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Local Mode Analysis of 2D ICRF Wave Solutionst D.A.
D'lppdito, JR. Myra, Lodestar Research Corp., E.F. Jagyer, L.A. Berry,
D.B. Batchelor ORNL — Motivated by the growing capability of numericd rf
simulations,? there is a aiticd need to develop appropriate post-processng
tods for extrading physicd information from the numericd solutions. Full-
wave ICRF codes yield complicaed rf field patterns, and the dhallenge is to
understand these patterns by appeding to the intuitive, bu approximate,
physics-based naion d locd plasma modes (global eigenmodes, transmitted
and refleded waves, and mode mnversions between dfferent types of
waves). Quantitative information onthe locd wavevedors, amplitudes and
wave paarizations is desired, bah for basic understanding and for use in
cdculating the ICRF-driven flows3. Here, progress will be reported on
developing numericd techniques (windowed Fourier transforms and
wavelets) for the locd mode analysis of 2D toroidal ICRF field solutions?,
including mode-conversion scenarios, as part of the rf SciDAC projed.

1. Work suppated by USDOE grants DE-FC02-01ER54650,DE-FG03-
97ER54392and contrad DE-AC05-000R22725

2. E.F. Jagger, L.A. Berry, et al., Phys. Plasmas 9, 1873(2002.

3.JR. Myra, D.A. D’ Ippdito, E.F. Jagger, L.A. Berry, D.B. Batchelor, this
conference
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| ntroduction

e New post-processing tools are needed to extract important physical
information from numerical simulations relevant to fusion (e.g.
turbulence and rf wave codes). We are particularly interested in
general techniques that may be useful in more than one area.

e Here, we consider an rf application. Full-wave |ICRF codes yield
complicated rf field patterns which we would like to understand in
terms of local plasma modes.

— global eigenmodes
— transmitted and reflected waves
— mode conversion between different types of waves

e The output of such an analysis should be information on the local
wavevectors k(x), wave amplitudes and wave polarizations for
comparison with analytic theory and for use in subsequent post-
processing calculations.

e \We have compared several numerical techniques based on Fourier
and wavel et transform methods. These methods are applied to a DIl |-
D D(H) fast wave-IBW mode-conversion case computed by the 1D
AORSA full-wave code. The advantages and disadvantages of each
technique will be described.

Thiswork is partly funded by the rf SciDAC project.
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Fourier Transforms

Given f; = f(x;) compute the 1D transforms f(x;) « F(k = k), for i, n
= 1to N, where kn = —Kmax + (n=1) Ak, Ak = 17L and knax = VA are
the min and max k's, 2L = Xn+1—X1 = periodicity length, and A =
X=Xy = grid spaang.

e Fast Fourier Transform (FFT)

1N .
Fn sz i expl—(iknxi)] (1)
N .
= Y FyexpliknXj] 2)
n=1
» global k's (no spatial information); not adequate for mode

identificaion.

e Windowed Fourier Transform (WFT)

|:n(X01 X s kn)

IIMZ

1
N 2XW2 E ’

» 2 parameters. window position xg and width X

O (v, _y \2C
f i exp[-(iknx;)] expﬁ’w[ (3)

» For constant Xy, Fn = Fn (X0, Kn)

» A constant window width canna simultaneously resolve long
and short wavelength waves (seeFig. 1)

D'l ppdito APS, 11/11/2002 p. 4



Fig. 1(a) xw=0.25m
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Fig. 1 Spectral power density P(xq, k) for the Fourier transform of Ey(x)
with two window sizes: (a) Xy = 0.25 m, and (b) X,y = 0.05 m.
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Test Data for Transform Study

DIl1-D D(H) Mode Conversion Reference Case
1D AORSA code run
Case: above the midplane

Ex(X)

10000

-10000 w

E,(x)
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e Test problem used here:

o transform f(x) = Ex(x), wherex = R — R,. The rf eledric field
is computed by the 1D AORSA code [1] for a DIl -D D(H)
mode mnversionreference cae[2, 3]. Units: x(m), k(m™1)

o The 1D equilibrium includes a model of the 2D paloidal
magretic field, which has an important effed on the wave
physics (I different above and below the midplane). Unless
otherwise stated, the solution wsed here had parameters
correspondng to a horizontal dlice of the 2D equili brium
taken abovethe midplane.

Seereferences [Jagyer et a., Phys. Plasmas, 2000& 2001]
and [Batchelor et al., www, 200]] onlast poster.

e Hg. 1 shows a 3D plot of the spedral power density P(xo, k) =
[F(Xo, K)J? for the transform of E,(x) for two values of X,

» The large window in Fig. 1(a) resolves the incident and
refleded FW well, but the mode-converted IBW is nat
gpatialy locdized.

» The small window in Fig. 1(b) clealy shows the IBW but the
Kk-structure of the FW islost.

0 A fixed window width (independent of k) can't
resolve andlocdize dl k’'s smultaneoudly.
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Sourcesof Error & Optimal Windows

The problem with a constant window is that there ae two conflicting
types of errors. the “Heisenberg” error Ak1 and the “nonlocd” or
“gradient” error Aky, defined as

TT ok
Ak =C— , Akos =—Ax = k'(X) AX
1560 255 (X)

, (4)

where C = Y2 gives goodestimates and Ax = x,,. Note that Akq(Xy)
vanishes as Xy, —» 0, Aka(Xy) vanishes as x,, — 0, so the optimal
window sizeisobtained by setting Akq(Xy) = Ako(Xw):

- /2
XW,Opt = k'(X) é . (5)
I the optimal window isafunction d k(x)

The Heisenberg formula suggests the scaing x, U 1/k,
which is naturally implemented using wavelet transforms.
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Wavelet Transforms

e Wavelet transforms take the projection of a function f(x) against a
family of basis functions obtained by trandlating and scaling a
“mother function”. Wavelet basis functions are spatially-locali zed.

e To preserve complex phase information needed to understand
wave propagation, we use the “Morlet wavd et”

with the window scaling
_Co
Xw=7" . (6b)

e We define the Morlet wavdet transform f(x) — W(Xq, K) as

fILIJ* ._XOE
1
fexp[-rmo%% B_(X| XO) E (7)

where the normalization factor 1/N is the same asin the WFT.

W(xg,k)=

Z|~
nIMZ

Z||—\
IIMZ
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Notes:

» The Morlet wavelet transform is equivalent to a Gaussian
windowed Fourier transform with x,, scaled to k by Eq. (6b).

» The parameter ¢, controls the ratio Heisenberg / gradient error
and has an optimal value of about co= 5 for our problem. An
optimal window exists for agiven k when

KLy, >> kx,, =Cg > 1 . (8)
» The number of computations required for the gspatial
convolution in Eq. (7) scales like N2. The convolution

theorem can be used to recast this into k-space FFTs, which
scaleslike N In N (much more efficient):

wiro k=50 0] o 2O

X

where [f(x)] denotes the forward Fourier transform of f(x), -1
denotes the inverse Fourier transform, and the k dependence on
the rhs of Eq. (9) is implicit through Eqg. (6b). The wavelet
function must be made periodic on the x interval.

» The evaluation of FFTs and other necessary manipulations for
evaluating these transforms were easily programmed using
the built-in functions in Mathematica.
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Morlet Waveet Transform Results

e Fig. 2 shows a 3D plot of the spectral power density P(xq, k) =
IW(Xo, kK)|? for the Morlet wavelet transform of E,(x) given by Egs.
(6b) and (7).
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Fig. 2 Spectral power density P(xq,k) for the Morlet wavelet transform of
E,(X) using the scaling x,, = co/k with co= 6.
» the Morlet wavelet can resolve both FW and IBW simultaneously

» there are unphysical oscillationsnear k =0 (O Xy — o) dueto
the gradient error

» we can resolve this singularity by modifying the wavelet function
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k-Waveet Transform

e \We have obtained good results with a modified wavelet transform
(which we call the “k-wavdet”) that has the following properties:

— preserves the scaling (6b) of the Morlet wavelet away from k = 0
— has a finite window width at k = 0
— describes windowed plane waves [lexp[i k x] for all k

e The k-wavelet is defined by

Wl xo)] = expl ko) expﬁ“z(i o) ¢ . o

_ Co

XW
/ , 10b
| 2 | 02 ( )

0 Kgisaparameter that determines the wavelet scale at k = O:
Xw(k = 0) = co/ko.

o not a “pure’ wavelet but works well for diagnostic
applications.

e Combining Egs. (9) and (10) gives the wavelet transform W(Xg, k)
and the associated spectral power density P(Xq, k) = [W(Xq, k)%
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k-Waveet Transform Results

e A 3D plot of the k-wavelet spectral power density (see Fig. 3)

shows that all waves are resolved and the behavior at k = O is
physical:
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Fig. 3 Spectral power density P(xq, k) for the k-wavel et transform of Ey(X)
using the scaling xy = co/(k2+ kg2)1/2 with cg= 5 and ko= 40 m~1,

e Adopt this case as the base case for these posters.
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e Contour plots comparing the windowed Fourier transform (WFT)
and k-wavelet approaches are shown in Fig. 4. The IBW is much
better resolved in the wavelet analysis.

Fig. 4(a) Fig. 4(b)
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Fig. 4 Contour plots of the spectral power density P(xg, k) for (a) the
windowed Fourier transform of Ex(X) with xy, = 0.25 m, and (b) the k-
wavelet transform of Ey(X) using the scaling xyy = cg/(k2+ kg2) /2 with co=
5 and ko= 40 m™1,

e Note that the wavelet transform provides quantitative information
on ky = Kk(X):

o the incident FW propagates to the left with k = -25 m™1, the
reflected FW propagates to the right with k = +25 m™1.

0 k increases for the mode-converted IBW as it propagates into the
plasma ] the IBW is abackward propagating wave.
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Physics Analysis

1. Details of FW propagation and reflection

., outer plasma
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Fig. 5 Plot of the wavelet spectral power density P(k) at fixed xg obtained
by the k-wavel et transform of E4(x). The dashed curve corresponds to Xq =
1.75 m, located in the outer plasma; the solid curveto Xg = 1.6 m, near the
mode conversion layer.

0 mode conversion surfaceisnear x =1.5m

o0 incident and reflected FW are comparable near x = 1.6 m

o reflected FW negligiblefor x > 1.75m
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2. Comparison of 1D rf code results with analytic dispersion
relation

Define Py(Xo, K) = [Wq (X0, K)|2, Wq = k-wavelet transform of Eq ().
U Po(Xo, k) = Px(Xo, k) + Py(xo, k)

300
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Fig. 6 Comparison of the k-wavelet spectral power density P(xg, k) (red
contour lines) with the hot-plasma dispersion relation (blue lines). The
solid (dashed) blue lines depict propagating (heavily damped) modes.

Fig. 6 shows good quantitative agreement between the k-wavel et
analysis of the code results and the analytic dispersion relation.
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3. Linear wave polarization (Ex/Ey)

100

Fig. 7 K-wavelet transform spectral power density P(xg, k) of the rf
electric field using the same parameters as Fig. 3. Here the color palette
indicates the linear wave polarization p = EX/Ey; it runs from light green (p
<< 1) through blue (p ~ 1) tored (p >> 1).
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4. Circular wave polarization (ER/EL)
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Fig. 8 K-wavelet transform spectral power density Po(xg, k) of the rf
electric field using the same parameters as Fig. 3. Here the color palette
indicates the circular wave polarization p = Er/E; it runs from light green
(p << 1) through blue (p ~ 1) tored (p >> 1).

Figs. 7 and 8 illustrate the change of wave polarization from the FW
to the IBW and the mixed polarization in the mode-conversion
region.

(These figures take advantage of the built-in color functions in Mathematica.)
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5. lllustrate poloidal B field effect on wave propagation (compare
waves above and below midplane, see Fig. 9)

Compare two horizontal cuts:
(@ Above the midplane: backward propagating IBW
(b) Below the midplane: forward propagating ICW

Fig. 9 (a) Fig. 9 (b)
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Fig. 9 K-wavelet transform spectral power density P(xg, k) of the rf electric field for
horizontal slices (a) above the midplane, and (b) below the midplane.

Also see posters BP1.074 [Jaeger et al.] and BP1.075 [Berry et al.]
and Perkins, Nucl. Fusion, 1977.
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Summary & Discussion

e Various Fourier and wavelet transform techniques have been
explored for the purpose of visualizing and quantifying wave
propagation and dispersion in plasmas.

e The genera problem of finding k(x) requires (i) using a localized
set of basis functions (“windowed transforms’), and (ii) using an
optimal window for each k. Wavelets are well-suited to this problem.

e A modified Morlet wavelet (called here the “k-wavelet”) was
shown to provide a useful diagnostic for mode conversion scenarios
where multiple waves are present with vastly different wavelengths.

e Important physical information (amplitude, polarization,
wavenumber, etc.) can be displayed graphically using these transform
methods.

e Good agreement was found between the analytic 1D dispersion
relation and the numerical results of the 1D full-wave AORSA code.

e This diagnostic was used to illustrate the effect of the poloidal
magnetic field on the mode conversion and wave propagation.

e The 1D transform methods used here can be extended to 2D in a
straightforward way.
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