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Goals of quasi-poloidally (QP) symmetric

stellarators
D TTLLLHSHH

 Closer B and VB alignment than with other forms of symmetry

— For exact QP symmetry, P is constant of the motion rather than P,
— reduces radial drift; banana thickness ~ py,.iqo rather than p,g s

* Minimum flow damping in the direction of E, x B
— Flow shear potentially self-sustained
— Via internally generated E, driven by plasma ambipolar diffusion

« Second stability access and improved omnigeneity at high
(Next talk by Andrew Ware)
 Trapped particle localization in low curvature regions

— potential improvements to DTEM (dissipative trapped electron mode)
stability [e.g. see A. Kendl, H. Wobig, Plasma Physics 6, 4714 (1999)]



Properties of quasi-poloidally symmetric configurations
_—

— Low aspect ratio: A= 2.7

« Have obtained configurations
with aspect ratios in the range: A=2.1-3.0

— Rotational transform below 0.5;: +~0.2-0.3

« Maijority of the transform is from the caoils,
bootstrap current causes iota to increase

« Max. Toroidal Currrent = 40 - 50 kA for <f>
in the 1.5 to 2% range

« Stable to neoclassical tearing modes
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Our current low aspect ratio stellarator
optimization capabilities have been built on a

series of past accomplishments:
——

 Identification of appropriate coordinate system where symmetries in |B|
improve confinement
— A. H. Boozer, Phys. Fluids 24, 1999 (1981).
« Rapidly calculated 3D equilibria
— S. P. Hirshman, J. C. Whitson, Phys. Fluids 26, 3553 (1983).

« Demonstration that numerical optimization of 3D systems can improve
equilibrium/transport/stability
— J. Nuhrenberg, A. Zille, Phys. Lett. A 114, 129 (19806)
« Methods of numerical coil design to produce such 3D equilibria
— P. Merkel, Nuclear Fusion 27, 867 (1987)

« Increasing availability of massively parallel (> 1 teraflop) computers and
efficient algorithms to utilize them.



Stellarator optimization loop determines outer flux surface shape.

Stellarator optimization

Initial confiquration

Final optimized
confiquration

I
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Plasma boundary is characterized by 30-40 Fourier harmonics
1see poster by H. Mynick, et al. on differential evolution



Reduced (rapidly evaluated) measures of transport
have been used to optimize compact stellarator
configurations:

TARGET IMPROVES: EXAMPLE
Bounce-averaged Collisionless J=J(y) \
omnigeneity trapped/transitional Brin = Brin(W)
particle confinement B.ax = B (W)
Nearby quasi- Collisionless Minimize B, ifm =0
symmetries confinement of all (QP) > Currently
orbit topologies Orif n 0 (QA) existing
Collisional transport Neoclassical L, coefficient from
coefficients transport DKES at v* ~ 1
Effective ripple & 1/v neoclassical o2 from NEO' code
transport regime J
Large orbit effects Energetic particle | Reduced Monte Carlo } =
: uture
confinement model for alphas

"Nemov, V. V., Kernbichler, W., et al., Phys. Plasmas 6, 4622 (1999) + talk in next session



These transport measures are in addition to a set of
stabiltity, configuration and engineering targets:

Targets
Example
(Physics/Engineering)
Transport Measures See previous slide
Current profile self-consistent Igs, 1(y) goes to 0 at edge
Limit maximum plasma current €.g., Imax < 60 kAmps at <> ~ 2%
lota profile i(y) = 0.2 (y=0) 0.3 (y=1)
Magnetic Well, Mercier V" <0, Du > 0 over cross section
Ballooning stability <p>~2-3%
Aspect ratio Ro/a=2.5103.5
NESCOIL targets/feasible coil design Complexity, Berr, Max. current density
Adequate shielding of neutrals Minimum "waist" thickness
Fit within vacuum bell jar Rmax < 1.5 meter
Limit outer surface curvature avoid strong elongation/cusps




We have developed an MPI-based parallel

version of the Levenberg-Marquardt optimizer
——

« Uses a global, coarse-grained parallelization over the
30 - 60 independent variables (i.e., shape and profile
coefficients)

— done over the periodic Jacobian evaluations and in the
estimation of the Levenberg parameter

— this simplifies the development of modules used to calculate
the target functions (they are left as serial tasks)
* A bank-queuing algorithim is used to parcel out the
computational tasks to the processors

— this accommodates for the fact that they are generally of
unequal computational length (e.g., VMEC may converge
more rapidly for some shapes than others)



| Calculate initial x2(a) |

~_—

Pick initial LM parameter
solve linear equations for da

~_—

Evaluate x?(a + da)
for Jacobian

{

A/‘/ queue M
Parallel . o o o b independent
step ®@® @ variables out
/ to N processors
Check for
Calculate new [ ETATEENGE 1
Levenberg parameter
o 4 Use as many
P GERPEIEER) - -+ GERD pomsson
N as available

Select best LM parameter and
update trial solution a,,, = a,, + 6a




Parallelization has made our stellarator
optimization significantly faster.

100

* Allows more physics
targets to be included.

« Parallel speedup saturates

— as processors = (0.5to 1)
X(# of independent variables)

» # of parallel tasks = # of
Independent variables + 1

« Communication overhead

35 variables

62 variables

Time per Levenberg iteration (seconds)
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Reduction in target functions with iterations

Individual targets
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Our optimizations have resulted in increased poloidal
symmetry from the initial QPS-IAEA-2000 device

(shown here as the ratio of the magnetic energy in the non-poloidally symmetric
modes to that in the poloidally symmetric modes) B pte B2 1D
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DKES L,, transport coefficients for E, = 0.0 show similar

trends at low collisionality as the NEO? ¢_4*? coefficient
'Nemov, V. V., Kernbichler, W., et al., Phys. Plasmas 6, 4622 (1999).
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QPS configurations have second stability regimes

- Stellarator iota profiles: some bootstrap suppression required
- Tokamak iota profiles: bootstrap current can be self-consistent
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Coils to produce the physics optimized shape
are “reverse—engineered”:

Coil Design Process

Winding
Surface

n
Plasma Surface J
Normal ( B,,,, *n=0) Culls
¢ Filaments on
winding surface
Modular
Coils
J Plasma \ B ‘n Inductance
From — f From Plasma Matrix
VMEC (BNORM) Biot-Savart

Vary “L” until Le J.;.= Ben(Coils) = -Ben(Plasma)




Coil design uses NESCOIL targets in physics

oEtimization = COILOPT to sxnthesize discrete coils

STELLOPT Physics optimization COILOPT varies coils on winding
-~ uses NESCOIL current sheet ~ surface to minimize B,

—minimize coil complexity, current — incorporates modular, saddle,
and B , options

— variable winding surface shape
— engineering penalty targets: coil-
coil and coil-plasma separation,

coil current density and coil
curvature

Merged STELLOPT/COILOPT

— Direct variation of coil geometry
to minimize physics targets
— Can find neighboring equilibria
« With similar physics, but coils
that are easier to build

* Smoother flux surfaces than
those reconstructed from original
coils

7




QPS Coil Design Choices
]
* For QPS we have found the following choices to work well:

— 8 coils per field period (center two are split coils)
— no coils on the symmetry planes
— uniform modular coil currents

— a pair of vertical field coils with fixed position and variable
current
— inclusion of a small background toroidal field (TF) « 1/R

« works best when TF field is in opposite direction to that produced
by the modular coils

» this increases modular coil currents, but reduces their toroidal
variation -> improves coil-coil separation

* This has resulted in coil sets with <8B,,,,.,> ~ 0.8% that
— provide good flux surface reconstruction

— preserve physics properties of the original fixed boundary
optimization



Views of the latest QPS configuration with
modular filamentary coils

|IB| in Tesla



These coils preserve the flux surface shape between
fixed and free boundary equilibrium solutions:

QPS, 0844 fixed boundary QPSgg44 free boundary




Flexibility is provi
provided in QPS
Bv chanai by 3 main co
y changing these coil currents dli?f coilsets.
configurations are pOSSib,Ie erent

Vertical field coils (I\f)

\4/ Toroidal
field coils (1)

Modular
field coils

B| for inward shift
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Transport properties can be influenced either
by varying the vertical or toroidal fields.
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Ballooning stability can also be influenced
through vertical or toroidal field variation.

Vertical field variation Toroidal field variation
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Conclusions
LS

* A systematic plasma optimization and modular coil synthesis
procedure have been developed and used to design compact
stellarators with Quasi-Poloidal symmetry (QPS)

— both plasma and coil optimization codes take good advantage of
parallel computing platforms and allow new targets to be easily
incorporated

« This has led to the QPS device
— A=27,i0ta=0.210 0.3
— neoclassical transport subdominant to ISS95 (by a factor of 2 - 8)
— first stability limits around <f> = 2%, second stability up to <p> = 15%

— Modular coils have been developed that have good engineering
feasibility, flux surface reconstruction, and preserve physics properties

 VF and TF coils provide flexibility to test transport/stability



Future Optimization Projects

« Although the QPS design is gradually becoming fixed, there will be further
needs for optimization:

— Adjustment of coil currents: modular(4), vertical(6), toroidal (12)
— Location of magnetic loops and interpretation
— Future devices
« Future target development
— Monte Carlo fast ion confinement - differential evolution algorithm’
— Poloidal viscosity minimization

— Alfven mode suppression --> would like AE continua to be vertical rather than
horizontal --> maximize |dw,c/dy|

« Computational improvements

— Want to prepare for “fatter node” SMP (Symmetric Multi Processor) computers
— Be able to use O(100) -> O(1000) processors
— Requires two-level parallelism

* OpenMP within individual functions (e.g. parallelize over flux surface loops)
» MPI inter-node communication, one function evaluation per node

'see poster by H. Mynick, et al. on differential evolution



