
Trapped-Electron Transport
Induced by ECRH in Stellarators

In most electron cyclotron resonant heating (ECRH)
experiments in stellarators the resonant value of the mag-
netic field falls at a non-maximum field magnitude so
that both transit and a fraction of trapped electrons gain
energy from the wave. While the energy absorbed by
transit electrons is assumed to be distributed evenly over
the flux surface because of the fast parallel motion, the
energy gained by helically (locally) trapped electrons
remains confined (for a time determined by collisions) in
the local well of the helical modulation of magnetic field
and can be transported towards the plasma boundary
owing to the radial drift.

The behavior of locally trapped electrons under the com-
bined action of radio-frequency (RF) field and Coulomb
collisions is described by the kinetic equation [1]

. (1)df
dt = LQLf + LCf

Here f is the bounce-averaged electron distribution func-
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tron, l is a coordinate along the force line, and  is theDE
change in electron energy E on a single bounce oscilla-
tion, corresponding to a double transit through the
resonance.

Because the pitch angle for locally trapped electrons is
close to , it is natural to keep only the angular term ino/2
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the thermal electron velocity is determined as
, , Z is the ion charge number, vTe

2 = 2Te/me xe = v/vTe
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gitudinal adiabatic invariant.

The expression for  derived in ref [4], isDE
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are the Airy function and the Scorer function, respec-
tively. In Eq. (5) we use the designations
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Here  is the complex amplitude of the effective RFEeff
(!)

field , referred to the point where reso-E− + EÈkÇvÈ/z
nance occurs for the given  sign of ;  is the paral-(!) vÈ EÈ

lel (with respect to the magnetic field) component of the
RF electric field, and  is the circular component rotat-E−
ing in the same direction as the electrons. To find  andEÈ

 it is necessary to take into account both the fieldE−
inhomogeneity across the beam aperture and a spatial
wave damping. For the fraction of electrons trapped
deeply in the magnetic well, so that they never match the
resonance condition (namely, for w < 0), we take

.Eeff
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The numerical solution of Eq. (1) was restricted to calcu-
lation of the stationary distribution function. When com-
puting f, we use the parameters of the magnetic field,
plasma and microwave beam typical for the ECRH
experiments in the L-2 stellarator [5]. The numerical
results show that, when the collisionless absorption due
to transit electrons is high enough to provide strong
(³ 95%) single-pass wave attenuation, only a small por-
tion of the injected power reaches the region of exact
electron cyclotron resonance. As a result, in this case,
there is practically no energy exchange between trapped
electrons and the wave. Otherwise, trapped electrons can
absorb a noticeable amount of the injected power and
transfer it towards the plasma periphery.

A typical profile of the radial energy flux W(r) (normal-
ized to the injected power P0) associated with the super-
thermal tail of locally trapped electrons is shown in
Fig. 1. The calculation is for the case of X-mode second
harmonic heating (l = 0.4 cm, magnetic field at the axis
B = 13 kG) with quasi-transverse launch, taking the
beam axis to cross the plasma column at 4.5 cm above
the magnetic axis (which falls at the saddle point in the
L-2 device). The beam intensity profile was taken in the
form , with  = 2.75 cm; the injectedI · exp(−2q2/q0

2) q0

power was ~ 280 kW, and the electron density and

temperature at the axis were ne = 1.5  1013 cm-3 and Te%

= 0.7 keV.

The decrease in W for r > 8 cm (beyond the beam aper-
ture) appears as a result of the transfer of energy from
trapped electrons to transit electrons owing to collisions.
It is seen from Fig. 1 that, for the chosen beam and
plasma parameters, a significant portion (about 10%) of
the absorbed power can be transported towards the
plasma periphery by trapped electrons. Note that when
the heating region shifts towards the magnetic axis, this
effect disappears because of a drastic decrease in the
locally trapped electron population. The same effect
occurs when the electron temperature is increased to
1 keV, because an increase in absorption due to transit
electrons results in a strong attenuation of the high fre-
quency field amplitude in the ECR region.

Therefore, our study demonstrates that energy transport
by locally trapped electrons can provide a noticeable
contribution to the energy balance in off-axis regimes of
ECRH in stellarators. 
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Fig. 1.  Radial dependence of the energy flux of super-
thermal trapped electrons.



Comparison of parallel viscosity
with neoclassical theory

In axisymmetric systems, the direction of the flow to be
damped by the parallel viscosity is determined by the
symmetry; that is, the flow in the direction without sym-
metry (poloidal flow) is damped.  Thus, the viscosity
coefficient appears in the expression for the parallel vis-
cosity in order to determine the magnitude of the damp-
ing.  On the other hand, in nonaxisymmetric systems,
both the direction and the magnitude of the damping
should be specified. Therefore the parallel viscosity
(neglecting the heat flux) can be expressed as [1]

, (1)ÓB $ Ä $ oÔ = la Ó
→
U a $ Äha

&Ô

where is the viscosity coefficient that mainly deter-la

mines the magnitude of the damping and  is an angle-ha
&

like variable that mainly determines the direction of the
damping: 
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with  the poloidal (toroidal) angle in the Boozerh(v)
coordinate system,  the poloidal (toroidal) cur-2oJ (2oI)
rent outside (inside) of the flux surface, t  the rotational
transform,and  the geometric factor given in Ref.ÓGBSÔa

[2].  The subscripts a in  and  indicates the par-ha
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ticle species.  The value of  depends on the colli-ÓGBSÔa

sionality of the species a.

In Compact Helical System (CHS) plasmas, there is no
net toroidal current (I = 0). The first term of  can beha

&

neglected in the plasma core (r < 0.5), because the toroi-
dal velocity is dominant in these plasmas, with the tan-
gential neutral beam injected in the toroidal direction.
For instance, in a plasma with Rax = 94.9 cm,ÓGBSÔ i /(J/t)
= 0.076 and 0.137,  = 0.3 and 0.2 for r = 0.3t (vv/R)(vh/r)
and 0.5, respectively.  Thus, the parallel viscosity of the
ions as given by Eq. (1) is simplified as
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where ni, mi, and Ti are the ion density, mass, and tem-
perature, respectively. In CHS, ions are in the plateau
collisionality regime and the viscosity coefficient mi is
given by 2nimi(2eTi/mi)1/2 /lPL and lPL is defined in Ref.
[2] as
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where  is normalized vector in the direction of mag-n
netic field and m and n are the poloidal and toroidal
period numbers.  Here we define a parallel viscosity
coefficient for the toroidal flow, m||, as 

. (5)
l|| h
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These values are closely related to the three-dimensional
magnetic field structure. In the large aspect-ratio limit, it
is simplified to with thel|| = o1/2c2(R/n)(2eTi /mi)1/2

modulation of the magnetic field strength  and the tor-c
oidal period number, n.  The modulation of the magnetic
field strength, , is defined as , where sc c2 = (¹B/¹s)2 /B2

is the length along the magnetic field line and the angle
brackets  indicate a flux surface average operator. Ó Ô

Figure 1 shows neoclassical parallel viscosity coefficient
profiles calculated from magnetic structure including
finite-beta effects in the plateau regime in CHS. The par-
allel viscosity coefficient increases very rapidly towards
the plasma edge, which yields strong damping of the tor-
oidal rotation velocity, regardless of the position of the
vacuum magnetic axis, Rax. As the magnetic axis is
shifted outward, the parallel viscosity coefficient
increases even near the plasma center. The increase in
the parallel viscosity coefficient obtained by shifting the
plasma from 89.9 cm, where there is negligible ripple, to
Rax = 97.4 cm, where the helical ripple is more than 2%,
is one order of magnitude near the plasma center. 

The parameter dependence of the viscosity coefficient is
studied by changing the field ripple to determine whether
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Fig. 1.  Radial profile of the parallel viscosity coefficient in
CHS when the vacuum magnetic axis is Rax = 89.9, 94.9,
and 97.4 cm.



it is neoclassical. The damping of toroidal rotation veloc-
ity due to charge-exchange loss can be neglected except
at the plasma periphery. Here we introduce the effective
viscosity coefficient meff (s-1) as an indication of the
strength of the damping of the central velocity by the
parallel and perpendicular viscosities, nimim||vf, and
-nimim^Ñ

2vf, in the plasma, where m|| (s-1) and m^ (m2/s)
are the parallel and perpendicular viscosity coefficients,
respectively. The effective viscosity coefficient meff is
defined as , where fNBI(0)R isleff

−1 = vv(0)mine(0)/fNBI(0
the torque due to neutral beam injection. If there is no
perpendicular viscosity, meff =m||.  Figure 2 shows the
inverse of meff as a function of magnetic field ripple,
revealing the g2 dependence predicted by neoclassical
theory in the region where the neoclassical parallel vis-
cosity becomes dominant, g  > 0.2.  For g  < 0.2, the
neoclassical parallel viscosity becomes small and the
anomalous perpendicular viscosity becomes dominant.
The anomalous perpendicular viscosity coefficient, ,lÇ

to fit the measured data is 2 m2/s.

     Since the plasma is in the plateau regime, the neo-
classical parallel viscosity coefficient should be inde-
pendent of collisionality (electron density or ion
temperature) except for vth in Eq. (3). In order to check,
the effective viscosity coefficient was measured at vari-
ous densities. In this density scan, the ion temperature
was more or less constant.  As seen in Fig. 3, the

effective viscosity coefficient shows at most only a weak
dependence on the electron density when the modulation
of B is large (g = 0.42 m-1) and the neoclassical parallel
viscosity is dominant.  However, when the modulation of
B is small (g = 0.12 m-1) and the neoclassical parallel
viscosity is negligible, the effective viscosity coefficient
has a strong dependence on electron density.  This den-
sity dependence is a feature of anomalous transport,
because a strong density dependence is also observed in
the energy transport, which is governed by anomalous
transport.

The parallel viscosity coefficient derived from the toroi-
dal rotation velocity shows good agreement with the
neoclassical parallel viscosity coefficient calculated with
three-dimensional magnetic structure, when the perpen-
dicular viscosity with a coefficient  of 2 m2/s is addedlÇ

to the neoclassical viscosities.
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Fig. 2.  Inverse of the effective viscosity coefficient as a
function of the magnetic field modulation strength, g, with
the prediction of the neoclassical parallel viscosity,
nimim||vf, and neoclassical parallel viscosity plus anoma-
lous perpendicular viscosity, nimim||vf - nimim^Ñ

2vf 
(m^ = 2 m2/s), in CHS.

Fig. 3.  Inverse of the effective viscosity coefficient as a
function of the line-averaged density.



Simulation of the W7-X edge
plasma using the B2-code

The island divertor concept [1] uses sufficiently large
islands at rational i values, e.g., i = 5/5 in Wendelstein
VII-X (W7-X), and their accompanying separatrix at the
boundary to divert   the outstreaming plasma and guide it
towards the target plates. The magnetic configuration of
W7-X can be used to create an inherent divertor without
the need for an additional coil system. Compared with
the tokamak divertor, the topology of each island sector
corresponds to a single-null configuration. Differences
from the tokamak exist mainly in geometry values owing
to the larger aspect ratio and the multiple X-points: In
W-7X, the connection length is longer, the distance
between target and separatrix is smaller, and the ratio of
the volumes around the X-points and in the private flux
region to the total scrape-off layer (SOL) volume is
larger. Three-dimensional (3-D) effects are introduced
by the toroidal variation of the island shape and by the
segmented target plates. The latter causes parallel gradi-
ents and local effects of neutral particles. 

One approach to modeling the SOL is via the multifluid
code B2 [2]. The code is based on a rectangular grid that
is generated approximately for W7-X as shown in Fig. 1.
Because of the five-fold symmetry it is sufficient to do
the calculations in one island region equal to a sector of
1/5 of the poloidal circumference. 

Because B2 is a 2-D code, the geometry of the plasma
edge must be averaged (distances) or integrated (areas
and volume) in the toroidal direction. Figure 2 shows the
averaged island geometry used in our calculations. The
target plates intersect the islands and the private flux
region. The bottom boundary of the grid is connected
with the core plasma. The left and right sides are

connected with the neighboring islands and are simulated
in the calculations by symmetry planes. 

The system is symmetric about the vertical midplane of
the figure; this symmetry is not employed in the model-
ing in order to see the influence of statistics in our calcu-
lations. The following boundary conditions are used: the
plasma density and the power flux (2 MW per island,
fixed in all cases) are prescribed at the border to the
main plasma in the radial direction; zero gradients of all
plasma variables are assumed at the symmetry planes in
the poloidal direction; low temperature (2 eV) and zero
density are preset at the boundary towards the wall (pri-
vate region and O-points); the condition V|| = cs is used
for the parallel velocity at the targets. The cross-field
thermal diffusivity for electrons and ions is set to 1 m2/s,
and the particle diffusivity is set to 0.5 m2/s. The present
study is made with a simple neutral particle recycling
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Fig. 1. Grid of the W7-X edge structure at a toroidal
angle of . Because of i = 5/5, each of the fivev = 36°
islands  closes upon itself after one toroidal transit. The
islands have an identical 3-D shape with a toroidal phase
shift of one field period.

Cell #1

Wall #7 Target
Island

�

X-point

Midplane

2 MW

Plasma Core

Fig. 2.  Geometry of one island sector averaged in the toroidal direction. The left and right sides of the sector are con-
nected with the  neighboring islands. The arrows show the calculated power flow.



model using recycling coefficients of 1 at the wall and
0.98 at the targets. 

In the first part of this investigation, no impurity radia-
tion is assumed. The plasma density at the separatrix
midplane is varied from 1.5 to 5 ´ 1019m-3. Figure 3
gives the calculated temperature and density at the target
plate vs the radial cell number. In the case with the low
separatrix midplane density, rather high temperatures
and a low density at the target result. With increasing
midplane density, a steep decrease of the temperature at
the targets and a drastic increase of the density follow.
At a midplane density of 2.5 ´ 1019 m-3 (middle curves
of Fig. 3) the density at the target is about 5 times higher
than at the separatrix and is increasing still further
towards the O-point of the island, thus showing that the
high-recycling regime is already attainable at a moderate
density. In Fig. 4 the power density is shown for the
three separatrix density values. Because of the 2-D
nature of the calculation, the results are averaged values
along the wetted length of the target plates. For compari-
son, the maximum value derived by the 3-D Monte Carlo
 model with constant parameters everywhere is about 8
MW/m2  [1] with a toroidal average of about half of the
maximum value. 

In the second part of this study, impurity transport and
radiation losses of carbon with a prescribed concentra-
tion of 1.7% at the separatrix midplane and a recycling
factor of 1 everywhere are taken into account. The elec-
tron density is set to 3.1 ´ 1019 m-3 at the separatrix mid-
plane. The power radiated by carbon is 350 kW; it is
concentrated in front of the target plates. This power loss
significantly reduces the electron temperature in the pri-
vate flux region while the ion temperature stays nearly
constant there, see Fig. 5. In the island region (right side
of the figure) both temperatures are reduced. The maxi-
mum power density at the targets is reduced by about
25% compared to the results without impurity radiation,
and the plasma density is enhanced there, see Fig. 6.
However, owing to the thermal forces there is no density
increase of carbon from the midplane to the targets as is
seen for deuterium. We expect to enter the detachment
regime with higher edge radiation power.  
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Fig. 3.  Effect of the separatrix density ns at the mid-
plane on the temperature (top) and density (bottomt)
at the target plate vs the radial cell number. Cells 1 to
6 are in the private flux region, cells 7 to 14 are inside
the island.  For the middle curve, the maximum den-
sity inside the island increases by a factor of 9 com-

pared with ns = 2.5 ´ 1019 m-3.



In summary:         

➟ The B2 code has been employed for the first time to
model a stellarator field.

➟ The high-recycling regime is attainable at densities
above 2–3 ́ 1019 m-3 without radiation.          

➟ The calculated heat loads on the targets are compara-
ble with values calculated with a 3-D Monte Carlo
code.      

➟ Radiation of carbon is localized in front of the target
plates. It reduces the temperature and power load and
increases the density in this region.       

➟ The calculated carbon density does not show an
increase from the midplane to the targets as seen for
deuterium.    
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Fig. 6.  Density at the midplane (dashed lines) and at the
target for  deuterium (D) and for carbon (C).  Note the
different scales  for the two species, with separatrix val-
ues of  3 ´ 1019 m-3 for D and 5.2 ´ 1017 m- 3 for C.

Fig. 5.  Temperature at the target plate for a pure deu-
terium plasma (D) and a deuterium plasma  with carbon
as impurity (C).  Midplane separatrix densities are 3 ´
1019 m-3 and 5.2 ´ 1017 m-3, respectively.

Fig. 4.  Power load on the target plates for three differ-
ent separatrix densities. Impurity radiation is not
included in these calculations.


