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Introduction 
 

RF-driven sheared flows may be important 
• control turbulence and transport barriers  
• probe fundamental physics of nonlinear waves and flows 

 

RF codes and experiments can help to 
understand turbulence & transport barrier 
formation 

• rf driven flows are “open loop” , easier than “closed loop” 
turbulence problem 
o just understand how a given wave affects flows and 

macroscopic responses 
o separate off problem of how macroscopic changes 

affect instabiliti es, turbulence 
��flows modify the waves that create them – 

important but a separate issue 
 
 

rf allows fundamental nonlinear physics in a 
controlled context 
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The challenge – ways in which the rf problem is 
diff icult 
 

• rf vs. turbulence problem: 
o turbulence driven flows are normally calculated for 

waves with ω << Ω; for ICRF must calculate 
nonlinear forces for waves with ω ~ Ωi 

• conventional “ponderomotive force” calculations are 
inadequate 
o the flow drive typically arises from dissipative terms 
o for inclusion into macroscopic evolution codes (e.g. 

transport codes) we need the drives for the moment 
equations on a fluid element (not a guiding center) 

• recent 2D AORSA simulations of ICRF mode conversion 
scenarios under the rf SciDAC project [Jaeger et al., poster 
BP1.074] require a 2D calculation of the nonlinear forces 
that drive flows 

•  previous calculations are generalized here 
o eikonal result [Myra & D’I ppolito, PoP 7, 3600 

(2000)] to multiple modes 
o bili near form results [Jaeger, Berry & Batchelor, PoP 

7, 3319 (2000)] to 2D covariant forms 
• 2D AORSA calculations of power deposition and flow 

drive are computationally feasible but burdensome 
o run time typically dominated by post-processing 
o fast algorithms/formulations are desired 
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Theoretical calculations 

Framework 
• 2nd order in E, quasilinear calculation 
• energy and momentum moments of Vlasov equations 
• hot plasma, quasi-local theory 

o k⊥ρ ~ 1, gyrokinetic theory (nonlocal) 
��introduces bilinear operator W(k, k′) 

o 2D slab physics 
��direction along B is a symmetry direction 
��no toroidal corrections to dielectric response 

o electromagnetic 
o ω >> ωdrift 
o retain first order in ρ/L where L = envelope of rf 

waves, or equilibrium scale length (local) 
o weak absorption (damping rate γ << ω ∼ Ω) 

• energy moment recovers results of Smithe [1989] and 
Brambilla 
o depends on gyrophase-averaged distribution <f>φ 

• momentum moment 
o depends on gyrophase-dependent distribution 

Gyrokinetic formalism 
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Energy moment: X = mv2/2 
(recovers results of Smithe[PPCF 31, 1105 (1989)] and 
Brambilla) 
 
The local power absorption is 
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The tensor W is a symmetric bilinear operator that is related to 
the conductivity 
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or, on carrying out the gyrophase integrals: 
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It can be shown [L. Berry] from this form that the power 
absorption is positive definite. 

Momentum moment: X = mv 
The order |E|2 terms arise from the Lorentz force 
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and from the nonlinear stress tensor 
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Note that gyrophase dependent parts of f are required,  These 
are obtained by integrating vv−−<vv> by parts. 
The gyrophase average f gives rise to CGL type pressure tensor 
elements that we do not calculate – they are secular unless a 
sink for the rf heating is specified. 
Suppressing the k, k′ sum and the phases, the total force can be 
expressed in the form 
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 Π⋅∇−= dFF  

The direct term contains the photon momentum absorption and a 
reactive term 
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where µ = 1/4 (1) for ⊥,⊥ (⊥,||) components  
J  is a generalized plasma current 
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Specialized limit: ⊥⊥⊥⊥ dynamics 
 
The ⊥ force from ⊥ gradients is 

 drd XX ∇×+∇−= ⊥ bFF  

where 
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is a measure of the parallel torques on the plasma, and 
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is a measure of the perpendicular dissipation. 
Xr and Xd are mostly from ions. 



   8 

Specialized limit: electrostatic modes 
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The total force is 
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What is required for driving flux-surface 
averaged flows? 
 
 let <> be a flux surface average 
 

• toroidal rotation is driven by torque <RFζ> 
 

• poloidal rotation is driven by  

 ζ− RFgBF||  

where 

 x

2RRB)(g ζ=ψ  

 
 
identities 

 ψθυ
ψ∂
∂

υ
=⋅∇ ARB

1
A

 

 
0

Q

R

JB

2

d
d

1
QB || =

ζ∂
∂

π
ζθ

υ
=∇ ζ

∫∫  

 <BF||> vanishes when F|| = ∇|| (scalar) 

 ψζθζζ Πυ
ψ∂
∂

υ
=⋅Π⋅∇=Π⋅∇⋅ BR

1
RR 2ee

 

 <RFζ> vanishes when Π is a diagonal tensor 
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<BF||> vanishes (to the order we care about) when Π is a CGL 
tensor 
 
Therefore: 

• diagonal Π tensors of the CGL form (in particular forces 
that are gradients) don’ t contribute to the forcing terms for 
flux-surface averaged flows 
o they group with the pressure and contribute to 

diamagnetic-like flows 
• flows are driven by dissipative terms corresponding to 

o direct absorption of photon momentum P k/ω 
o dissipative stresses in Πxy and to some extent in Πyz 

 

Forces driving flux-surface-averaged flows – 
electrostatic limit 
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1st term = photon momentum 
2nd = Πxy 
3rd term = Πyz is probably small  

• Ω effectively restricts it to ions 
• P|| ion is often small  
• for poloidal flows, k⊥/k|| >> 1 is compensated by 

projection of F ⇒ Bp/B 
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Relation to the standard fluid ponderomotive 
force 
Standard ponderomotive force in the fluid limit can be 
recovered from our general result upon adding the appropriate 
nonlinear CGL pressure tensor and ambipolar terms. 

• keep only reactive terms 
• in the fluid limit, W is independent of k 

o W(k, k′) → σ so that WE → J → nmu 
 
Our result above reduces to 
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Standard result is 
[e.g. Lee and Parks, Phys. Fl. 26, 724 (1983)]  
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The equivalence of these forms has been demonstrated in the 
straight B-field limit (after some algebra). 
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Computational issues and methods 
[with acknowledgement to Ed D’Azevedo] 

Issue 
Consider the numerical computation of 
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• N Fourier modes for both k and k′ ⇒ N2 computations per 
spatial point 

• N spatial points ⇒ N3 computations 
Post-processing takes longer than solving for the wave fields 
(N×N matrix solve ⇒ N2 ln N computations) 

Observation 
If W(k, k′) were separable: N3 → N2  
If W(k, k′) were expressible as a sum over p separable terms:  
N3 → pN2  ⇒  computational savings for p < N 

Possible method 
The integrand of W(k, k′) is separable (before doing v⊥ velocity 
integration) 
One possible “summed separable” representation comes from 
doing velocity integral last numerically 

• e.g. by Laguerre quadrature: can achieve 1% accuracy for 
k’s of interest and p = 10 

Other variations are also possible 
• numerical for small v⊥ & analytical asymptotics for large 

v⊥ [L. Berry] 
• singular value decomposition of numerical fit to 

inseparable parts of W(k, k′) [D’Azevedo] 
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Scenarios and the role of Bp 

Global toroidal flows  
• depend only on the input toroidal momentum ~ n P where n 

= toroidal mode number, P = absorbed power 

Sheared poloidal flows  
• most easily from power deposited to the bulk ions 

o cyclotron absorption layer is narrow ⇒ strong shear 

Strategies for ion power to bulk ions 
• direct launch IBW – can be diff icult to launch eff iciently 
• launch FW and mode convert 

o want short wavelength MC wave to propagate into 
resonance 

1) heavy (µ/Z) minority ⇒ high field side 
resonance 

• standard MC IBW 
2) light (µ/Z) minority ⇒ low field side resonance 

• use Bp effects to get MC ICW to propagate 
towards resonance 

RF SciDAC calculations show that 2) appears to work best. 
 

Effect of Bp on the mode-converted wave 
(see posters BP1.074 Jaeger et al. and BP1.075 Berry et al. for 
AORSA-2D runs and more theory details) 
1D hot plasma dispersion relation showing effect of poloidal 
magnetic field 

• k|| = Bζ n/R + Bpx kx gives up/down asymmetry 
o when k|| is increased by Bpx kx the MC wave is 

strongly affected 
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• mode converted wave: 
o Bpx kx < 0: IBW propagates away from ΩH 
o Bpx kx > 0: ICW propagates towards ΩH 

• shown below Bpx < 0.  For Bpx > 0 plot flips and arrows 
reverse 
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see also Perkins (NF, 1977); Ram & Bers (Phys. Fl., 1991) 
 
This 2D Bp physics makes sheared flow drive by mode converted 
waves possible. 
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Summary and conclusions 

Overview 
ICRF waves are a promising means of controlling turbulence by 
flow drive. 
RF also provides access to “open loop” experiments on the 
physics of flows and macroscopic plasma responses to waves. 
Numerical tools for comparison with experiment are being 
developed under the RF SciDAC project. 

Nonlinear theory of flow drive forces 
A hot plasma, electromagnetic theory of nonlinear forces in 2D 
has been developed.   
The forces can be expressed in terms of operator W(k, k′) which 
generalizes the conductivity tensor σ(k). 
Flux surface averaged flows are driven by photon momentum 
absorption and dissipative stresses. 

Computation 
The nonlocal nature of the force (and power deposition) 
operators leads to computationally expensive sums when 
implemented straightforwardly. 
More computationally efficient algorithms have been explored 
and look encouraging. 

Scenarios and tokamak physics 
Minority mode conversion scenarios (as well as direct launch 
IBW) are suitable for driving sheared flows. 
The poloidal magnetic field plays an essential role in allowing 
damping of the MC wave on ions, which is optimal for flow 
drive. (see posters BP1.074 & BP1.075) 
 


