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In a recent work (Dyer et al., J. Chem. Phys. 129 (2008), 024508), we demonstrated that by accounting for the polarisability
of small non-polar solutes, in an explicit manner, it is possible to approach quantitative agreement with experimental values
of the excess chemical potential of the molecules in pure water. Here, we continue this line of research by considering
the effects of ionic co-solutes (i.e. salts) on the solubility of an explicitly polarisable model suitable for a variety of small
non-polar solutes. In doing so, we calculate the excess chemical potential that is related to the solubility of the solute in the
solution, and investigate how the solubility of hydrophobic solutes varies with ion concentration, i.e. salting-out/salting-in
effects, as measured by the Setchenow parameter. In particular, we consider the solubility of Ne, Ar, Kr, Xe and CH4 in
aqueous NaCl solutions for the TIP3P, TIP4P-Ew and TIP4P/2005 models of water. Using these models, we discover that
the addition of explicit polarisability to the solute models decreases the excess chemical potential, but fails to obtain
quantitative agreement with experimental values. In addition, we determine that explicit polarisation has minimal effect on
the Setchenow parameter and, in turn, minimal effect on salting-out. Instead, we show that the over-prediction of the excess
chemical potential is due to an inaccurate ion–solute interaction potential. Further to this, we demonstrate that, by
accounting for polarisability explicitly, it is possible to obtain pair interaction potentials from ab initio calculations that
perform as well as, or better than the models commonly used to study these systems.
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1. Dedication to Ed Smith

We dedicate this paper to the memory of Ed Smith, who

advised the PhD dissertation of one of us (PTC) between
1976 and 1980. I (PTC) began working with Ed in 1975 as

an undergraduate in the Mathematics Department at the

University of Newcastle, and was his second PhD student
(after Colin Hoskins). When Ed moved to Melbourne

University in 1977, I followed him there and eventually
received my PhD under his guidance from the University

of Melbourne. Both the Universities of Newcastle and

Melbourne were great places to be a student of statistical
mechanics: at Newcastle, I took courses from Ed, Tony

Guttmann and Clive Croxton; at Melbourne, in addition to
Ed and Tony Guttmann (who also moved to Melbourne),

I sat in on Colin Thompson’s Mathematical Statistical

Mechanics course. I learned from all of these individuals
and from their steady stream of visitors (e.g. a short course

on Monte Carlo simulation by Stu Whittington at
Newcastle and a short course on Mellin transforms by

D. John Mitchell at Melbourne).
Ed stimulated in me a life-long interest in under-

standing water – as my first project, he assigned to me the

task of solving the mean spherical approximation (MSA)

analytically for a model for water (hard sphere þ dipole þ
quadrupole). While I did not succeed in this (after several
months of trying to understand the relevant papers on
rotational invariants by Lesser Blum, I had to admit defeat)
and instead focused on analytically solving the MSA
and/or Percus-Yevick approximation for a model for
nucleation, a model for liquid metals and the hard-core and
soft-core Yukawa fluid. Ed’s style was to encourage his
students to be self-sufficient – he was a hands-off
adviser – and to this day I believe this was the best thing
for me: I learned to be an independent thinker and
researcher from my years of working with Ed.

I had the pleasure of meeting Ed several times since
I finished my PhD, at La Trobe and when he visited me at
the University of Tennessee and Oak Ridge National
Laboratory. He was the same old Ed on every occasion: he
immediately went to the board (black or white, as
available!) and started filling it with equations for my
reaction and to see if I could notice some error he was
missing. His enthusiasm for life and for science remained
intact and infectious. We as a community of scholars are
poorer for his untimely passing. We dedicate this paper on
the role of polarisability in modelling the solubility of
hydrophobic solutes in water to his memory.
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2. Introduction

This is the second in a series of work aimed at elucidating
the role of polarisability in the calculation of solubility. In
the first work [1], we demonstrated that, by explicitly
accounting for the polarisability of small non-polar
solutes, it is possible to approach quantitative agreement
with experimental values of the excess chemical potential
for the solute in pure water for a range of temperatures.
In this work, we consider the related question of whether
or not the addition of explicit polarisability to the solute
model is sufficient to account for the qualitative and
quantitative disagreements between experimental and
simulation values in the modelling of the excess chemical
potential for solutes in solutions containing charged
co-solutes.

Understanding the solubility of hydrophobic com-
pounds in aqueous solutions is important in traditional
engineering situations, such as the formation of hydrates in
oil pipelines [2,3], in various geological systems [4], as
well as more contemporary applications such as the
denaturing of proteins [5–7]. The effect of the addition of
charged species to aqueous solutions containing hydro-
phobic solutes has long been well known, but the
mechanism is still subject to debate. Typically, the
addition of salt results in either a decrease in the solubility
of hydrophobic compounds, known as salting-out, or an
increase in solubility known as salting-in. Applications of
salting-out effects include the separation of proteins [8],
based on the principle that hydrophobic proteins are less
soluble at higher salt concentration. Thus, the ability to
reproduce these effects is important in the modelling of
biological systems. Given this, it is perhaps unsurprising
that a number of interesting simulation studies have been
undertaken which provide an insight into ion–protein
interactions [9–11]. However, despite this, the models
typically employed in simulating solubility are unable to
provide a quantitative description for even simple small
spherical non-polar solutes. A commonly cited expla-
nation for this inability to describe accurately even the
simplest systems is that the models used fail to account for
polarisability in an explicit manner [12,13].

Salting effects (i.e. salting-out and salting-in) follow
what is known as a Hofmeister series [14]. The Hofmeister
series was developed from observation of the differing
impact of various ions on the solubility and stability of
proteins [15,16] and has long been thought to be primarily
due to the effect of the ions on the surrounding water
structure [17,18], i.e. the chaotropic (structure breaking)
and kosmotropic (structure making) nature of the ions.
However, in a recent work, Zhang and Cremer [19]
challenged this explanation, concluding that changes in the
bulk water structure and density do not explain specific ion
effects. Their reasoning is based on there being a
negligible change in the water structure around an ion

after the second solvation shell, as revealed in the work of
Omta et al. [20]. As a result, they postulated that salting
effects are predominantly due to direct interactions
between the solute and the ions. Here, we attempt to
clarify the underlying causes of salting-out by examining
the effect of charged co-solutes on different regions of
aqueous solutions, and the individual contributions of
these regions to the excess chemical potential. These
regions are described in Section 6 of this article.

In terms of modelling the salting-out of methane and
other similar small solutes, Docherty et al. [12]
demonstrated that the salting-out effect can be rationalised
in terms of a single parameter, the packing fraction,
highlighting the role of volume exclusion. They proceeded
to show that even a non-polarisable model capable of
reproducing accurately the solubility of methane in pure
water [21] is unable to capture the effect of salt
concentration on solubility, i.e. salting-out. Specifically,
they observe an over-prediction of the salting-out effect
and given the importance of polarisation of the solute
molecule for the solubility of methane in pure water; they
logically suggest this may be due to neglecting the effect
of the charged co-solutes’ contribution to the electric field.
In this work, we test this hypothesis using point polarisable
models for a variety of solutes (Ne, Ar, Kr, Xe and CH4),
and show that although polarisability plays a role in the
salting-out effect, the dominant force is once again volume
exclusion. We show that accounting for polarisability
explicitly in the solute model is insufficient to account for
the discrepancy between simulation and experimental
values for the excess chemical potential and salting-out.
In doing so, we highlight the importance of an accurate
representation of the ion–water system, i.e. solute free, for
accurately reproducing the experimental excess chemical
potential as well as demonstrate the importance of explicit
polarisability in developing intermolecular potentials from
ab initio calculations.

3. Theory

3.1 The Setchenow parameter

In studying the effect of the addition of salts on the
solubility of hydrophobic molecules, the Setchenow
coefficient is a commonly used indicator of the degree of
salting-out. The Setchenow parameter may be written as

kSaltMSalt ¼ ln
x0Sol
xSol

! "
; ð1Þ

where x0Sol and xSol are the mole fraction solubility of the
solute in pure water and aqueous salt solution,
respectively, kSalt is the Setchenow coefficient; and MSalt

is the molarity of the aqueous solution. It is worth noting
that, while we used molarity and molality, in the literature,
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a variety of concentration scales appear to have been used,
often without specification, making comparison difficult.

Unfortunately, in its current form, Equation (1) does
not lend itself readily to the calculation of the Setchenow
parameter, since mole fraction solubility is not the most
intuitive or easy value to calculate directly from molecular
simulation. Because of this, we would like to rephrase the
Setchenow equation in terms of more easily accessible
variables. To start, the mole fraction xSol can be related to
Henry’s coefficient

xSol ¼
ySolP

HSol
; ð2Þ

where HSol is Henry’s constant and ySolP is the partial
pressure of the solute in the gas phase. Assuming that the
solvent does not form a significant fraction of the vapour
phase, which is a reasonable assumption for the systems
considered here at ambient condition, ySolP is constant and
Equation (1) may be written in terms of Henry’s
coefficients

kSaltMSalt ¼ ln
x0Sol
xSol

! "
¼ ln

HSol

H0
Sol

! "
: ð3Þ

In turn, Henry’s coefficients can be determined from the
excess chemical potential of the solute at infinite dilution

HSol ¼ kBTr exp
mex
Solð1Þ
kBT

! "
; ð4Þ

where kB is the Boltzmann constant, T is the temperature
and r is the number density of the solution. As in previous
work, we calculate the excess chemical potential using the
Widom insertion method [22] which can be expressed as

mex
Solð1Þ ¼ 2kBT ln exp

2USol

kBTr

! "# $
: ð5Þ

Thus,

HSol ¼
kBTr

exp 2USol=kBT
% &' ( ð6Þ

and the Setchenow coefficient may now be written in
terms of a change in internal energy USol; caused by the
addition of a solute particle

kSaltMSalt ¼ ln
x0Sol
xSol

! "
¼ ln

HSol

H0
Sol

! "

¼ ln
r exp 2U0

Sol=kBT
% &' (

r0 exp 2USol=kBT
% &' (

 !

: ð7Þ

The contribution of the solute to the internal energy of the
system maybe considered as the sum of van der Waals and

polarisability components

USol ¼ UvdW
Sol þ UPol

Sol; ð8Þ

where UvdW
Sol is the energy due to the van der Waals

interactions and UPol
Sol is the contribution to the system

energy from the polarisability of the solute molecule and is
given by

UPol
Sol ¼ 2

1

2
a ~E
) *2
++++

++++; ð9Þ

where ~E is the electric field at the polarisation site and a is
the polarisability of the solute. For full details of the
calculation of the electric field, see our previous work [1].

3.2 Molecular models

In this section, we describe in more detail the molecular
models used for each of the species considered in this
work, namely water, NaCl and solute molecules
(Ne, Ar, Kr, Xe and CH4). We begin by noting that all
cross-species interactions are approximated using the
Lorentz–Berthelot combining rules

sij ¼
sii þ sjj

2

! "
; 1ij ¼

ffiffiffiffiffiffiffiffiffiffi
1ii1jj

p
: ð10Þ

3.2.1 Water potential

In this work, we consider three popular models of water.
The TIP4P-Ew [23] and TIP4P/2005 [24] models are
chosen due to their superior performance in predicting
the solubility of small non-polar solutes in water [1].
In addition to these, the TIP3P [25] model is evaluated due
to its extensive use in the study of biological systems in
which polarisability and hydrophobic hydration are
believed to play an important role. All of these are rigid
non-polarisable water models consisting of a single
Lennard-Jones site located at the centre of the oxygen,
together with a number of point charges to account for
the charged nature of the hydrogen and oxygen atoms.
The parameters for these models are shown in Table 1.

3.2.2 Co-solute potential

Non-polarisable Naþ and Cl2 ions were modelled
using the Smith and Dang [26] potential model for ions,
i.e. they are considered as dissociated ions, described by
charged single-site Lennard-Jones spheres. This model
was chosen as it has previously been shown to
reproduce, with a high level of accuracy, the density of
NaCl solutions [12]. The parameters for the ions are
presented in Table 1.
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3.2.3 Solute potential

Following our previous work, we consider two models for
the solute molecules. In the first, the molecules are
described by the single Lennard-Jones site of Hirschfelder
et al. [27], while in the second, in addition to the Lennard-
Jones site for the first model, the molecules have a
polarisable site located at their centre of mass. The solute
polarisability is taken from experimental values [28,29],
and is shown together with the Lennard-Jones parameters
for each solute in Table 2.

4. Computational method

4.1 Methodology

Our calculation of the excess chemical potential of each
solute in solutions of NaCl of varying concentration
consisted of three steps. In all steps, for all models and
systems, interactions were truncated at 9 Å and standard
tail corrections applied. In the first two steps, i.e. Steps 1
and 2, simulations were performed using the LAMMPS
[30] computational software with long-ranged Coulombic
interactions calculated via the particle–particle, particle–
mesh (PPPM) [31] technique. Finally, in Step 3, we used
our in-house code with the Wolf method [32] to account
for the long-range nature of electrostatic interactions, i.e.
the calculation of the electric field. Following the work of
Demontis et al. [33], and Avendano and Gil-Villegas [34],
in theWolf method we chose a damping factor (b) of 2/RC,
where RC is the Coulombic truncation distance (9 Å).
For an explanation of our use of the Wolf method, as well
as a justification of the choice of the PPPM method in our
LAMMPS simulations, we refer the reader to our previous
work [1].

4.2 Step 1: Aqueous solution simulations

In the first step of our calculations, the density, as
predicted by each model at a variety of concentrations, was
determined from isothermal–isobaric molecular dynamics
simulations (NPT) at a pressure of 1 bar and a temperature
of 298K. These simulations consisted of 278 water
molecules together with 1, 2, 5, 10, 15, 20 or 25 NaCl
molecules, corresponding to concentrations of 0.200,
0.399, 0.998, 1.997, 2.995, 3.993 and 4.992mol/kg (mol of
solute/kg solvent) molality, respectively. Starting with a
randomly orientated and transitionally distributed con-
figuration at a density close to experimental, each system
was first subjected to a simulation period of 300 ps in order
to obtain an equilibrated configuration. A 1-ns production
run was then performed in which the mean density was
calculated. These densities are shown together with
experimental values in Figure 1.

4.3 Step 2: Generation of sample configurations

Starting with the final configuration from Step 1, each
system was adjusted in volume to the average density for
each system (a minor adjustment) and subjected to an
equilibration period of 5 ps of constant volume, constant
temperature molecular dynamics simulation (NVT)

Table 2. Solute potential Lennard-Jones parameters and
polarisability (a).

s (Å) 1 (K) a (Å3)

Neon 3.035 18.6 0.40
Argon 3.415 125 1.64
Krypton 3.675 169 2.48
Xenon 3.975 214.7 4.044
Methane 3.730 147.5 2.56

Table 1. Model parameters for the aqueous solution.

TIP3P TIP4P/2005 TIP4P-Ew Na Cl

s 3.1506 3.1589 3.1644 2.35 4.40
1 76.546 93.240 81.910 65.42 50.32
Q qh 0.4170 qh 0.5564 qh 0.52422 qi 1.0 qi 21.0

qo 20.8340 qo 21.1128 qo 21.04844

Figure 1. System density as a function of salt concentration for
aqueous NaCl systems at 298K and 1 bar for the TIP4P/2005,
TIP4P-Ew and TIP3P water models. The solid line represents
experiment densities [41], squares are TIP4P/2005, triangles are
TIP4P-Ew, circles are TIP3P and pluses are the values of
Holzmann et al. [13].
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in order to relax the system following the volume change.
Sample configurations were then generated by performing
7 ns of NVT molecular dynamics simulations, recording a
configuration every 70 fs for a total of 100,000
configurations for each water model and ion concentration.

4.4 Step 3: Calculation of the excess chemical
potentials

The third and final step was the calculation of the chemical
potential of the solute via the Widom insertion technique
[22] using in-house code. In this method, a phantom
solute molecule is inserted 100,000 times into each
configuration, resulting in 1010 insertions for every water
model and ion concentration.

5. Is explicit polarisability sufficient?

5.1 Density of the solvent

First, given the importance of the solution density for the
solubility of hydrophobic molecules, as shown in our
previous work [1], as well as work by Paschek [35] and
Docherty et al. [12], we test the ability of each water model
to reproduce the density–concentration relationship for
NaCl solutions. In Figure 1, we show solution density as a
function of ion concentration, as predicted by each water
model at 298K and 1 bar, calculated from isothermal–
isobaric molecular dynamics simulations. We note that the
TIP4P/2005 and TIP4P-Ew models provide essentially
identical values and an excellent description of the density
of NaCl solutions. TIP3P, however, significantly under-
predicts the densities of the solutions considered in this
work and this will have a fairly dramatic effect on solute
solubility, which will be demonstrated later. Finally, we
have also plotted data from the recent work of Holzmann
et al. [13] for comparison. Note that their choice of models
(TIP4P-Ew water and Heinzinger ion potentials [36])
significantly under-predicts the solution densities. As for
the TIP3P model, this will affect the calculation of the
excess chemical potential and raises doubts as to the
models accuracy in describing the underlying physics of
salting-out.

5.2 Chemical potential

As in previous work [1], we begin by showing the effect of
polarisability on the excess chemical potential of each
solute species considered. We note that all the solutes
considered here exhibit a similar trend and, to this end,
Figure 2 shows the excess chemical potential for krypton
using both the polarisable and non-polarisable models
(figures for the other solutes may be found in the
accompanying supplementary material). As expected, the
inclusion of explicit polarisability reduces the excess

chemical potential, i.e. increases solubility, although it
does not provide enough of a decrease to achieve
quantitative agreement with experiment. Interestingly, in
contrast to the temperature dependence of solubility, the
TIP3P model gives the best agreement with experiment.
However, it is important to note that this is not due to the
TIP3P model providing a better description of the physics
of the system but is rather a fortuitous cancellation of
errors. As mentioned previously in this work, TIP3P
greatly under-predicts the density of NaCl solutions. This
results in a lower excess chemical potential and, since the
models used in this work typically over-predict this value,
leads to improved agreement with experiment. Proof of
this is given in Figure 3, which contains values for the
excess chemical potential of krypton for the TIP3P model
calculated at solution densities predicted by the TIP4P-Ew
model, as opposed to those predicted by the TIP3P model.
For comparison, results for the TIP4P-Ew model are also
shown. We note that in the case of the solution densities
being equal, agreement between the models is good.
In addition to demonstrating the dominant role of volume
exclusion in solubility, this highlights the need to

Figure 2. Excess chemical potential as a function of salt
concentration for krypton in aqueous NaCl solutions: (a) a non-
polarisable krypton model and (b) a polarisable krypton model.
See Figure 1 for the explanation of symbols.
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understand the physics behind the values calculated using
these models, which is one of the key aims of this work.

5.3 Setchenow parameter

In Figure 4, the Setchenow coefficient for krypton (for
other solutes see Supplementary Material) is the gradient
as a function of molarity and is over-predicted with respect
to the experimental value (solid line). The effect of
explicitly accounting for polarisability is shown in
Figure 4, using krypton as demonstrative of all the
systems studied here. As hoped, the addition of explicit
point polarisability to the solute model leads to a reduction
in the Setchenow coefficient (see Table 3), improving
agreement with experiment and corresponding to
improved qualitative agreement for the concentration
dependence of the excess chemical potential. However,
the decrease is relatively minor and is far from being
sufficient to obtain quantitative agreement. This should be
of interest to a number of workers, such as Docherty et al.
[12] and, more recently, Holzmann et al. [13] who have
suggested that the lack of accounting for polarisability
explicitly is the cause of the over-prediction of the
Setchenow coefficient. However, it is clear from the work
presented here that this is not the case.

Given that this hypothesis is incorrect, the question
now is what causes the over-prediction in the Setchenow
coefficient? In answering this, our attention returns to the
excluded volume of the system and, since the water–ion
potentials attain the correct density for the TIP4P/2005 and
TIP4P-Ew models and the water– solute potential
approaches quantitative agreement, our focus is on the
ion–solute potential. We postulate that the over-prediction
of the excess chemical potential and, in turn, the
Setchenow parameter is due to an inaccurate ion–solute
interaction potential due to assumptions implicit in the use
of the Lorentz–Berthelot mixing rules.

Finally, it is interesting that while the inclusion of
explicit polarisation improves quantitative agreement
of the temperature dependences of solubility at a cost of
reduced qualitative agreement [1], it results in an
improvement of both qualitative and quantitative agree-
ments for the salt concentration dependence of solubility.

6. Understanding the causes of salting-out

In order to gain a better understanding of the causes of
salting-out, we divide the solvent into three regions in a
manner similar to that of Holzmann et al. [13,37] using the
TIP4P/2005 model as a representative example. These
regions are defined in relation to the ion–oxygen radial
distribution functions. Specifically, in terms of the Widom
method, an insertion is considered to be in Region 1 (first
hydration layer) if the distance from the insertion point to
the centre of mass of the nearest ion is less than the
distance to the first minima in the corresponding ion–
oxygen radial distribution function. In a similar manner, a
Region 2 insertion (second hydration layer) occurs if the
distance to the nearest ion is less than the distance to the
second minima but greater than the distance to the first

Figure 3. Excess chemical potential as a function of salt
concentration for polarisable krypton model in aqueous NaCl
solutions. Squares are TIP4P/2005, triangles are TIP4P-Ew and
circles are TIP3P at the corresponding TIP4P-Ew system density.

Figure 4. Setchenow relationship for krypton in aqueous NaCl
solutions: (a) a non-polarisable model and (b) a polarisable
model. The solid line represents experiment values [42], squares
are TIP4P/2005, triangles are TIP4P-Ew and circles are TIP3P.
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minima. Finally, if an insertion is neither first nor second
hydration shell, it is considered a bulk region insertion.
For clarity, this is shown below

region ¼

1st rion–solute , dfirstmin

2nd dfirstmin , rion–solute , dsecondmin

Bulk rion–solute . dsecondmin

8
>>><

>>>:

9
>>>=

>>>;
;

where rion– solute is the distance from the solute insertion
point to the nearest ion and dfirstmin and dsecondmin are,
respectively, the distances to the first and second minima
in the appropriate ion–oxygen radial distribution function.

The excess chemical potential of a solute in an aqueous
solution, as calculated in this work using the Widom
insertion method, is a function of the number of insertions
into each region (first, second or bulk) and the chemical
potential obtained for each region. Figure 5 shows the
composition of the system, in terms of these regions, as a
function of concentration. We note that at low concen-
trations insertions into the bulk fluid decrease rapidly,
being replaced by an increasing number of first and second
hydrations layer insertions and that the number of second
layer insertions initially increases faster than the first layer
due to the larger volume of the second hydration layers.

However, the number of second layer insertions peaks and
then declines, as second hydration layer volume is
replaced by first hydration layer since, if an insertion is
in the second layer of one ion, but the first layer of another,
it is considered as a first layer insertion.

We now consider the excess chemical potential
associated with each region of the solvent. Given the
importance of density in the calculation of excess
chemical potential, we begin by investigating the density
of each region. The density in each region was determined
during the widom insertion calculation as follows: first, the
volume of each region was obtained by considering the
fraction of insertions into each and the total system
volume. Second, each molecule in the system was
analysed to determine the number (and hence mass) in
each region. From this information, the density of each
region is readily obtained and is shown in Figure 6 as a
function of concentration together with the overall system
density. From this figure, it is clear that the increase in the
system density is not due to an increase in the density of
the bulk water from induced structural changes, but is
rather due to an increasing fraction of the system being
composed of first hydration layers. Also, of particular
interest in terms of the chemical potential is the reduction
in density of the bulk and second hydration layers, which

Table 3. Setchenow coefficients.

TIP3P TIP4P-Ew TIP4P/2005

EXP NP P NP P NP P

Neon 0.277 0.310 0.306 0.358 0.354 0.355 0.351
Argon 0.336 0.400 0.391 0.475 0.464 0.477 0.467
Krypton 0.353 0.455 0.442 0.544 0.530 0.549 0.534
Xenon 0.378 0.526 0.503 0.627 0.612 0.633 0.615
CH4 0.335 0.469 0.455 0.558 0.544 0.559 0.547

Note: NP and P refer to the non-polarisable and polarisable solute models, respectively and EXP to experimental values.

Figure 5. Probability of attempted solute insertion, by region, as
a function of salt concentration: first hydration shell (dashed line),
second hydration shell (dotted line) and bulk fluid (solid line).

Figure 6. Regional densities as a function of concentration for
aqueous NaCl solutions: first hydration shell (dashed line),
second hydration shell (dotted line), bulk fluid (solid lines) and
the overall density of the solution (dot-dashed line).

Molecular Simulation 305

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
2
0
0
7
-
2
0
0
8
 
N
a
n
y
a
n
g
 
T
e
c
h
n
o
l
o
g
i
c
a
l
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
3
:
4
0
 
2
9
 
A
p
r
i
l
 
2
0
1
1



one might expect to result in a decrease in the chemical
potential in these regions.

Figure 7 shows the excess chemical potential for
insertions into each of the three regions together with the
overall system value. We begin by noting that although the
density of the bulk and second hydration layer regions
decreases, the chemical potential does not. This means that
the hydrated ions are more repulsive in nature than the
water molecules they replace. This is confirmed by the
higher excess chemical potential of the first hydration
layer. The conclusion we draw from this figure is that the
increase in overall chemical potential, caused by the
addition of salt, occurs because hydrated ions are
relatively repulsive compared to an equivalent volume of
bulk water. This in turn leads to our hypothesis that the
over-prediction of the salting-out of systems studied here
is due to the use of a relatively repulsive, or insufficiently
attractive, ion–solute potential.

In summary, salting-out occurs because hydrated ions
have a larger excluded volume than bulk water. This
observation is consistent with the work of Docherty et al.
[12] who demonstrated a direct relationship between
solvent packing fraction and solubility, and the work of
Graziano [38] who showed that for a quantatively accurate
scaled particle theory method, the salting-out of methane
via the addition of NaCl is dominated by the work of
cavity creation. It follows from this that the models
considered in this work over-predict the salting-out effect
as they fail to capture accurately the nature of the ion–
solute interaction.

7. A better ion–solute potential

Having shown that the over-prediction of salting-out is due
to the ion–solute potential, it seems logical that the next
step in attempting to correctly reproduce the salting-out
effect is the development of an improved solute–ion
potential. Perhaps the most obvious and straightforward

method of accomplishing this would be to fit the solute–
ion potential to experiment. However, this requires
experimental solubility data that, even for a common
molecule like CH4, are very limited. As an alternative to
this, we have chosen to fit the ion–solute potentials to ab
initio calculations as this requires no experimental data
and, as such, is a fully predictive method.

In an attempt to more accurately capture the repulsive
nature of the ion–solute interaction, we choose to model
short-range interactions via the Buckingham exp-6
potential

UðrÞ ¼ 1ij
12 6=gij

6

gij
exp gij 12

rij
sij

! "! "
2

sij

rij

! "6
 !

;

ð11Þ

which contains an exponential repulsive wall that is less
steep than the r 212 of the Lennard-Jones. sij is the
location of the minimum energy, 1ij is the minimum energy
and gij controls the gradient of the repulsive wall.
The Buckingham exp-6 potential obtains a better
approximation of the potential wall, which is important
for Monte Carlo simulations as the wall potential is
frequently sampled. The Buckingham exp-6 parameters
sij, 1ij and gij are optimised to reproduce the appropriate
ab initio MP2 energy for each ion–solute dimer, using a
gradient descent optimisation for the energy.

7.1 Force field parameterisation

In this work, we have developed ion–solute potentials by
fixing the polarisability of the solute molecule to an
appropriate experimental value and then fitting the sum of
this polarisable contribution (Equation (9)) and a
Buckingham exp-6 potential (Equation (11)) to the MP2
point energy of the ion-solute interaction for separations
ranging from approximately 0.6 Å closer than the overall
energy minima to 3.3 Å past it at intervals of 0.1 Å. In all
cases, the ab initio calculations were performed using the
computational package NWCHEM [39]. The 6-311 þ
þ G(3df,3pd) basis set was used for the calculation of the
Hartree–Fock energy and basis set superposition error was
corrected for via the half counterpoise method [40,41]. For
comparison, Figure 8 shows the fit of the proposed
potential to the MP2 point energy for the neon–sodium
dimer, together with the pair potential obtained by
applying the Lorentz–Berthelot mixing rules to the
Smith and Dang ion potential [26] and the Hirschfelder
et al. solute potential [27]. Given that polarisability plays
an important, but highly system dependent, role in the
system energy, the ability to decouple the van der Waals
and polarisability contributions is a major advantage of
using explicit polarisability. For example, in the case of an
isolated pair interaction, such as that used here, the

Figure 7. Excess chemical potential of a non-polarisable
krypton model in each region. See Figure 5 for the explanation of
symbols.
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electrostatic shielding typical of bulk systems is absent
and, as such, accounting for polarisability in an implicit
manner, e.g. fitting only the exp-6 potential to the MP2
energy, would significantly overestimate the polarisability
contribution in a condensed phase calculation. The values
of the new ion–solute interaction potentials are shown in
Table 4. As before, the electrostatic charges on the ions
and solutes are set to their isolated value (þ1e for Naþ and
21e for Cl2) and the polarisability was set to their
relevant experimental value [28,29,35].

7.2 Results from new potentials

The new potentials were tested by comparing values for
the excess chemical potential and the Setchenow
coefficients (Table 5) to those calculated using the original
parameters, as well as experiment. For brevity, we show
only figures of the Setchenow coefficients; however, due

to their close relationship, similar trends are seen for the
chemical potentials. Specifically, Figures 9–11 show the
Setchenow coefficient for both the new and original
potentials using both the TIP4P/2005 and TIP4P-Ew water
models. We note that for the argon and krypton solutes,
shown in Figures 10 and 11, respectively, a significant
improvement over the Lennard-Jones parameters taken

Figure 8. Neon–sodium dimer energy from ab initioMP2 point
energy calculations (solid line). Symbols correspond to the ion-
solute potentials used in this work: triangles are obtained by
applying the Lorentz–Berthelot mixing rules to the Smith and
Dang ion potential [26] and the Hirschfelder et al. solute potential
[27], and circles are the exponential-6 fit to the ab initio data
proposed in this work. Hollow and solid symbols represent values
for polarisable and non-polarisable solute models, respectively,
and the dashed line corresponds to the polarisable contribution to
the ion–solute potentials (Equation (9)).

Table 4. Solute potential exp-6 parameters and polarisability
(a), from fitting to MP2 point energies.

s (Å) 1 (K) l a (Å3)

Neon
Naþ 2.833 142.666 12.765 0.40
Cl2 5.228 1.516 16.750

Argon
Naþ 3.414 161.691 12.783 1.64
Cl2 4.326 105.278 12.620

Krypton
Naþ 3.597 300.777 11.741 2.48
Cl2 4.597 59.927 13.904

Table 5. Comparison of Setchenow coefficients obtained using
a polarisable exponential-6 solute model fitted to ab initio
calculations.

EXP LJ Exp-6

Neon 0.277 0.351 0.393
Argon 0.336 0.467 0.378
Krypton 0.353 0.634 0.410

Notes: EXP, experimental values; LJ, polarisable Lennard-Jones potential; Exp-6,
ab initio parameterised potential. For both models, the TIP4P/2005 water model
was used.

Figure 10. Setchenow relationship for a polarisable argon
model in aqueous NaCl solutions. See Figure 9 for the
explanation of symbols.

Figure 9. Setchenow relationship for a polarisable neon model
in aqueous NaCl solutions. The solid line represents experiment
values, squares are TIP4P/2005 and triangles are TIP4P-Ew.
Hollow symbols correspond to the Lennard-Jones model and
solid symbols correspond to the exponential-6 potential fitted to
ab initio calculations of this work.
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from the literature is observed. Conversely for neon,
shown in Figure 9, agreement with experiment is slightly
worse with the new potential suggesting that other factors
are not being accounted for. However, as a proof of
concept, the new potentials work well.

8. Conclusions

In this work, we began by showing that, when coupled
with common rigid molecules, single-site non-polarisable
models of small non-polar solutes fail to capture either
qualitatively or quantitatively the effect of charged co-
solutes on solubility. Given that in our previous work, we
showed that such models fail to reproduce the temperature
dependence in pure water, this is unsurprising. In fact,
these models over-predict salting-out effects. Here, we
have investigated the common hypothesis that this over-
prediction is due to not accounting for solute polarisability
explicitly. We have shown that, with respect to salting-out,
explicit polarisability improves both the qualitative and
quantitative agreements with experiment, but is not
sufficient to provide the desired agreement with exper-
iment. In fact, we present evidence to suggest that
disagreement with experiment is largely due to inadequa-
cies in ion–solute interactions. Further to this, we have
demonstrated that, by accounting for polarisability
explicitly, it is possible to obtain pair interaction potentials
from ab initio calculations that perfom as well as, or better
than, the models commonly used to study these systems.
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