Parallelization of the ORNL
Stellarator Optimization Code

S. P. Hirshman (ORNL)
M. Zarnstorff, S. Ethier (PPPL)
A. Ware (UMT)



Introduction

= Stellarator optimization can take a long
time (even on supercomputers)!

— Several minutes for each evaluation of the
chisq physics target (cost) function

—Several 1003 of iterations to generate
Jacobian approximation, perform descent



Parallelization - possibility for
significant reduction of clock time

= | evenberg-Marquardt optimizer splits
“haturally®’into multiple “processes’:
High Level Parallelization possible

= Avoids need for tedious loop optimization
of multiple, individual codes

= CPU usage limited only by maximum
memory requirements of physics code(s)



Parallelization Possibilities
(contt)

= Superscalar convergence improvements
to Levenberg-Marquardt

— “bptimize’’choice of LM parameter after each
Jacobian evaluation

—possible with no additional cost on parallel
machine (little overhead on serial machine)

—more than factor of N (#cpus) speed-up



Structure of Levenberg-
Marquardt Optimizer

= Calculate approximate “Hessian’’matrix
elements numerically for least-squares
physics target

—dol=1,N I'N = independent vars
chi_sqg = Chi_Sq[xb+dx(l)] !'xb: bdy coeffs
end do

—form H; = d(chi_sq)/dx; * d(chi-sq)/dx;



Levenberg Optimizer (contd)

= Determine LM parameter based on
Hessian

— “tveight’’between steepest descent, Newton
—estimate several values (can significantly
improve convergence, initially at least)

= Repeat until convergence criterion
satified



Choice of Parallelization Method

= OpenMP Protocol
—available on some shared memory systems
—easy to use syntax for loop parallelization

—won T work on distributed memory systems
(CRAY T3E, for example)



Parallelization methods
(contt)

= MPI (message passing interface)

—Available on T3E (distributed memory
system), J90, RISC (?)

—restructuring of code generally needed

= Fork
—short C-code works on any UNIX platform
—easy interface to existing FORTRAN codes



Fork implementation

= ‘Parent’’process spawns a child or
several children

—pid = fork(); (<O if process unsuccessful)
If (pid == 0) &funct();
num_processes++;

= wait() used to monitor completion of
child processes

—Jacobian requires all processes to finish



“Minor’’Code Modification to
Implement Fork

= |n FORTRAN code, eliminate loop
containing function call and “Wwrap”’it

—call multiple_process(N,Wrapper(j,f), funct)
funct is the Chi_sq function
Wrapper: calls f=funct for j th process, loads
commons, writes output array information to
file for access outside of multi-process
function (can T use commons: overwritten!)



Available Processors

= Chi_sqg function implemented using
“System”’calls (lack of source code,
smaller executable)

—call system(“kvmec input.filename®)
= System call itself is implemented by fork

< lelts Nprocesses < NDTOCESSOTJ 2



Sample Output (on CRAY/J90)

= N = 8 processors requested

= wall clock time reduced by 8/step

= Begin multi-processing, requesting 8 processes
Chi-sq = 3681.93 for iteration 14 (LM parameter = 1.08E-16)
Chi-sq = 47086.60 for iteration 13 (LM parameter = 3.43E-16)
Chi-sq = 34244.43 for iteration 9 (LM parameter = 1.08E-15)*
Chi-sq = 5019.35 for iteration 12 (LM parameter = 3.42E-17)

= Note: lowest chi-sq NOT obtained by
standard (*) LM parameter value



Conclusions

= The ORNL Optimization Code has been
parallelized with little modification of
underlying FORTRAN code

= Scalar and superscalar speed
enhancements have been achieved

= Future considerations
—add parallel global search step



