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• QPS is a very low aspect ratio (A = 2.7)
Quasi-poloidal stellarator that will test:
– Equilibrium robustness at low A
– Neoclassical and anomalous transport
– Stability limits up to <b> = 2.5%
– Bootstrap current effects
– Reduced poloidal viscosity effects on shear

flow transport reduction
–  and Configurational flexibility

• Design parameters: <R0> = 0.9 m, <a> = 0.33
m, <B> = 1 T ± 0.2T for 1sec, Ip £ 150 kA,
PECH = 0.6-1.2 Mw, PICH = 1-3 Mw
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where :   t 
p = viscous stress tensor,  uq ,uz =  contravariant poloidal/toroidal flow velocities

     (the heat flux terms in the above equation have not been indicated for simplicity)
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We choose the following normalizations (following Sugama, et al.) for the viscosities :
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where  the normalized transport coefficients below are in the form generated by DKES:
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QPS viscosities
[based on S. Sugama, S. Nishimura, Phys. Plasmas 9 4637 (2002)]
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The monoenergetic viscosities Mpp, Mpt,
Mtt are then normalized as:

Similarly, the parallel viscosity and radial
transport flows are given by:
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• Recently Sugama, et al.1 have adapted the
moment method of Hirshman and Sigmar2

to stellarator transport in a way that
connects to transport coefficients provided
by the DKES code
– Uses fluid momentum balance equations and

friction-flow relations that take into account
momentum conservation

– Viscosity coefficients are obtained from the
drift kinetic equation

• Uses l = 2 Legendre components of f (for which the test
particle component of the collision term dominates over the
field component)

• Does not directly calculate G and Q from f because the field
component of the collision operator is more significant for
these moments

• Provides:
– A way to assess viscosities in low aspect ratio quasi-

symmetric devices
– Momentum conserving corrections to DKES-based

bootstrap currents, particle and energy flows.
1H. Sugama, S. Nishimura, Phys. Plasmas 9, 4637 (2002).
2S. P. Hirshman, D. J. Sigmar, Nuclear Fusion 21, 1079 (1981).
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Stellarator Alfvén Couplings

† 

Alfvén   coupling   condition :   k||,m,n = -k||,(m +D ),(n +aN fp )

      D,  a = integers

   n - mi = - n + aN fp - mi - Di ( )

   i =
2n + aN fp

2m + D
       w =

vA

R
Dn -amN fp
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• GAE (global Alfvén mode):          a = 0,  D = 0
• TAE (toroidal Alfvén mode):       a = 0,  D = ±1
• EAE (elliptical Alfvén mode):      a = 0,  D = ±2
• NAE (noncircular Alfvén mode): a = 0,  |D| > 2
• MAE (mirror Alfvén mode):          a = 1,  D = 0
• HAE (helical Alfvén mode):          a = 1,  D ≠ 0
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Er dependence of QPS viscosity

• QPS configurations provide unique features
for viscous flow damping physics
– Poloidal viscosity << toroidal viscosity
– Viscosity anisotropy orthogonal to that of

tokamaks
– Less damping toward poloidal flows and

control of radial viscous profiles through
coil optimizations could allow better
access to enhanced confinement
regimes
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