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OUTLINE

e Motivation = Need for faster ballooning codes

e Revisiting the ballooning equation = identify keys for speeding

up ballooning codes.

e The COBRA code = more efficient algorithm composed of:
1. Matrix algorithm
2. Variational refinement

3. Richardson’s extrapolation
e Comparison of COBRA performance with available codes

e Conclusions
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MOTIVATION \

QOS transport-optimized configurations have very small toroidal
currents flowing in the plasma (of the order of a few tens of kA),

so ideal ballooning modes set the critical (.

Inclusion of ballooning stability targets in transport-optimization
procedure reveals itself very inefficient for most available balloo-

ning codes.

Post-optimization analysis of transport-optimized QOS configura-

tions reveals that the optimizer tends to go to parameter regions

with poor ballooning stability properties (8. ~ 2%).

Need for more efficient, faster and more accurate ballooning algo-

/

rithms for 3-D magnetic equilibria is apparent.




/ CPU-TIME DISTRIBUTION FOR ONE \
ITERATION IN OPTIMIZATION LOOP
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Typical QOS Equilibrium Parameters:
Ql surfaces, 886 Boozer modes, 16 ballooning growth rates on 8 surfaces. /




/ THE IDEAL BALLOONING EQUATION \
REVISITED

e Eigenvalue problem: 2"d-order ordinary linear differential equation

with non-constant coefficients.

Lo(y) + AR()] F = 0 (1)
with
Loly) = 5 [P<y>d¥‘y] £ OW) (2)

and P(y) and R(y) positive.
e The ballooning growth rate is given by 72 = —\.

e It has to be solved along the magnetic field line = formulated

\ more easily using straight-line magnetic coordinates. /




/ WHICH IS THE COMPUTATIONAL \
BOTTLENECK OF BALLOONING CODES
FOR 3-D CONFIGURATIONS?

e Representation of 3-D equilibria is done using inverse Fourier se-
ries. In Boozer coordinates (s, 6, &), up to 1000 modes are required.

(s,0,&) = ZEmn cos(mf — nME¢)

(3)
(s,0,&) = ZOmn sin(mf — nME¢)

e Most time spent in Fourier inverting of the series at each point
of the grid along the field line = Total computational time scales

linearly with number of points when number of modes exceeds 100.
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KEY FOR SPEEDING UP BALLOONING
CODES?

e 2-D CONFIGURATIONS: More efficient algorithm to solve for the
eigenvalue
= Combine matrix and variational schemes!!

e 3-D CONFIGURATIONS: Use the coarsest grid along the line pos-
sible to get eigenvalue within required accuracy
= Use Richardson’s deferred approach to the limit!!
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THE COBRA CODE
(COde for Ballooning Rapid Analysis)

MATRIX ALGORITHM + VARIATIONAL REFINEMENT

_|_

RICHARDSON’S EXTRAPOLATION
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MATRIX ALGORITHM \

e Ballooning equation is discretized and cast into matrix form to

second order accuracy:
A.F_v'mat _ )\rna,tF_v'rna,t7 ﬁmat — <F17---7Fj7--7FN> <4>

e Figenvalue and eigenfunction obtained via standard techniques for

non-symmetric tri-diagonal matrices:

A" = A0 4 ah? + O(R?)

5
et = FO 4 p?5F + O(h?) (5)

/

e Important to notice the eigenfunction is 2"4-order accurate!!!
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VARIATIONAL REFINEMENT \

e Rewrite ballooning equation as variational principle = local mini-

ma of functional H:

* < F,LoF > o
Hwyﬂ=—<F£F>;<RG>E/ F*(y)G(y)dy (6)

— o0

in space of integrable functions yield eigenfunctions, and the func-

tional value the eigenvalues.

e In the neighbourhood of any minimum, first-order variation of the

functional vanishes:

H(F; +6F*, Fy +0F) = H(F}, Fy) + 8 H(6F*,0F) + ... (7)

/
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e Eigenfunction F™2% from matrix method is 2"%-order accurate
= a 4'"-order accurate estimation of eigenvalue is obtained

when inserting it into the functional H:

(0F, Lo(y) — Mo R(y)oF)

)\V&I‘ — \n — h4
" (F,R(y)F)

+ O(h°) (8)
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WHY IS5 IT MORE EFFICIENT? \

e Highest order reduces up to five times number of grid points for a
prescribed accuracy = 5 times faster algorithm!!
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RICHARDSON’S DEFERRED \
APPROACH TO THE LIMIT

e WHY DO WE NEED IT?: The previous algorithm is five times
faster than standard second-order shooting methods, but provides

with NO way to choose the right value for the grid step size.

e DESCRIPTION OF THE METHOD:

1. Assume eigenvalue can be somehow computed to nt"-order oc-

curacy:

A= Xo+ah™ +O(h" ) (9)

/




/ 2. Compute eigenvalue for first few elements of a decreasing series\
for the grid step size:

(10)

and extrapolate to h — 0 to get Ay using previous power law.

3. Estimate extrapolation error and if not below prescribed tole-

race, iterate including next step size in the series.

e Choosing very large values for hg, the coarsest mesh is found at

run-time = 10 times faster

e The higher value of n the faster the extrapolation error diminis-

hes = extra advantage from higher order variational refinement

(n=4).
/
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EFFICIENCY ENHANCEMENT VIA

RICHARDSON’S EXTRAPOLA”

"[ON?




CPU-time (s)

2.0

15

=
o

0.5

0.0

o—o0 h_f=0.01 (A)
=~ -—a h_f=0.01 (S)

©o—— matrix (S)
@ variational (S)

0.5

3 W’Q‘C*Q/ 'K@—:j>-:>-Q—C—C>—::>—g—c-<:‘H;_Q—quyi»y’—*iﬂiﬂa

~= \\
4 \
/ \
l/ \\\
[ /
| g e pis 7-.-.—---—-— | 2 3 3 -l\l-. - - n-n
/ \
/ \
| \
L | \

i

| I I I ! I

Y R 1
00 [0000000000000000 ‘p-o-o-o-oo
'

0.0

5 10 15 20 25
surface

30

alel ymolib




-

~

OTHER COBRA FEATURES

Uses the y — —y symmetry along the magnetic field line existent

at certain initial points in configurations with stellarator symmetry

to halve the number of grid points = 2 x 10 times faster

Incorporates criteria to decide at run-time the required length

along the magnetic field line.

Ability for solve for any eigenvalue in the discrete part of the spec-

trum without losing efficiency.

Can equally explore stable part of spectrum =- Application to

/

high-n Alfvén modes appearing in continuous spectrum gaps!




/ COBRA IMPROVEMENTS RELATIVE TO \

.

AVAILABLE BALLOONING CODES

Most available ideal ballooning codes use either shooting methods
(with fixed or adaptative grid step size) or optimization algorithms

to minimize the function H within a family of test functions.

Improvement relative to fixed step size algorithms is clear:

= up to 20 times faster!!

= ensures eigenvalue convergence at run time!!

Adaptative grid schemes ensure convergence but in practice are

even slower, since more and more grid points need to be computed

when refining the mesh!

Variational methods yield a lower limit for the growth rate

= Necessary but not suficient condition for stability!! /
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CONCLUSIONS

e Use of Richardson’s extrapolation coupled to a more efficient al-
gorithm has allowed to increase up to 10-20 times the efficiency of
ballooning stability calculations for 3-D configurations.

e A fast ideal ballooning code, COBRA, has been developed inclu-
ding all these capabilities.

e By using COBRA, ballooning targets can now be efficiently inclu-
ded in QOS optimization suite.
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