the charged wall into
the ionic liquid (r = 0.6 nm); surface potential (w⁄) can be converted to volts by
multiplying a factor of 1/39.
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cause the Poisson–Boltzmann equation ignores the ion size, it can-
not capture the oscillatory densities due to the excluded volume
effect. This explains why the GCS model [Eq. 5] is not able to repro-
duce the bell-shaped differential capacitance curve. With increas-
ing potential such as to w⁄ = 1.0, the positive charges on the
surface is over-compensated by the net negative charges on the
first layer, so the second layer gives a net positive charge. The
layer-by-layer structure extends several layers into the bulk region
(namely, farther away from the surface) [5]. Figure 5 also shows
that, at high surface potential (w⁄ = 10), co-ions (cations) are re-

pelled from the first layer while the counter-ions (anions) are
pushed out of the second layer, and so on. As a result, alternating
layers of cations and anions are formed near the electrode surface.

The density profiles shown in Figure 5 help explain the bell
shape of the differential capacitance at high ionic densities. In
the absence of chemisorption, the maximum capacitance coincides
with PZC, but, as discussed and shown in Ref. [5,15], this is true
only when cations and anions have identical size. As shown in Fig-
ure 6, the location of the capacitance maximum would shift toward
positive potentials as the size ratio of cations and anion increases
[5,13,14]. At high ion densities, both cations and anions are densely
packed near the electrode surface, preventing counterions getting
close to the electrode. With increasing surface potential, the net
numbers of counterions have to extend to several layers into the
bulk, effectively increasing the thickness of the EDL and hence
decreasing the capacitance. At high surface potential, the decaying
wing of the bell shape shares the same physics of lattice saturation
as that of the camel shape [16]; namely, the differential capaci-
tance decreases linearly with |w|�1/2 (Figure 4).

Now we examine how the shape of the differential capacitance
changes as we increase the ionic density at a fixed cation/anion
size ratio (r+ = 0.6 nm, r� = 0.3 nm). At low ionic density
ðqþr3

þ ¼ 0:1Þ, the symmetric double peaks in the differential
capacitance curve for the equal-size case becomes asymmetric
with one peak significantly higher than the other (Figure 7). The
peak differential capacity is higher at a positively charged surface
due to the smaller size of anions. Likewise, at high ionic density
ðqþr3

þ ¼ 0:4Þ, the bell shape becomes asymmetric and the peak
shifts to the positive surface potential. We also observe a slight
shift of the PZC when the sizes of two ions differ. For example,
for the bulk density of cations ðqþr3

þ ¼ 0:4Þ, PZC is at ��1 unit
(indicated by the dashed line in Figure 7). At an intermediate den-
sity, the smaller peak in the camel-shaped differential capacitance
curve is hard to discern and appears as a small hump (indicated by
the arrow in Figure 7). Qualitatively, the effect of size disparity on
the differential capacitance predicted from our DFT calculations
agrees well with the MD simulations by Fedorov et al. [15]
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4. Conclusions and discussion

In summary, we have investigated the differential capacitance
of electric double layer in solutions of ionic liquids by using the
classical density functional theory (DFT). The electrolytes are mod-
eled as charged hard spheres in a continuum dielectric medium.
DFT predicts the camel shape curve at low ionic density and the
bell-shaped curve at high ionic density as observed in experiments
and as predicted by previous simulation and analytical theories. A
cross-over density was also identified. In addition, DFT predicts
alternating layers of cations and anions at high polarization for
the high ionic density, which is relevant to the structures of ionic
liquids at a charged substrate. Asymmetric shape of the differential
capacitance curve was observed for cations and anions of different
sizes. This work demonstrates that DFT is a useful and efficient
computational tool for further exploring the electrolyte/electrode
interface for incorporating more sophisticated electrolyte models
and substrate geometries.

Although the primitive model discussed in this work is not able
to capture the microscopic details, its relevance to realistic ionic
liquids at a charged surface is justified. There are several reasons
for this. First, the ion sizes we examined at 0.6 and 0.3 nm approx-
imate those of common ionic liquid cations and anions [32,33]; the
dielectric constant for the solvent (12.5) is also similar to those of
several common ionic liquids [30]. From this perspective, we can
compare our results to Kornyshev’s analytical predictions for the
IL/metal interface. To measure the lattice compression, Kornyshev
introduced parameter c = 2q0/qmax, where q0 is the bulk concen-
tration and qmax is the maximal possible local concentrations of
ions including both cations and ions. Based on the Poisson–Boltz-
mann lattice-gas model with the ion volumes accounted for,
Kornyshev predicted that the transition in the differential capaci-
tance curve from the camel shape to the bell shape happens at
c = 1/3, which corresponds to a reduced bulk density of 0.167.
Interestingly, our DFT calculations gave a similar transition density
at 0.2 (Figure 2). Moreover, as pointed out by Kornyshev, c should
be close to 1 for a densely packed ionic liquid, which corresponds
to a bulk density of 0.5. In this case, our DFT results gave a bell
shape as predicted by Kornyshev [5].

Experimental measurement of the differential capacity of ionic
liquids has been pursued by several groups [7–9,11]. Various
shapes have been observed, depending on the chemical specifics
of the ionic liquid, the substrate charge density, and the tempera-
ture. Interestingly, the camel-shaped curve has been observed for
the IL/electrode interface [7], though theory predicts that the bell
shape is more likely. Several simulations tried to account for the
camel shape at the IL/electrode interface, but at this point the ori-
gin is still in controversy. Adding neutral components to the ions
[17,18], including van der Waals attraction [19], and taking into ac-
count effective dielectric constant [20] all were shown to lead to
the camel shape. Most recently, it has been shown that incorporat-
ing the image charges in the simulations for a more realistic
description of the conductive electrode leads to the camel shape
for the EDL of IL near a semi-metal electrode [22]. Given that the
DFT results based on the simple models for the electrode and the
IL could reproduce well the transition of the camel shape to the bell
shape, we expect that the DFT would allow us to efficiently dissect
the roles of various factors leading to the camel shape as we use
more sophisticated models, by adding van der Waals interactions,
accounting for the effective dielectric constant, and taking into ac-
count the image charges for metal electrodes.

Besides the shape of the differential capacitance curve, it is also
interesting to examine the structure of cations and anions at the IL/
electrode interface. As pointed out earlier, the results from the DFT
calculations for the bulk density at ionic density qr3 = 0.5 can be
considered as a simulation of an ionic liquid of equal-ion size at
0.6 nm. At high ionic concentration and high surface electrostatic
potential, DFT predicts alternating layers of cations and anions at
the interface. This result agrees with recent observation of such
layering inferred from X-ray reflectivity measurements of ionic liq-
uids on a negatively charged sapphire surface [33,34] and from
atomistic MD simulations [16,21,35,36].
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þ). Here the diameter of
cations is r+ = 0.6 nm, the diameter of anions is r� = 0.3 nm. The solvent dielectric
constant is 12.5 and temperature is 298 K. Reduced bulk density can be converted
to mol/L by multiplying a factor of 7.7. Differential capacitance on the y-axis is in
arbitrary units as the curves are shifted vertically to make a better comparison.
Dimensionless surface potential (w⁄) can be converted to volts by multiplying a
factor of 1/39.
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