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Abstract. The shear Alfvén continuum has been calculated for stellarators of arbitrary shape and
aspect ratio using a symmetric matrix form of the continuum equation. Stellarators introduce strong
poloidal/toroidal couplings in |B| and the grr metric coefficient that can induce new continuum gap
structures not present in axisymmetric tokamaks.  Low field period period (Nfp = 2 – 3), low aspect
ratio devices result in strongly coupled toroidal mode families (n = n0, n0 ±  Nfp, n0 ± 2Nfp, etc.) that
lead to HAE (Helical Alfvén Eigenmode) and MAE ( Mirror Alfvén Eigenmode) couplings at lower
frequencies than are the case for larger aspect ratio, higher field period stellarator devices.  Low field
period configurations also have a higher density of coupled continua for a given frequency range; this
characteristic could lead to higher levels of continuum damping.

I.  Introduction

Fast ion destabilized Alfvén modes1 are of interest in stellarators since they can lead to
enhanced fast ion losses and lowered heating efficiencies.  In addition, these instabilities have
potential diagnostic use (MHD spectroscopy), and may offer the possibility of directly
channeling2 fast ion energy to core ions through wave-particle mechanisms (i.e., bypassing
the slower collisional transfer mechanisms).  Low aspect ratio stellarators have stronger
poloidal/toroidal/helical couplings in |B| and the grr metric coefficient (which enter into the
Alfvén continuum equation) than either tokamaks or large aspect ratio stellarators.  Also,
since low aspect ratio devices generally are designed at low field periods (Nfp = 2 - 3), more
closely spaced toroidal mode families must be taken into account in calculating the Alfvén
spectrum.  Although calculations have recently been presented of Alfvén continua in
stellarators, these have generally been either only for large aspect ratio stellarators3 or have
assumed weak equilibrium couplings.4  We have developed a calculation (the STELLGAP
code) for analyzing the Alfvén continuum structure in compact devices and which can take
into account interactions between multiple toroidal modes and retain an adequately resolved
Fourier spectrum for the equilibrium quantities.  This code uses Boozer coordinates and MPI
parallelism over flux surfaces to allow both a high degree of radial and Fourier space
resolution.

In the following, this calculation will be applied to both large and small aspect ratio
stellarators.  Calculation of the Alfvén continuum structure is the first step in predicting the
frequency spectrum and stability properties of energetic particle destabilized modes in
stellarators.  Discrete roots with a global radial extent generally exist in the gaps between
adjacent continuum frequencies; these discrete roots can be destabilized by energetic particles
through inverse Landau damping when their velocity matches either the phase velocity of the
stable discrete mode (~ vA) or its coupled sidebands. When such instabilities are near
marginal stability, it is expected that if the mode’s real frequency matches the frequency of



2

nearby continua, damping will result, increasing the threshold of the energetic particle
pressure gradient required to drive these modes unstable.  Studies of such effects in
tokamaks5 have shown good correlations between analytical continuum damping predictions 6

and non-perturbative numerical calculations5 of Alfvén mode stability.  Since stellarators
offer a greater degree of design flexibility than tokamaks, it is expected that the calculation
developed in this paper could ultimately be applied as an optimization target. Due to the fact
that the Alfvén continuum structure is determined by the geometric and |B| couplings, it
would be anticipated that these can be optimized in ways that could enhance continuum
damping effects over at least limited ranges of frequency.

II.  Alfvén Continuum Equations and Solution Technique

The Alfvén continuum equation7 in the incompressible limit (i.e., g = 0, with no sound wave
coupling) can be written as follows:
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where q is the poloidal coordinate, z is the toroidal coordinate, r = the flux surface label, grr

= the contravariant rr metric element and 

† 

i  = the rotational transform.  The eigenfunction xs
can be expanded as:

xs = xs
j
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Â ej where ej = cos(njz - mjq )                                                                     (3)

For the calculation of Alfvén continua in devices with stellarator symmetry, one can consider
the cos and sin components separately in the Fourier expansion of xs (due to the fact that they
decouple).  We have found that at least for cases we have checked, they both lead to the same
set of contunua, so will only consider the only cos expansion of xs in this paper.  Multiplying
equation (1) by gei = g cos(niz - miq)  and doing a flux surface average, denoted by
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The second term in the above equation can then be integrated by parts to obtain the following
matrix eigenvalue equation:
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The above matrix elements are obtained after expanding the following products of magnetic
field components and metric elements in terms of Fourier series:
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The quantities on the left hand side of the above equations are initially calculated for each
flux surface on a mesh in q and z by forming the appropriate products and quotients of
equilibrium quantities.  This data is then transformed to the above Fourier space
representations, keeping the shortest Fourier wavelength at least a factor of 2-3 larger than
the mesh spacing to avoid anti–aliasing errors. The matrix elements then depend on two
convolution integrals [other Fourier product combinations such as those involving
cos(niz–miq)sin(njz–mjq)cos(nkz–mkq) and sin(niz–miq)sin(njz–mjq)sin(nkz–mkq) integrate to
0]:
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Analytic algorithms have been developed (using the Mathematica9 software) to provide these
integrals for arbitrary combinations of the mode numbers mi, ni, mj, nj, mk, nk. These
algorithms have been checked against independent calculations that use numerical
integration.  The advantage of the analytic algorithms is that they are exact and significantly
faster.  The required matrix elements may then be written as:
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Equation (1) has then been reduced to a symmetric matrix eigenvalue problem.  We solve the
above system of equations for all possible eigenvalues and eigenfunctions using the DSYGV
routine from the IBM ESSL library.10  It is expected that a higher performance continuum
calculation (such as might be used within a stellarator optimization) can be obtained by
calculating only a subset of the eigenvalues of the above equations (e.g., only for lower
frequencies).

III.  Application of STELLGAP to High Aspect Ratio Stellarators

We have solved equation (1) for a variety of different stellarator configurations. In the
absence of toroidal symmetry, the toroidal mode number is no longer a good quantum
number and one must include a range of n’s in the representation for the Alfvén
eigenfunction, xs. However, since this is a linear problem, the selection of n’s is limited by
the possible couplings from the dependence of the equilibrium to n = n0, n0 ± Nfp, n0 ± 2Nfp,
etc. where n0 is the principal toroidal mode number of the set; in the following we refer this
to as the n = n0 mode family.  For the examples given below, we typically include 20 poloidal
modes and 10 toroidal modes in the representation of xs.  The equilibrium coefficients are
also represented by 20 poloidal modes and 20 toroidal modes.  For comparison purposes, we
apply our code both to the full 3D stellarator configurations, retaining multiple n’s in the
representation of xs and to the same case with only the n = n0 toroidal mode number present.
The latter limit is effectively a tokamak limit in that only the n = 0 terms in the equilibrium
will contribute to the matrix elements of equation (8).

We first apply the STELLGAP code to the W7-AS device.11  The Alfvén continuum structure
is calculated for discharge 42873; in this case Alfven activity was observed11 for a frequency
band of around 35 – 50 kHz.  Transform and ion density profiles appropriate to this discharge
have been used in the continuum calculation; the dominant ion species is deuterium.  In
Figure 1(a), the Alfvén gap structure is first displayed with only the n = 1 toroidal mode
included.  Color coding is used in Figures 1(a) and 1(b) to indicate which poloidal mode
number is dominant in the eigenfunction for a given frequency and radial location.  As may
be seen, the plot with only n = 1 shows both low frequency toroidicity induced gaps (f = 20 –
50 kHz) as well as higher frequency gaps induced by non-circular shaping. In Fig. 1(b) we
show the Alfvén gap structure including multiple n’s in the representation for xs.  Here n = -
19, -14, -9, -4, 1, 6, 11, 16, and 21 have been included, although the continua shown in Fig.
1(b) only involve n!=!1 and n = 6; the other n’s enter in only at higher frequencies which are
not plotted here.  Next, in Fig. 2 the same continua as plotted in Figure 1(b) are displayed
again, but with color coding used to indicate the dominant toroidal mode number.  Here we
have also indicated the frequency range for which Alfvén activity was observed in the
experiment.  All of the lower frequency gaps in this figure are TAE gaps; i.e., they involve
only single toroidal mode number.  At higher frequencies, helically induced gaps enter in and
we have indicated the occurrence of one such gap at around y/ymax = 0.4 and 570 kHz.
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(a)

(b)

Fig. 1 –  Continuum gap structure for W7-AS case 42873 with color coding for the dominant poloidal
mode number (a) using only n = 1, and (b) using the full stellarator equilibrium and toroidal mode

numbers n = -19, -14, -9, -4, 1, 6, 11, 16, and 21.
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Fig. 2 –  Continuum gap structure for W7-AS case 42873 with color coding for the dominant toroidal
mode number.

(a)

(b)

Fig. 3 –  Continuum gap structure for n = 1 mode family in LHD with color coding for the dominant
poloidal mode number (a) with color coding for the dominant poloidal mode number, and (b) with

color coding for the dominant toroidal mode number.

In Figure 3 the continuum structure is calculated for the standard configuration of the LHD
torsatron device.12  Here a flat ion density profile has been assumed with the ion species taken
as deuterium.  Comparing Figure 3(a), which indicates the dominant poloidal mode numbers
with Figure 3(b), which indicates the dominant toroidal mode numbers, it may be seen that
the lower frequency gaps are again TAE gaps (induced by coupling of different m’s at the
same n) while the higher frequency gaps are HAE gaps (induced by coupling of different m’s
and n’s).

IV.  Application of STELLGAP to Low Aspect Ratio Stellarators

Next, we calculate the continuum gap structure for two recent low aspect ratio stellarator
designs.  Compact stellarators can have substantially different Alfvén continuum structures
than high aspect ratio stellarators for two reasons.  First, the low aspect ratio results in much
stronger couplings due to the significantly broader Fourier spectra of the equilibrium
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quantities than is the case in the high aspect ratio configurations.  Second, low aspect ratio
devices generally are designed with fewer field periods than high aspect ratio devices.  Since
stellarator mode families are separated by Nfp, the number of field periods (i.e., n = n0 n0 ±
Nfp, n0 ± 2Nfp, etc.) low field period devices tend to have a higher density of continua for a
fixed frequency range than higher aspect ratio devices.

(a)

(b)

Fig. 4 –  Continuum gap structure for the QPS device (A = 2.7, Nfp = 2) using the full stellarator
equilibrium and toroidal mode numbers n = -11, …,1,…,13. Color coding is used to label  (a)  the

dominant poloidal mode numbers, and (b) the dominant toroidal mode numbers.

We first calculate continua for the QPS (Quasi Poloidal Stellarator) device. 13  This
configuration has an aspect ratio of A = 2.7 and 2 field periods.  The QPS has been optimized
so that its |B| spectrum in Boozer coordinates is dominated by components with m!=!0,!n!≠!0.
In Fig. 4 continua for the n = 1 mode family is plotted with the color coding used first to
indicate the dominant poloidal mode number  of the eigenfunction [Fig. 4(a)] and then the
dominant toroidal mode number  [Fig. 4(b)].  Again, we have used a flat ion density profile
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with the ion species taken as deuterium.  Except for a few of the lower continuum lines, most
of the continuum gaps involve HAE couplings (i.e., modes with different m and n numbers
are coupled).  The presence of helically coupled gaps is evidenced by continua in Figure 4(b)
that change color as one follows them outward in flux.  Such gaps occur at lower frequencies
and closer to the magnetic axis than for either of the large aspect ratio W7-AS or LHD
devices.

Finally, in Figure 5 the continuum gap structure is calculated for the NCSX (National
Compact Stellarator Experiment) device.14  This configuration has an aspect ratio of A = 4.4
and 3 field periods.  NCSX has been optimized so that its |B| spectrum in Boozer coordinates
is dominated by components with m!≠ 0,!n!=!0 (i.e., the symmetry of a tokamak).

(a)

(b)
Fig. 5 –  Continuum gap structure for the NCSX device (A = 4.4, Nfp = 3) using the full stellarator
equilibrium and toroidal mode numbers n = -11, …,1,…,13. Color coding is used to label  (a)  the

dominant poloidal mode numbers, and (b) the dominant toroidal mode numbers.
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A flat ion density profile has been used with the ion species taken as deuterium In Fig. 5 the
continua for the n = 1 mode family are plotted with the color coding used first to indicate the
dominant poloidal mode number of the eigenfunction [Fig. 5(a)] and then the dominant
toroidal mode number  [Fig. 5(b)]. Again, HAE-like couplings (different m and n) are clearly
present except for some of the lower frequency continua.  The density of continua is also high
in comparison to the higher field period W7-AS and LHD devices, but not quite as high as
the density of QPS continua in Figures 4(a) and (b).

IV. Conclusions

A new method has been developed for calculating the 3D shear Alfvén continuum for
stellarators of relatively arbitrary aspect ratio and shape.  This calculation is carried out in
Boozer coordinates8 using equilibria generated by the VMEC15 code.  Calculation of the
Alfvén continuum is the first step in addressing the stability of such modes in stellarators in
the presence of fast ion components.  In the future, we expect to extend the above methods to
calculate the mode structure of the discrete roots lying in the continuum gaps and then
examine their stability.

We find that the Alfvén continua in low aspect ratio, low field period devices are more
complex than in higher aspect ratio configurations.  Both TAE and HAE couplings are
present and the density of continua over a given frequency range is higher due to the strong
equilibrium couplings and the closer spacing (Dn!=!Nfp) between adjacently coupled toroidal
modes in low field period devices.  This characteristic may lead to stronger continuum
damping of these modes in compact stellarators.
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