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Abstract

We study the radial structure of high confinement modes in a simplified,

one-dimensional model of the self-consistent interaction of fluctuations, shear

flow, and pressure gradient. The model describes the plasma edge with an

energy flux coming from the core, which is used as a boundary condition for

the pressure transport equation. As the energy flux increases, there is an

L-H transition bifurcation which is described near marginal instability using

a reduced Ginzburg-Landau model for the shear flow coupled to a transport

equation for the pressure. For higher values of the energy flux, a second

transition takes place in which the H mode exhibits a finite-k instability.

Numerical results show that this instability leads in the nonlinear regime to

the spontaneous formation of a pedestal in the pressure profile, where the

effective diffusivity exhibits a sharp drop. A further increase of the energy

flux leads to multiple pedestals across the simulation domain.

I. INTRODUCTION

Since the discovery of the L to H transition [1–3], many theoretical models have been

proposed, see for example Ref. [4] and references therein. These models involve numerous

mechanisms for the creation of transport barriers including ion orbit losses [5,6], Stringer

spin-up [7], critical gradients [8], Reynolds stress [9,10], magnetic shear [11,12], and atomic

physics [13]. Due to the lack of sufficiently high spatial and temporal resolution, it is dif-

ficult to have a clear experimental test to select the dominant mechanisms responsible for

the transition. However, recent C-mod experimental results using ECE temperature mea-

surements [14] offer the possibility of improved diagnostics with increased radial resolution

during and after the transition. Motivated by this, in this paper we investigate the radial

structure of high confinement modes in the context of phase transition models [15–17]

In previous publications [17,18] we discussed the spontaneous formation of shear flows
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with nontrivial radial structure in a variant of the flow-fluctuation model presented in

Ref. [16]. By spontaneous we mean that, in this model the radial structures arise as

nonlinearly saturated finite-k instabilities, and not as a result of externally imposed in-

homogeneities. Here we incorporate to the two-fields model a transport equation for the

pressure with the corresponding coupling to the fluctuations via a pressure gradient drive.

Of particular interest to us is the study of pedestal formation resulting from the plasma

self-organization driven by the self-consistent interaction of fluctuations, shear and pressure

gradients.

The organization of the rest of the paper is as follows. In Sec. II we introduce the

model, explaining the physical meaning of the various terms. Section III presents a study of

homogeneous, stationary solutions and their corresponding linear stability properties. In the

first part of Sec. IV we use a weakly nonlinear expansion to derive a Ginzburg-Landau model

describing the dynamics of the system near marginal instability. The second part of Sec. IV

presents numerical solutions of pedestal formation. Section V presents the conclusions.

II. MODEL

Our starting point is the following transport model describing the dynamics of the tur-

bulence fluctuation level E = 〈(ñk/n0)
2〉1/2

, the poloidal flow shear, 〈Vθ〉′, and the pressure

p:

∂E

∂t
= γ0

(
− a
p0

∂p

∂x

)
E − α1E

2 − α2 〈Vθ〉′2 E +
∂

∂x

[
(DAE +D0)

∂E

∂x

]
(1)

∂ 〈Vθ〉′
∂t

= −µ̂ 〈Vθ〉′ + α3 〈Vθ〉′ E +
∂2

∂x2

[
(DAE +D0) 〈Vθ〉′

]
(2)

∂p

∂t
= S(x) +

∂

∂x

[
(DAE +D0)

∂p

∂x

]
. (3)

This model is similar to the one originally proposed in Ref. [16], except for the third term on

the right hand side of the 〈Vθ〉′ equation. As discussed in Ref. [17], this term has been cor-

rected in order to conserve momentum. This is a one-dimensional model in which quantities
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are assumed to depend only on the minor radius coordinate, x, with 〈 〉 denoting poloidal

and toroidal average over magnetic flux surfaces.

The first term in the equation for E represents a pressure driven, linear growth of the

fluctuations. Here, a and p0 are characteristic scales of length and pressure respectively,

so that the term in parenthesis is of order one. The second term in the right-hand-side of

Eq. (1) models the saturation of turbulence in the L-mode, and the third term models the

turbulence suppression by shear flow. The first term in the right hand side of Eq. (2), models

the poloidal flow shear damping due to magnetic pumping, and the second term represents

the poloidal flow drive by Reynolds stress. Estimates of the parameters α1, α2, α3 and µ̂

are discussed in Ref. [15] for various turbulence models.

The terms involving spatial derivatives, model diffusion. In Eqs. (1) and (3) these terms

have the standard Fick’s law structure, with D0 representing the collisional diffusion and

DAE representing a renormalized turbulent diffusion. The apparent different structure of

the diffusion operator in Eq. (2) is due to the fact that this is an equation for the shear,

the derivative of the momentum. The poloidal momentum diffusion itself is modeled using

Fick’s law, ∂x [(DAE +D0)∂x〈Vθ〉)] [17].

To reduce the number of independent parameters, we write the model in dimensionless

variables as:

∂Ē

∂τ
=

∣∣∣∣∣∂p̄∂y
∣∣∣∣∣ Ē − Ē2 − σ2 Ē +

∂

∂y

[(
D1 Ē + D̄0

) ∂Ē
∂y

]
(4)

∂σ

∂τ
= −σ + a3 σ Ē +

∂2

∂y2

[(
D1 Ē + D̄0

)
σ

]
(5)

∂p̄

∂τ
= S̄(y) +

∂

∂y

[(
D1 Ē + D̄0

) ∂p̄
∂y

]
, (6)

where the dimensionless variables are defined as τ = µ̂t, y = x/a, p̄ = p γ0/(µ̂p0),

σ =
√
α2/µ̂ 〈Vθ〉′ , Ē = (α1/µ̂)E , Ŝ = S γ0/(p0µ̂

2) , (7)

and we have defined the independent parameters a3 = α3/α1, D1 = DA/(a
2α1), D̄0 =

D0/(a
2µ̂). In these non-dimensional variables, the spatial domain, y ∈ (0, 1), represent the

4



edge of the plasma. We will assume that the energy source term, S̄, is zero in this layer and

that the system is driven by an energy flux Γ̄0 from the core which determines the boundary

condition at y = 0 according to

Γ̄0 = −
(
D1 Ē + D̄0

) ∂p̄
∂y

∣∣∣∣∣
0

. (8)

Here we have neglected diamagnetic effects. The role of these effects in the temporal evo-

lution of the L-H transition is considered in Ref. [14]. In the remainder of this paper we

present analytical and numerical solutions of the model in Eqs. (4)-(6). First we consider

homogeneous solutions representing L and H mode states with no radial structure, and then

we present solutions of H-modes with radial structure.

The plasma edge parameters considered here correspond to a low field (2T ) tokamak with

minor radius of 0.5m. We assume that the plasma edge fluctuation level in the L-mode is

about 10 %, and that the effective perpendicular diffusion is of order 1m2/sec. We calculate

the poloidal flow-damping rate on the basis of neoclassical theory. For these values, the

parameters of the model are D1 = 0.01, D0 = 0.001, and a3 = 2. More detailed comparison

with the experiment can be found in Ref. [14] where we also discuss the case of a high field

tokamak, the Alcantor C-mod.

III. STATIONARY, HOMOGENEOUS STATES

These solutions, know also as fixed points, are obtained by setting ∂τ = ∂y = 0 and

solving the resulting algebraic equations. There are three types of fixed points.

Neoclassical fixed point:

Ē0 = 0 , σ0 = 0 ,

∣∣∣∣∣∂p̄∂y
∣∣∣∣∣
0

=
Γ0

D̄0

. (9)

We call this solution “neoclassical” because it has no flow or turbulence, and transport is

only due to collisional effects. This solution corresponds to a simple, linear pressure profile

p̄y = p̄(1) = (Γ̄0/D̄0)(1 − y).
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L-mode fixed point:

ĒL =

∣∣∣∣∣∂p̄∂y
∣∣∣∣∣
L

, σL = 0 ,

∣∣∣∣∣∂p̄∂y
∣∣∣∣∣
L

=

√
D̄2

0 + 4D1Γ̄0 − D̄0

2D1

. (10)

As expected from an L-mode state, this solution has no shear flow, and transport is domi-

nated by turbulence effects with collisional transport playing a minor role. In this state, the

confinement time, defined as the integral of the pressure divided by the flux per unit length,

is in dimensional units

tL =
a2

2

√
p0α1

aγ0Γ0DA

. (11)

Consistent with the standard deterioration of confinement with power characteristic of the

L-mode, tL decreases with the inverse of the square root of the flux.

H-mode fixed point

ĒH =
1

a3
, σH =

√√√√ a3 Γ̄0

a3 D̄0 +D1

− 1

a3
,

∣∣∣∣∣∂p̄∂y
∣∣∣∣∣
H

=
a3Γ̄0

a3D̄0 +D1

. (12)

This solution corresponds to a high confinement state characterized by the presence of a

nonvanishing shear flow, and a turbulence fluctuation level below the L-mode level, i.e.

ĒH < ĒL. It is important to note that the H-mode fixed point exists only when the energy

flux exceeds the critical value:

Γ̄0 ≥ Γc =
a3D̄0 +D1

a23
. (13)

As expected, the confinement time in this state,

tH =
a2α3

2µ̂DA

, (14)

is independent of the energy flux.

Having found the homogeneous, stationary states, the next step is to study their linear

stability properties. This is important because only stable solutions are physically realizable.

Also, the changes in the stability properties of the fixed points as the flux varies, gives rise

to bifurcations leading to the L-H transition and to bifurcations leading to states with
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nontrivial radial structure. The neoclassical fixed point is unstable whenever Γ̄0 > 0, with a

growth rate λ = Γ̄0/D0. The stability properties of the L and H mode fixed points are less

trivial and are summarized in Fig. 1. The L-fixed point is stable in region I but unstable in

regions II and III. The vertical line separating regions I and II, Γ̄0 = Γc, gives the instability

threshold, and, as discussed before, it also gives the threshold for the appearance of the

H-mode which only exist in regions II and III. Thus, when crossing the boundary Γ̄0 = Γc,

the L-mode becomes unstable and a bifurcation creates a stable H-fixed point. Since the

growth rate is pure real, this is a non-oscillatory instability. The H-fixed point is stable in

region II and unstable in region III. The stability boundary dividing these two regions is

a3c =
1

8

(Γ̄0/Γc − 3)2

(Γ̄0/Γc − 1)
. (15)

An important property of the H-mode instability in region III, is that it is a finite-k insta-

bility. That is, the wavenumber of the mode with maximum growth rate,

k2
m =

(Γ̄0/Γc − 2)2 − 1 + 8a3(Γ̄0/Γc − 1)

4D1(Γ̄0/Γc − 2)
, (16)

is nonzero. In Refs. [17,18] we studied the role of these instabilities in the spontaneous

formation of shear flows with radial structures in a model involving only the fluctuations

Ē and the shear σ. In the following section, we study these type of solutions including the

coupling to the pressure transport equation.

IV. HIGH-CONFINEMENT STATES

In this section we study nonhomogeneous high-confinement states. Following the linear

stability analysis presented above, we divide the discussion in two parts: H mode solutions

for parameter values in region II, and H mode solutions in region III of the stability diagram

in Fig. 1.
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A. Dynamics near L-H transition point

Consider H-mode solutions near the L-H transition critical point. This corresponds to

parameter values in region II, near the stability boundary with region I, e.g. the dashed

in Fig. 1. The main advantage of this region is that it is possible to derive a simplified

description of the system using a multiple scales perturbation analysis. The first step is to

introduce a small parameter δ proportional to the departure from the critical point

Γ̄0 = Γc + δ2 , (17)

where δ2/Γc � 1. Based on this parameter, we define a slow time variable, τ̄ = a3δ
2 τ , and

a stretched coordinate η = a3δ y/
√
D1, and consider a perturbative expansion of the form

σ = δ σ1 Ē = Ēc + δ2 Ē2 , p̂ = p̂c + δ2 p̂2 , (18)

where p̂ = −∂yp̄ is the pressure gradient, and (σc, Ēc, p̂c) is the L-H transition fixed point.

Substituting (18) in Eqs. (4)-(6), and equating terms of equal order, we obtain the algebraic

relation

Ē2 = p̂2 − σ2
1 , (19)

and the dynamical equations

∂p̂2
∂τ̂

=
∂

∂η2

(
2p̂2 − σ2

1

)
. (20)

∂σ1

∂τ̂
= σ1

(
p̂2 − σ2

1

)
+
∂2σ1

∂η2
. (21)

That is, near the transition point, the turbulence fluctuations Ē are “slaved” to σ and p̂, and

only two dynamical equations are needed. A transport equation for the pressure gradient,

Eq. (20), coupled to and a Ginzburg-Landau equation, Eq. (21), for the shear. The boundary

condition for the reduced system,

2p̂2 − σ2
1

∣∣∣
0

=
a3
D1

, (22)
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follows directly from Eqs. (18) and (8).

The system Eqs. (20)-(21) admits exact analytical solutions. Of particular interest, are

time independent, ∂τ̂ = 0, constant flux, 2p̂2(x) − σ2
1(x) = a3/D1, solutions. In this case,

Eq. (20) is trivially satisfied, and Eq. (21) reduces to an ordinary differential equation with

solution ∣∣∣∣∣∂p̄∂y
∣∣∣∣∣ =

1

a3
+ A

[
1 + tanh2

(
y

W

)]
, Ē =

1

a3
+ A sech2

(
y

W

)
, (23)

where the width W and amplitude A of the profile are given by

W =
2D1

a3
√
a3δ
, A =

δ2

2

a3
D1

. (24)

Figure 2 shows this solution for a3 = 0.5, D1 = 0.01, δ2 = 0.04, Γc = 0.04, and Γ̄0 = 0.08.

Compared with the right before-transition solution, pc (dashed line in Fig. 2), the solution

exhibits a steeper gradient. The dotted-dashed line in the figure shows the turbulence

fluctuation, Ē. As expected from an H-mode state, the effective transport coefficient, (D̄0 +

D1Ē), decreases near the edge.

B. Pedestal formation

As mentioned before, in region III, the H-mode has a finite-k instability. One of the

main conclusions of this paper is that, in the nonlinear regime, this instability gives rise to

the formation of pedestals in the pressure profile. To explore these solutions we integrated

numerically Eqs. (4)-(6) with the boundary condition (8). Guided by the linear stability

analysis, we fixed a3 = 2, D1 = 0.01, D̄0 = 0.001 and made a scan of the energy flux, Γ̄0,

from values in region II before the transition, to values deep inside region III where the H

mode is unstable. Following a transient, the numerical solutions settle into time independent

solutions with radial structure.

For energy fluxes in region II the solutions exhibit the steeper gradient characteristic of

the H-mode, qualitatively similar to the one observed with the near-transition Ginzburg-

Landau model in Eqs. (20)-(21). The dynamics in region III is more interesting. There, as
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shown in Figs. 3 and 4, the numerical results exhibit the spontaneous formation of pedestals

in the pressure profile, accompanied by sharp depletions in the turbulence. In Fig. 3, the

energy flux, Γ̄0 = 0.4, is close to the finite-k instability boundary and a pedestal clearly

forms around 0.8. Figure 4 shows the formation of a “double” pedestal for Γ̄0 = 1.6. The

appearance of multiple pedestal as the energy flux increases, is consistent with the linear

stability analysis according to which the wavenumber of the most unstable mode, Eq. (16),

increases with Γ̄0.

There is an issue on the accessibility of states with multiple pedestals. The power required

to access them is higher than for a single pedestal. Because the increase of the power

input in the edge plasma region is not instantaneous, but the flux from the core increase

continuously, the edge transition will happen at the lowest power accessible state. A more

detailed transport model is required to study the evolution of the plasma when the power

continuously increases and the plasma is in the H-mode state.

V. CONCLUSIONS

Motivated by the experimental possibility of high spatial resolution diagnostics, we in-

vestigated the radial structure of high confinement modes in a simplified model describing

the self-consistent interaction of fluctuations, shear flow, and pressure gradient. The model

describes the plasma edge with an energy flux, Γ̄0, coming from the core, which is used

as a boundary condition for the pressure transport equation. It is observed that when the

energy flux reaches a threshold, Γ̄0 = Γc, there is a bifurcation in which the L-mode becomes

unstable and a stable H-mode appears. Using a multiple scales, weakly nonlinear expan-

sion, we derived a Ginzburg-Landau model describing the dynamics near marginal stability.

Analytical solutions of the reduced model show a reduction of effective transport coefficient

χeff = D1 Ē + D̄0 near the plasma edge, characteristic of the L-H transition. More inter-

esting is the new finding that for higher values of the energy flux, a second transition takes

place in which the H mode exhibits a finite-k instability. Numerical results show that this
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instability leads in the nonlinear regime to the spontaneous formation of a pedestal in the

pressure profile where χeff = D1 Ē + D̄0 exhibits a sharp drop. As the the energy flux in-

creases, multiple pedestals can be observed, consistent with the fact that the wavenumber of

the most unstable mode increases with Γ̄0. What is particularly interesting of this model is

that the radial structure emerges spontaneously as a result of a finite-k, “pattern forming”

instability, and not because of an externally imposed inhomogeneity. We have neglected

diamagnetic effects. The role of these effects in the temporal evolution of the L-H transition

is discussed in Ref. [14].
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FIGURES
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FIG. 1. Stability diagram of the low confinement (L) and high confinement (H) homogeneous,

stationary (fixed point) solutions as function of a3 and the energy input flux Γ̄0/Γc, in the model

in Eqs. (4)-(6). The L fixed point is stable in region I and unstable elsewhere. The H fixed point

only exists in regions II and III. Crossing the solid vertical line, Γ̄0 = Γc, gives rise to the L-H

transition during which the L mode becomes unstable and a stable H mode appears through a

pitchfork bifurcation. The H mode is stable in region II, but it is unstable to finite-k instabilities

in region III that give rise in the nonlinear regime to pedestal formation (see Figs. 3 and 4. The

dashed line marks the region of weak instability described by the Ginzburg-Landau reduced model

in Eqs. (20)-(21).
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FIG. 2. Solutions of the Ginzburg-Landau reduced model of Eqs. (20)-(21) describing the

dynamics near the critical transition point (dashed line in Fig. 1). The dashed line, Pc, is the

homogeneous (constant pressure gradient) solution at the critical point. The solid line, P , is the

high confinement pressure profile according to solution (23). The dotted-dashed line denotes the

turbulence fluctuations E which, as expected, decrease at the edge
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FIG. 3. Self-consistent, spontaneous pedestal formation in the L-H transition obtained from

the numerical integration of Eqs. (4)-(6) with a3 = 0.5 and Γ̄0/Γc = 9.52. The pedestal formed in

the pressure profile P̄ is accompanied by a sharp drop in the turbulence that gives rise to a sudden

reduction of the effective transport coefficient, χeff = D1Ē + D̄0, at the edge.
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FIG. 4. Same as Fig. 3 except that Γ̄0/Γc = 38.09. For this higher value of the energy flux, the

linear stability analysis predicts (see Eq. (16)) a higher wavenumber instability that explains the

formation of a double pedestal.
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