
ParallelizationParallelization of the ORNL of the ORNL
StellaratorStellarator Optimization Code Optimization Code

S. P. Hirshman (ORNL)S. P. Hirshman (ORNL)

M. M. ZarnstorffZarnstorff, S. , S. EthierEthier (PPPL) (PPPL)

A. Ware (UMT)A. Ware (UMT)

IntroductionIntroduction

•• Stellarator Stellarator optimization can take a optimization can take a longlong
time (even on supercomputers)!time (even on supercomputers)!
–– Several minutes for each evaluation of theSeveral minutes for each evaluation of the

chisq chisq physics target (cost) functionphysics target (cost) function
–– Several 100’s of iterations to generateSeveral 100’s of iterations to generate

Jacobian Jacobian approximation, perform descentapproximation, perform descent

Parallelization Parallelization - possibility for- possibility for
significant reduction of clock timesignificant reduction of clock time

•• LevenbergLevenberg--Marquardt Marquardt optimizer splitsoptimizer splits
“naturally” into multiple “processes”:“naturally” into multiple “processes”:
High Level High Level Parallelization Parallelization possiblepossible

•• Avoids need for tedious loop optimizationAvoids need for tedious loop optimization
of multiple, individual codesof multiple, individual codes

•• CPU usage limited only by maximumCPU usage limited only by maximum
memory requirements of physics code(s)memory requirements of physics code(s)

Parallelization Parallelization PossibilitiesPossibilities
((cont’dcont’d))

•• Superscalar Superscalar convergence improvementsconvergence improvements
to to LevenbergLevenberg--MarquardtMarquardt
–– “optimize” choice of LM parameter after each“optimize” choice of LM parameter after each

Jacobian Jacobian evaluationevaluation
–– possible with no additional cost on parallelpossible with no additional cost on parallel

machine (little overhead on serial machine)machine (little overhead on serial machine)
–– more than factor of N (#more than factor of N (#cpuscpus) speed-up) speed-up

Structure of Structure of LevenbergLevenberg--
Marquardt Marquardt OptimizerOptimizer

•• Calculate approximate “Calculate approximate “HessianHessian” matrix” matrix
elements elements numericallynumerically for least-squares for least-squares
physics targetphysics target
–– do I = 1, N !!N = independent do I = 1, N !!N = independent varsvars

chi_chi_sq sq = Chi_= Chi_SqSq[[xbxb++ δδxx(I)(I)]] !! !!xbxb: : bdy coeffsbdy coeffs
end doend do

–– form form HHijij = d(chi_= d(chi_sqsq)/)/dxdxii * d(chi-* d(chi-sqsq)/)/dxdxjj

Levenberg Levenberg Optimizer (Optimizer (cont’dcont’d))

•• Determine LM parameter based onDetermine LM parameter based on
HessianHessian
–– “weight” between steepest descent, Newton“weight” between steepest descent, Newton
–– estimate several values (can significantlyestimate several values (can significantly

improve convergence, initially at least)improve convergence, initially at least)

•• Repeat until convergence criterionRepeat until convergence criterion
satifiedsatified

Choice of Choice of Parallelization Parallelization MethodMethod

•• OpenMP OpenMP ProtocolProtocol
–– available on some shared memory systemsavailable on some shared memory systems
–– easy to use syntax for loop easy to use syntax for loop parallelizationparallelization
–– won’t work on distributed memory systemswon’t work on distributed memory systems

(CRAY T3E, for example)(CRAY T3E, for example)

Parallelization Parallelization methodsmethods
((cont’dcont’d))
•• MPI (message passing interface)MPI (message passing interface)

–– Available on T3E (distributed memoryAvailable on T3E (distributed memory
system), J90, RISC (?)system), J90, RISC (?)

–– restructuring of code generally neededrestructuring of code generally needed

•• ForkFork
–– short C-code works on any UNIX platformshort C-code works on any UNIX platform
–– easy interface to existing FORTRAN codeseasy interface to existing FORTRAN codes

Fork implementationFork implementation

•• “Parent” process spawns a child or“Parent” process spawns a child or
several childrenseveral children
–– pid pid = fork(); (<0 if process unsuccessful)= fork(); (<0 if process unsuccessful)

if (if (pid pid == 0) &== 0) &functfunct();();
numnum_processes++;_processes++;

•• wait() used to monitor completion ofwait() used to monitor completion of
child processeschild processes
–– Jacobian Jacobian requires requires all all processes to finishprocesses to finish

“Minor” Code Modification to“Minor” Code Modification to
Implement ForkImplement Fork

•• In FORTRAN code, eliminate loopIn FORTRAN code, eliminate loop
containing function call and “wrap” itcontaining function call and “wrap” it
–– call multiple_process(N,Wrapper(j,f), call multiple_process(N,Wrapper(j,f), functfunct))

functfunct is the Chi_ is the Chi_sqsq function function
Wrapper: calls f=Wrapper: calls f=funct funct for for j’th j’th process, loadsprocess, loads
commons, writes output array information tocommons, writes output array information to
file for access outside of multi-processfile for access outside of multi-process
function (can’t use commons: overwritten!)function (can’t use commons: overwritten!)

Available ProcessorsAvailable Processors

•• Chi_Chi_sq sq function implemented usingfunction implemented using
“system” calls (lack of source code,“system” calls (lack of source code,
smaller executable)smaller executable)
–– call system(“call system(“xvmec xvmec input.filename”)input.filename”)

•• System call itself is implemented by forkSystem call itself is implemented by fork

•• Limits Limits NNprocessesprocesses < < NNprocessorsprocessors/2/2

Sample Output (on CRAY/J90)Sample Output (on CRAY/J90)

•• N = 8 processors requestedN = 8 processors requested

•• wall clock time reduced by 8/stepwall clock time reduced by 8/step
•• Begin multi-processing, requesting 8 processesBegin multi-processing, requesting 8 processes

Chi-Chi-sq sq = 3681.93 for iteration 14 (LM parameter = 1.08E-16)= 3681.93 for iteration 14 (LM parameter = 1.08E-16)
Chi-Chi-sq sq = 47086.60 for iteration 13 (LM parameter = 3.43E-16)= 47086.60 for iteration 13 (LM parameter = 3.43E-16)
Chi-Chi-sq sq = 34244.43 for iteration 9 (LM parameter = 1.08E-15)*= 34244.43 for iteration 9 (LM parameter = 1.08E-15)*
Chi-Chi-sq sq = 5019.35 for iteration 12 (LM parameter = 3.42E-17)= 5019.35 for iteration 12 (LM parameter = 3.42E-17)

•• Note: lowest chi-Note: lowest chi-sq sq NOT NOT obtained byobtained by
standard (*) LM parameter valuestandard (*) LM parameter value

ConclusionsConclusions

•• The ORNL Optimization Code has beenThe ORNL Optimization Code has been
parallelized parallelized with little modification ofwith little modification of
underlying FORTRAN codeunderlying FORTRAN code

•• Scalar and Scalar and superscalar superscalar speedspeed
enhancements have been achievedenhancements have been achieved

•• Future considerationsFuture considerations
–– add parallel global search stepadd parallel global search step

