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Previous full-wave models for radio frequency (rf) heating in multi-dimensional plasmas have 

relied on either cold-plasma or finite Larmor radius approximations.  These models assume that 

the perpendicular wavelength of the rf field is much larger than the ion Larmor radius, and they are 

therefore limited to relatively long wavelengths and low cyclotron harmonics.  Recently, alternate 

full-wave models have been developed that eliminate these restrictions.  These "all orders spectral 

algorithms" (AORSA) take advantage of new computational techniques for massively parallel 

computers to solve the integral form of the wave equation in multiple dimensions without any 

restriction on wavelength relative to orbit size, and with no limit on the number of cyclotron har-

monics retained.  These new models give high-resolution, two-dimensional solutions for mode 

conversion and high harmonic fast wave heating in tokamak geometry.  In addition, they have been 

extended to give fully three-dimensional solutions of the integral wave equation for minority ion 

cyclotron heating in stellarator geometry.  By combining multiple periodic solutions for individual 

helical field periods, it is possible to obtain complete wave solutions valid over the entire volume 

of the stellarator for arbitrary antenna geometry.
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I.  INTRODUCTION

Numerical calculations of wave propagation and heating in multi-dimensional plasmas 

have generally been of two types: geometrical optics (or ray tracing), and full-wave or global 

calculations.  Full-wave models are needed because ray tracing does not optimally treat realistic 

antenna spectra, plasma cutoffs, or mode conversion layers, nor does it include large-scale coher-

ent effects such as diffraction, interference, and wave focussing.  Early two-dimensional (2-D) 

full-wave models 1−4 were based on finite difference and finite element algorithms in both the 

radial and poloidal directions.  In addition, finite Larmor radius (FLR) expansions (k⊥ρ << 1, 

where k⊥ is the perpendicular wave number and ρ is the ion Larmor radius) were used to express 

the plasma current as a differential operator.  The parallel gradient operator (ik❘❘ = êb ⋅∇), however, 

couples to the poloidal direction, and is not easily treated with finite differences because it appears 

in the argument of the plasma dispersion function, effectively raising the order of the wave equa-

tion to infinity.  Therefore, these early models neglected the spatial variation of the parallel wave 

vector (k❘❘), and as a result, underestimated electron Landau damping (ELD).5  

More recent full-wave models such as PICES 5 and TORIC 6 have used a superposition of 

Fourier modes in the poloidal direction to represent the wave field, thus reducing the parallel gra-

dient to an algebraic operator.  These codes accurately calculate the electron damping rate, but still 

rely on FLR expansions in the radial direction to express the plasma current as a differential 

operator.  In practice, they are limited to relatively long wavelengths and cyclotron harmonics of 

two or less (because each cyclotron harmonic raises the radial order of the differential equation by 

two).  In addition, the magnetic flux coordinates required for the poloidal mode expansion are 

singular at the origin, and often lead to numerical problems near the magnetic axis.

Recently, alternate full-wave models 7−9 have been developed that eliminate these 

difficulties.  These all-orders, spectral algorithms (AORSA) 8, 9 solve the integral form of the wave 

equation with no assumption regarding the smallness of k⊥ρ and no limit on the number of cyclo-

tron harmonics retained.  The earliest example of such a model is the one-dimensional (1-D) 
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METS95 code 7 developed by D. N. Smithe.  Ion Bernstein waves (IBWs) are formed naturally in 

these models and are correctly absorbed by Landau damping, even when k⊥ρ exceeds unity.  Fur-

thermore, the use of cylindrical coordinates rather than flux coordinates moves the singular axis 

outside of the plasma volume and hence eliminates all numerical problems associated with the 

magnetic axis.  However, because all modes in the spectral representation are coupled, these new 

models require the calculation and inversion of very large, dense matrices.  In contrast, FLR codes 

such as PICES and TORIC require only the inversion of matrices that, while of comparable size, 

are sparse and banded.  For this reason, spectral calculations to all orders in k⊥ρ have so far been 

limited to only one spatial dimension.7, 8 

In this paper, we extend these methods to multiple dimensions by taking advantage of new 

matrix inversion algorithms for distributed-memory parallel computers.10   Numerical conver-

gence is improved by writing the equations in the laboratory frame of reference rather than in local 

magnetic coordinates.  One disadvantage of the laboratory frame is that it is more difficult to 

express the plasma conductivity which must be corrected to first order in ρ/L (where L is the 

equilibrium scale length) to take into account the spatial variation of the transformation from lab-

oratory to local magnetic coordinates.  This preserves cancellations between electron Landau 

damping and magnetic pumping, and ensures accuracy in calculating the relative fractions of 

power absorbed by ions and electrons.

The remainder of this article is organized as follows.  Section II describes the AORSA 

algorithm in three dimensional (3-D) toroidal geometry.  Section III transforms the plasma con-

ductivity tensor from local magnetic coordinates to the laboratory frame of reference.  Section IV 

discusses the numerical method, and Sects. V through VII describe applications to mode conver-

sion and heating in tokamak and stellarator plasmas.  Results are summarized in Sect. VIII.

 

II.  THE "ALL-ORDERS SPECTRAL ALGORITHM" (AORSA)

For time harmonic wave fields with frequency ω,  Ampere’s and Faraday’s laws combine 
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to give the inhomogeneous wave equation, or Helmholtz equation

 

where E is the wave electric field, and Jant is a specified external antenna current.  Most of the 

complication in Eq. (1) arises from the response of the plasma to the electromagnetic wave field, 

which is included through the plasma current, Jp.  For a non-uniform medium, the relationship 

between the plasma current and the wave electric field is a non-local operator, and can be ex-

pressed to lowest order in ρ/L as an integral of the form 11

where r  is the position vector, and σ(r , r  - r ′) is the plasma conductivity kernel. 

We apply the "all-orders spectral algorithm" (AORSA) 7−9 to solve Eqs. (1) and (2) in 

multi-dimensional geometries.  With this method, we retain all orders in k⊥ρ, while at the same 

time assuming a locally homogeneous plasma 8 (ρ/L << 1).  The geometry is conveniently de-

scribed by cylindrical coordinates (R, ϕ, Z) where R is the radial position measured from the 

toroidal axis, ϕ is the toroidal angle, and Z is the vertical position.  The radio frequency (rf) electric 

field is expanded in Fourier harmonics as

where x = R − R0 , y = Z, and n, m, and l are Fourier mode numbers.  In the limit of a spatially 

homogeneous plasma, σ depends only on r  − r ′, and the convolution theorem can be used to recast 

Eq. (2) in Fourier space 11 
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where σ(kn, km, l) is the Fourier coefficient of the conductivity kernel, or the plasma conductivity 

tensor.  To provide a lowest order description in ρ/L of an inhomogeneous plasma, we include 

additional spatial dependence in σ from variation in plasma parameters such as density, tempera-

ture, and magnetic field.  For tokamak geometry with symmetry about the toroidal axis, the ϕ 

harmonics are uncoupled and each can be calculated separately.  For stellarator geometry with 

toroidal inhomogeneity, the ϕ harmonics are coupled and must be calculated simultaneously.

III.  PLASMA CONDUCTIVITY IN THE LABORATORY FRAME

Equation (1) can be solved in either local magnetic coordinates 12 (the "Stix" frame), or in 

laboratory coordinates.  Previous full-wave rf models 5, 6 have used the Stix frame because E❘❘ 

(which is << E⊥) is calculated directly as one of the unknowns in the system.  In AORSA, we work 

instead in the laboratory frame because it exhibits better convergence properties in Fourier space 

and because the Fourier components (∇ × ∇ × E)n,m,l  are explicitly divergence free.13  One dis-

advantage of the laboratory frame is that E❘❘ is not determined directly in the solution, but instead 

comes indirectly from a linear combination of the larger electric field components ER, Eϕ, and EZ.  

Because E❘❘ is much smaller than E⊥, a highly accurate solution is required to resolve E❘❘ .

Stix 12 has derived the plasma conductivity in local magnetic coordinates assuming a spa-

tially uniform Maxwellian plasma with straight magnetic field lines and wave propagation 

perpendicular to both the magnetic field and the flux surface.  Both Stix and Swanson 14 have 

adapted this result to a more general orientation of k⊥.  To derive the plasma conductivity in the 

laboratory frame, the rf electric field in the orbit integral must be transformed (rotated) from the 

laboratory frame to Stix coordinates, Ek
Stix(r ) exp(ikStix⋅r ) = U(r ) ⋅ Ek

Lab exp(ikLab⋅r ) , where U is 

a matrix depending on the direction of the magnetic field and kStix = U ⋅ kLab.  The spatial depen-

dence of U on r  results in an additional complication in evaluating the characteristic integral that 

is central to the derivation of the conductivity tensor.  Because the spatial dependence of U is much 

weaker than that of the exponential, we approximate U with a Taylor series expansion,
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where r ′ is the position of a particle at time t′, and the gradient is taken in the Stix frame.  This 

expansion assumes that corrections to the spectrum caused by excursions of the orbit away from 

the guiding center as a result of the rotation U are of order ρ/L .  The parallel component of ∇U 

represents additional dispersion in k❘❘  along the characteristic integral, and cannot be treated as a 

perturbation because of the singular plasma response at the Doppler resonance.  For simplicity, it 

is omitted here.

Using the Taylor series expansion in Eq. (5), the orbit integral can be evaluated to obtain 

the final expression for the plasma conductivity in the laboratory frame,

where σStix is the generalization of the Stix conductivity as given by Swanson.14  The first term in 

Eq. (6) represents a simple rotation from local coordinates to the laboratory frame,  and the second 

term is a first-order correction in ρ/L arising from the spatial dependence of the rotation matrix in 

the orbit integral.  This term is needed to preserve the cancellation 15 between transit-time magnetic 

pumping and Landau damping, and to ensure accuracy in calculating the relative fractions of 

power absorbed by ions and electrons.9 

IV.  NUMERICAL METHOD

The method of collocation 16 is used to write  Eq. (1) at each point on a spatial mesh, and 

the resulting set of linear equations is solved for the Fourier coefficients, En,m,l.  This avoids con-

volutions associated with the plasma current, and at the same time, includes cyclotron harmonics 

of arbitrary order.  Furthermore, boundary conditions are easily implemented at specified positions 

in space.  However, because all modes in the spectral representation are coupled, the complete 

= ( )6− i

( )
· · ∇ U⊥
∂σStix
∂k

U−1U · σ ·UStix
−1σlab

( )5≈ U ,( ) +∇ ( )− rr′U ·⊥rU( )r′
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solution requires calculating and inverting a very large, dense matrix.  For example, with 200 × 

200 Fourier modes in 2-D, or equivalently, 50 × 50 × 16  modes in 3-D, it is necessary to solve 

120,000 coupled complex equations, and the storage required for the resulting matrix is ∼ 230 

Gbytes.  Such large amounts of memory are seldom available on a single processor.  However, 

with the availability of large parallel computers, it is possible to distribute the required memory 

over many processors, and the distributed matrix can be inverted using ScaLAPACK,10 a library 

of high-performance linear algebra routines for distributed-memory, parallel computers.  Problem 

size scales as the square root of the number of processors as shown in Fig. 1(a).  Using 576 pro-

cessors on the Oak Ridge National Laboratory IBM RS/6000 SP computer, up to 120,000 coupled 

complex equations can be solved, while achieving 0.66 teraflops (660 billion operations per sec-

ond) during matrix factorization.  With a still larger computer, such as the NERSC-II super 

computer with 2000 processors, at least twice this number of equations can be solved.  Computing 

speed scales linearly with the number of processors, as shown in Fig. 1(b), and there is no indica-

tion of saturation caused by communication between processors. 

 

V.  MODE-CONVERSION IN TWO DIMENSIONS

With these techniques, it is possible to obtain fully converged 2-D solutions that resolve the 

short-wavelength ion Bernstein waves (IBW) excited near the two-ion-hybrid resonance layer in 

toroidal geometry.  Previous attempts to model mode conversion in 2-D have had physics uncer-

tainties because of the FLR expansion (k⊥ρ << 1).  However, by choosing a spectral representation 

with 400 modes in the horizontal dimension and 100 modes in the vertical dimension, we have 

obtained convergence for cases in which the mode-converted IBW is moderately absorbed.  

Figure 2 shows an all-orders spectral calculation for mode-conversion in 2-D, neglecting 

the poloidal magnetic field.  Fast wave power is launched into a deuterium plasma with a 25%  

helium-3 minority.  Parameters are modeled after the Alcator C-Mod experiment.17  To simplify 

the calculation and make convergence easier, the central temperatures are chosen large enough (10 
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keV) that the IBW is moderately absorbed, but small enough that the waves propagate for several 

wavelengths away from the resonance.  Contours of the wave electric field are plotted in Fig. 2(a).  

The dashed curves show the mode conversion surfaces calculated from a 1-D cold plasma model.  

The surface associated with the majority deuterium resonance appears on the extreme left side of 

the plasma, and the surface associated with the minority helium-3 resonance intersects the equa-

torial plane near the plasma center.  Figure 2(b) shows a blowup of the helium-3 resonance region 

(dashed box) where the individual wave fronts of the IBW are clearly visible.  Because IBW is a 

"backward" wave, the wave fronts in Fig. 2(b) propagate to the right in time, or opposite to the 

direction of the group velocity and energy flow.  For large values of kx and ky , rapidly decreasing 

mode amplitudes indicate that this result is fully converged.  As the wave energy propagates away 

from the resonance region, the IBW is correctly absorbed by electron Landau damping even for the 

dominant wavelengths in Fig. 2 that have k⊥ρ ∼1.6.

Figure 3 shows a similar calculation that includes the effect of the poloidal magnetic field, 

Bϑ.  Fast-wave power is launched into a deuterium plasma with a 33% hydrogen minority.  Pa-

rameters are modeled after DIII-D.18, 19  The effect of the poloidal field is to introduce a strong 

up-down asymmetry in the mode-converted IBW.  This is partly due to the natural up-down 

asymmetry of the antenna’s radiated power spectrum 20 and partly due to variation in the k❘❘ spec-

trum caused by Bϑ.  When the direction of either Bϑ or the antenna phasing is reversed, the 

asymmetry is also reversed, and the mode-converted IBW becomes more predominant below the 

midplane.  

   

VI.  HIGH-HARMONIC FAST-WAVE HEATING IN TWO DIMENSIONS

The primary heating system in the National Spherical Torus Experiment (NSTX) 21 is de-

signed to operate at high harmonics of the ion cyclotron frequency.  A self-consistent treatment of 

this scenario requires a large number of ion cyclotron harmonics as well as all orders in k⊥ρ.  

Figure 4 shows a 2-D spectral calculation for NSTX shot #105830 including 20 cyclotron har-
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monics and 140 Fourier modes in the x and y directions.  Fast waves are launched from the low 

field side of a deuterium plasma with a 3.7% hydrogen minority.  A Solov’ev 22 equilibrium is 

assumed with parameters modeled after the NSTX geometry.23  In Fig. 4, nearly 100% of the rf 

power is absorbed in the first pass by Landau damping on the electrons [Fig. 4(b)].  The remaining 

small fraction of power is absorbed by the minority ion component at the 4th and 5th harmonics of 

hydrogen.  These high harmonic layers are visible in the ion heating contours in Fig. 4(c).  In Fig. 

5, a flux surface average of the electron absorption contours in Fig. 4(b) shows that the electron 

heating is peaked near the magnetic axis for this case.  Antenna loading (proportional to plasma 

absorption) is highest when the antenna is phased to drive current in the same direction as the 

plasma current.20 

VII.  MINORITY ION HEATING IN 3-D STELLARATOR GEOMETRY

Recent ICRF heating experiments on the Large Helical Device (LHD)24 have demonstrated 

that direct ion heating by fast waves is a dominant heating mechanism for the antenna configura-

tion and frequency used in LHD.  Figure 6 shows the 3-D magnetic field geometry for LHD 

calculated from the VMEC code 25 with fixed boundaries.  Flux surfaces and magnetic field 

strength are shown at four equally spaced toroidal angles within a single helical field period.  The 

heavy dashed lines show the location of the fundamental ion cyclotron resonance for hydrogen.  

Figure 7 shows a 3-D rf solution for this geometry assuming identical antennas in each helical field 

period and using 50 modes in both the x and y directions and 16 coupled modes in the toroidal 

direction.  A helium plasma is assumed with a 5% hydrogen minority.  The antenna is centered in 

the ϕ = 0 plane, and assumed to have monopole phasing with frequency f = 44 MHz.  Figure 7(a)  

shows contours of the wave electric field, and Fig. 7(b)  shows contours of the minority ion heating 

at the four toroidal angles within the field period.  The ion heating is peaked at the two-ion-hybrid 

resonance which is close to the ion cyclotron resonance for hydrogen in this case.

The strong parallel magnetic field gradients in this 3-D geometry cause significant broad-
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ening of the plasma dispersion function near k❘❘ = 0.  In order to obtain the converged solution in 

Fig. 7, it is necessary to include this broadening by using an approximate form for the generalized 

plasma dispersion function as suggested by Brambilla.26

Because the solution in Fig. 7 assumes identical antennas in each field period, periodic 

boundary conditions can be applied in the toroidal direction, and the Fourier basis set in ϕ can be 

reduced to exp(l Npϕ), where Np is the number of helical field periods.  Thus, for Np = 10, the basis 

set includes only the elements:  1,  e± 10 ϕ, e± 20 ϕ,  ... etc.  For arbitrary antenna geometry, the full 

basis set exp(l ϕ) is required, and the number of equations is increased by a factor of 10 for the 

above example.  A problem of this size is beyond the capability of even our largest computers.  

However, by taking advantage of the underlying plasma symmetry, it is possible to obtain the 

complete 3-D solution for arbitrary antenna geometry by combining a number of smaller periodic 

solutions as in Fig. 7.  To see this, consider the general  form of the linear wave equation  

where L(R, ϕ , Z)  represents the linear operator on the left side of Eq. (1), and F(R, ϕ , Z) repre-

sents the driving term due to the antenna current.  We assume that L(R, ϕ, Z)  has a periodicity of  

2π / Np so that L(R, ϕ + 2π/ Np , Z) = L(R, ϕ , Z).  We also assume that the source term F is non-zero 

only in the first field period where 0 < ϕ < 2π/ Np (i.e., a single antenna in one field period only).  

To solve Eq. (7) subject to the periodicity condition for the full torus, E(R, ϕ + 2π, Z) = E(R, ϕ, Z), 

we first construct solutions for the individual field periods from the complete set of modes, 

where M denotes the field period number (0  ≤  M  ≤  Np−1).  Note that for M = 0, Eq. (8) corre-

sponds to the periodic solution in Fig. 7 with the boundary condition:  

( ) =
∑

e ( )8i[ ]k x+k y+( )ϕlN +MpmnEM
n,m, l

n, m, l

R,ϕ, ZEM

= ( ) ( )7R,ϕ , ZFL( ) ( )R,ϕ , ZER,ϕ , Z
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For M ≠ 0, a more general boundary condition is implied:  

The complete solution on the interval  0 < ϕ < 2π, with the antenna in the first cavity only, can be 

constructed from Eq. (8) as follows.  For the interval 2π/ Np (p −1) < ϕ < (2π/ Np) p, we write the 

full solution as    

where p = M + 1.   To see that this satisfies the complete problem, substitute Eq. (11) into Eq. (7).  

The left side of Eq. (7) gives 

     

The sum over M in Eq. (12) equals zero except for  p = 1,  Np+1,  2Np+1, . . .  where it equals Np .  

Thus, 

and E(R, ϕ, Z)  satisfies the wave equation with the source term (antenna) in the first cavity only 

(p = 1,  Np+1,  2Np+1, . . .).  Furthermore, E is periodic on the interval 2π because each EM  in the 

sum in Eq. (11) is periodic on 2π.  

Figure 8 shows the complete 3-D solution for LHD with 10 helical field periods.  The 

L( ) ( ) =

{
( )13

F ( ) p = 1, N + 1, 2N + 1, . . .ppforR, ϕ, Z

0 otherwise,
R,ϕ, ZER,ϕ, Z

L( ) ( ) =
∑

e . ( )12
2πi ( )p−1M

Np

M=0

N −1pF
( )
R, ϕ− ( ), Zp− 12π

Np

Np
R,ϕ, ZER,ϕ, Z

( ) =
∑

e ( )11E

( )
R, ϕ− [ ], Zp− 1

π2

Np
M

2πi ( )p−1M
Np

M=0

N −1p
1

Np
R,ϕ, ZE

= ( ) e . ( )10
i M2π
NpR , 0, ZEM

( )
R, , Z

π2

Np
EM

= ( ) . ( )9R, 0, ZE0

( )
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π2
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E0
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magenta surface represents the last closed flux surface, and the individual cross sections show 

contours of the logarithm of the minority ion power absorption at various toroidal angles, ϕ.  The 

antenna is located in the field period on the extreme right side of the figure.  Notice that the heating 

is strongest for the planes closest to the antenna, and gets progressively weaker as the planes 

approach the the far left side of the figure where the distance from the antenna is maximum.  The 

ion heating follows the two-ion-hybrid resonance layer and rotates with the helicity of the mag-

netic field.

VIII.  DISCUSSION

All-orders spectral methods allow the solution of the integral wave equation without any 

restriction on wavelength relative to orbit size, and with no limit on the number of cyclotron har-

monics retained.  With these methods, it is possible to model very short-wavelength structures 

such as ion Bernstein waves, as well as wave-particle interactions at high harmonics of the ion 

cyclotron frequency.  However, because they require large amounts of computer memory, these 

methods have previously been applied in 1-D only.  In this paper, these calculations are extended 

to 2-D and 3-D by taking advantage of the massively parallel architecture of today’s super 

computers.  With this approach, the limit on attainable resolution comes, not from the theory itself, 

but from the size and speed of the available computer.  

Numerical convergence is found to be best in the laboratory frame where the Fourier com-

ponents (∇ × ∇ × E)n,m,l are explicitly divergence free.  In this frame, the plasma conductivity must 

be corrected to lowest order in ρ/L to provide sufficient accuracy in calculating the wave 

polarization.  This correction is necessary to preserve the cancellation between transit-time mag-

netic pumping and Landau damping and therefore to correctly calculate the fraction of power 

absorbed by ions and electrons.

The new calculations have produced high-definition solutions for mode conversion in 2-D 

toroidal geometry.  In multiple dimensions, mode conversion is found to be more complicated than 
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simple 1-D models suggest.  In particular, the poloidal magnetic field introduces a strong up-down 

asymmetry in the formation of the IBW.  This is partly due to the natural up-down asymmetry of 

the antenna’s radiated power spectrum and partly due to variations in the k❘❘  spectrum caused by 

the poloidal magnetic field.  

The new calculations also allow self-consistent modeling of high-harmonic fast-wave 

heating in low-aspect-ratio tokamaks.  Ion heating at high harmonics can now be calculated self-

consistently with the wave propagation in 2-D.  A flux surface average of heating contours for 

NSTX shot #105830 shows that electron heating is peaked near the magnetic axis.  

Finally, the AORSA technique has been extended to give fully 3-D solutions for minority 

ion heating in stellarator geometry.  Using an equilibrium magnetic field calculated from the 

VMEC code,25 a 50 × 50 × 160 mode solution in x, y, and ϕ has been obtained for excitation by a 

single antenna located in one helical field period.  This problem is too large to be solved by direct 

solution.  Instead, the underlying symmetry of the 10 field period system has been used to con-

struct the 160 mode solution from 10 individual solutions of the 16 mode problem.

This work should be considered as an initial step toward multi-dimensional modeling of 

wave processes in the k⊥ρ > 1 regime.  The numerical methods described are still limited by the 

availability of a sufficient number of processors and by the memory on each processor.  It is pos-

sible that an alternative formulation of the integral wave equation in real space, rather than in 

Fourier space, might yield a more diagonal matrix structure 27 and reduced storage requirements.28  

It is also possible that iterative techniques in Fourier space could offer a viable alternative to the 

direct solution method, thereby reducing memory requirements and allowing the solution of still 

larger problems. As problem size increases, and hence also the number of unknowns (N), the cost 

for direct methods increases as O(N3), making iterative methods with effective preconditioners 

very attractive because each iteration requires only O(N2) work.  Direct extension to three dimen-

sions appears to be feasible for long wavelength applications such as minority ion cyclotron 

heating.  However, resolution of short wavelength ion Bernstein waves in 3-D will require some 
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numerical improvements for even moderate resolution. 
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FIGURE CAPTIONS

FIG. 1. Numerical solution using ScaLAPACK:10 (a) problem size versus the number of proces-

sors, assuming 400 MB per processor; (b) number of operations per second achieved during matrix 

factorization. 

FIG. 2.  All-orders spectral solution for mode conversion in Alcator C-Mod 17 neglecting the 

poloidal magnetic field.  The dashed curves show the mode-conversion layers from a 1-D cold 

plasma model.

FIG. 3.  All-orders spectral solution for mode conversion in DIII-D18, 19 including the poloidal 

magnetic field.  The dashed curve shows the mode-conversion layer from 1-D cold plasma theory.

FIG. 4.  All-orders spectral solution for high-harmonic fast-wave heating in NSTX shot # 105830 

showing contours of (a) the rf electric field, (b) the electron power absorption, and (c) the minority 

ion  power absorption.

FIG. 5.  Flux surface average of the electron heating contours in Fig. 4(b) where ρ is the flux 

surface label.  

FIG. 6.  Magnetic field geometry from VMEC 25 for four equally spaced toroidal angles in a single 

helical field period of LHD 24

FIG. 7.  All orders spectral calculation of minority ion cyclotron heating for a single helical field 

period of LHD 24: (a) contours of the wave electric field,  and (b) contours of minority ion heating.

FIG. 8. All orders spectral calculation of minority ion cyclotron heating for all 10 field periods of 

LHD24 with a single antenna located at the extreme right side of the figure.  Individual cross sec-

tions show the logarithm of the minority ion power absorption at various toroidal angles.
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FIG. 1. E. F. Jaeger et al., Phys. Plasmas
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FIG. 2. E. F. Jaeger et al., Phys. Plasmas
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FIG. 3. E. F. Jaeger et al., Phys. Plasmas
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FIG. 5. E. F. Jaeger et al., Phys. Plasmas
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FIG. 6. E. F. Jaeger et al., Phys. Plasmas
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FIG. 7. E. F. Jaeger et al., Phys. Plasmas
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FIG. 8. E. F. Jaeger et al., Phys. Plasmas
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