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Goals of quasi-poloidally (QP) symmetric stellarators

• QPS is a very low aspect ratio (A = 2.7)
Quasi-poloidal (QP) stellarator that will test:
Equilibrium robustness at low A
Neoclassical and anomalous transport
Stability limits up to <b> = 2.2%
Bootstrap current effects
Reduced poloidal viscosity effects on
shear flow transport reduction
 Configurational flexibility

• Design parameters: <R0> = 0.9 m,
<a> = 0.33 m, <B> = 1 T ± 0.2T for 1sec,
Ip £ 150 kA, PECH = 0.6-1.2 Mw,
PICH = 1–3 Mw

• Motivations behind QP symmetry
—B and B alignment - minimizes vdrift

Near Pq  constancy ! orbit width µ rtor rather
than rpol

Minimum flow damping in ErxB direction
Trapped particles in low curvature regions + max.

J drift reversal ! stabilizing for DTEM/drift
instabilities

Magnetic Field (Tesla)

0.7    0.8    0.9     1.0    1.2    1.3     1.4    1.5  
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Outline of this talk

• Optimization
– QPS design requirements

• Equilibrium resilience, good flux surfaces for 0 < b < 2%
• Transport significantly reduced from anomalous (ISS95)
• Very low aspect ratio
• Stable to at least 2%
• Coils that are feasible to engineer and build

• Equilibrium
– Flux surface robustness, b variation, flexibility

• Transport
– Confinement quality, flexibility

• Stability
– Ballooning, kink limits, flexibility
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TARGET IMPROVES: EXAMPLE
Bounce-averaged

omnigeneity
Collisionless

trapped/transitional
particle confinement

J = J(y)
Bmin = Bmin(y)
Bmax = Bmax(y)

Nearby quasi-
symmetries

Collisionless
confinement of all
orbit topologies

Minimize Bmn if
m ≠ 0 (QP)

Collisional transport
coefficients

Collisional
neoclassical transport

L11 coefficient from
DKES at n* ~ 1

Effective ripple eeff 1/n neoclassical
transport regime

eeff
3/2 from NEO1 code

The QPS transport design requirements have been
achieved through use of the following optimization targets:

1Nemov, V. V., Kernbichler, W., et al., Phys. Plasmas 6, 4622 (1999)
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The transport targets are augmented by the following stability,
configuration and engineering targets to accomplish the

remaining QPS design requirements:

Targets

(Physics/Engineering)
Example

Transport Measures Effective ripple, D, QP-symmetry

Current profile self-consistent IBS, I(y) goes to 0 at edge

Limit maximum plasma current e.g., Imax < 60 kAmps at <b> ~ 2%

Iota profile i(y) = 0.2 (y=0) 0.3 (y=1)

Magnetic Well, Mercier V” < 0, DM > 0 over cross section

Ballooning stability <b> ~ 2-3%

Aspect ratio R0/a ≈ 2.5 to 3.5

Feasible coil design Max. current density, non-intersecting
coils/plasma

Adequate shielding of neutrals Minimum "waist" thickness

Limit outer surface curvature avoid strong elongation/cusps
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Initial coil
geometry

Final
Optimized
coils and

configuration

Adjust coil
geometry

and currents
+ plasma
profiles

VMEC
Free

boundary
equilibrium

Calculate
c2

coil +
physics

Levenberg-Marquardt
or differential evolution

used to minimize c2

Coil geometry is typically characterized by several hundred parameters

Merged coil/plasma stellarator optimization
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Equilibrium quality is a primary QPS requirement
underlying the other physics issues

• QPS Issues:
– Robustness of equilibria with varying plasma b

• Island size
• Flexibility

– Compatibility with bootstrap/Ohmic/RF driven
currents

• AVAC
– Vacuum field lines, islands, stochastic regions

• VMEC
– Rapid calculation of finite b 3D equilibria
– Closed/nested flux surfaces assumed

• PIES
– Finite b 3D equilibria, islands, stochastic regions

allowed
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Evolution of QPS equilibrium models

Fixed
boundary

Free boundary
single filament

coils

Free boundary
multi-filament

coils
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Single
filament
vacuum

Multiple
filament
vacuum

Multiple
filament

<b> = 2%
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Vacuum i profiles for different coil models show

good agreement; finite plasma pressure
introduces strong central shear
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PIES calculations show that i = 1/3 crossings at
<b> = 2% introduce only small 2/6 island regions

VMEC
surfaces

PIES
surfaces

D. Monticello
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Outline

• Optimization
• Equilibrium
• Transport

– QPS Design requirements
• Dominant QP-symmetry in |B|
• Neoclassical transport should be << anomalous
• The design should have the flexibility to vary neoclassical

transport over a significant range
• Ability to operate with a range of bootstrap current levels

• Stability
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Transport requirements of the QPS design have
been checked with a variety of models:

• 1-D model
– Neoclassical transport coefficients determined by:

• Low n NEO effective ripple; Shaing-Houlberg electric field dependence

– Anomalous transport is modeled using ISS95

• Local transport: low collisionality
– Effective ripple: NEO; Bootstrap current: BOOTSJ

• Local transport: low to moderate collisionality - DKES
– Transport matrix for particle, energy flows
– Currents driven by gradients (bootstrap) and electric fields (neoclassical

resistivity)

• Global transport: Monte Carlo - DELTA5D
– Global particle and energy lifetimes
– Bootstrap current, local transport (df)
– Energetic particle confinement: alphas, ICRF, beams

• QPS participates in the IPP International Collaboration on
neoclassical transport in stellarators
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(y/yedge)1/2=0.1 (y/yedge)1/2=0.5

Magnetic field contours indicate the poloidal
symmetry of the QPS reference design

Degree of symmetry varies with radial location
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The magnetic field energy mode spectrum also
demonstrates the poloidally symmetric nature of

the QPS design and how it can be varied
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The QPS effective ripple for low collisionality
transport compares well with other larger aspect

ratio devices and can be varied over a wide
range
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The DKES (Drift Kinetic Equation Solver) provides the
neoclassical transport coefficient matrix (multi-helicity B)
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ECH regime: n = 1.8x1019m-3,
Te0=1.4 keV, Ti0=0.15 keV
- ECH electrons:

7x10-5 < n/v < 10-3

8x10-5 < E/v < 2x10-4

- ECH ions:
6x10-3 < n/v < 7x10-2

10-2 < E/v < 3x10-2

ICH regime: n = 8.3x1019m-3,
Te0=0.5 keV, Ti0=0.5 keV

- ICH electrons:
3x10-3 < n/v < 4x10-2

5x10-5 < E/v < 2x10-4

- ICH ions:
2x10-3 < n/v < 3x10-2

2x10-3 < E/v < 6x10-3

Local QPS DKES transport coefficients show that both
plateau and 1/n regimes are accessed.

n

n1/2
n-1 n

D, c

Galeev-Sagdeev
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The low collisionality DKES transport coefficient of the current
reference QPS configuration (shown here for Er = 0 and at the
half flux surface) is significantly reduced from earlier designs.
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Monte Carlo ion energy confinement (at ef/kT = 0)

also shows improvements over earlier designs

ECH: n(0) = 1.8 x 1019 cm-3

Tion(0) = 0.15 keV, Tion(0) = 1.4 keV 
ICH: n(0) = 8.3 x 1019 cm-3

Tion(0) = 0.5 keV, Tion(0) = 0.5 keV 
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QPS Transport Flexibility
Studies

• Modular coil currents
can vary ±25%

• Vertical field currents
can vary ±100 kA

• Toroidal field currents
can vary ±70 kA

Mod 4

Mod 3
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Mod 1

(split coil)

2 vertical
field coils

4 independently powered modular coils
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DKES L11 coefficient demonstrates the sensitivity
of transport to coil current optimization

(shown here at y/yedge=0.5)
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DKES monoenergetic L11 transport
coefficient
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DKES monoenergetic L11 transport
coefficient
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DKES monoenergetic L11 transport
coefficient
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Cross-over of optimized transport coefficients at plateau
regime is reflected in Monte Carlo ion tE’s for different

coil current options
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The energy integrated DKES L31 coefficient allows
assessment of the dependence of the QPS bootstrap

current on collisionality and ambipolar electric field
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Monte Carlo df techniques offer an alternate
way to calculate bootstrap current profiles
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QPS transport rates depend sensitively on the
ambipolar electric field.  DKES-based fluxes have

been evaluated for ECH and ICH regimes:
ECH: n(0) = 1.8 x 1019 cm-3

Tion(0) = 0.15 keV, Telec(0) = 1.4 keV 
ICH: n(0) = 8.3 x 1019 cm-3

Tion(0) = 0.5 keV, Telec(0) = 0.5 keV 
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In addition, global Monte Carlo simulations have
been applied to the ICRH regime, indicating

similar ambipolar roots:

ICH
n(0) = 8.3 x 1019 cm-3

Tion(0) = 0.5 keV
Tion(0) = 0.5 keV 
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Outline

• Optimization
• Equilibrium
• Transport
• Stability

– QPS Design requirements
• Ballooning stability up to <b> = 2%
• Sufficient design flexibility to test stability limits
• Maintenance of kink and vertical stability with bootstrap

current to <b> = 2%
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Stability requirements of the QPS design have
been checked with using the following models:

• Mercier
– Evaluated within VMEC equilibrium code
– Magnetic well stability, except at local resonances

• Ballooning
– COBRA (high-n rapid ballooning analysis)
– Sets the stability b-limits for QPS at b ~ 2.1%

• Kink/vertical
– TERPSICHORE (low-n variational principle)
– Small amount of plasma current results in good kink and

vertical stability (tested for older configuration, needs to be updated)

• Finite toroidal mode number and resistive stability
– M3D (topic for the future)
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Ballooning Stability:  A free boundary b-scan
shows that the QPS reference design is

stable & bootstrap consistent up to <b> ≤ 2.1%
Ballooning growth rate calculated using the COBRA code with field-

aligned equilibrium and predicted bootstrap currents
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Kink & Vertical Stability: Older QPS  configuration
kink/vertical stable for b < 5%

• TERPSICHORE Code
used to evaluate
n=0 (vertical) and
n=1 (kink) stability

• n=0 and n=1
eigenvalues for a
reference QPS
plasma at various b
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QPS MHD Stability can be controlled via
External Current Variation

• QPS has a flexible coil system
– Can vary the current separately in the

• toroidal field coils (25 kA)

• elliptical vertical field coils (114 kA)

• outer vertical field coils (41 kA)

• split modular coils (179 kA)

• modular coils (360 kA)

• Ballooning Stability
– Tested for a simple pressure profile:

p=p0(1-S)2 at <b> = 1.83%

A. Ware
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External Current Control:
Impact of elliptical and outer VF

coils current on stability
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External Current Control: Toroidal field coil
current variations can make ballooning modes

weakly unstable

• Reference case:
   ITF = -25 kA

• Plasma is stable at b
= 1.8% for ITF  =  -25
kA and -20 kA

• Plasma is unstable at
b = 1.8% for ITF = -15
kA to +15 kA
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QPS MHD stability can also be
influenced via plasma current control

• QPS will have the capability for
Ohmic current drive

• Current profile variations have an
impact on QPS stability

• Current profile control is thus a useful
tool for testing stability predictions

A. Ware
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Current Profile Control: Impact of different
profiles on ballooning stability

Three test profiles used:
• a predicted bootstrap

current profile
• an Ohmic current

profile
• a hybrid current profile
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Current Profile Control: Impact of different
profiles on ballooning stability

Volume averaged b’s at
which different flux
surfaces go ballooning
unstable: dependence
on current profile:
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Current Profile Control: Impact of different
profiles on ballooning stability

Bootstrap Profile Ohmic Profile

Color contours show ballooning growth rates
vs. flux surface and volume averaged b
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Plasma Current Control: Impact of plasma
current on ballooning stability

Field-aligned current & ballooning growth rates
(self-consistent bootstrap current was 45 kA, <b> = 1.8%)
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Conclusions
• QPS reference configuration meets the physics goals

– Equilibrium
• Good flux surface reconstruction from coils
• VMEC/PIES benchmarked for b running from 0->2%
• Islands remain small

– Neoclassical transport significantly reduced below
anomalous scalings

– ideal MHD stability at b £ 2%

• The QPS design allows significant flexibility for testing
equilibrium/transport/stability physics
– 4 independently powered modular coils + vertical and

toroidal coils
– Can modify transport

• low collisionality (electron) transport by up to a factor of 50
• Differential changes between ion and electron transport rates

– Destabilization of ballooning modes for b £ 1.8%
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Conclusions

• VMEC/PIES equilibria show good surfaces (only
small islands) up to <b> = 2%

• QPS can impact ballooning stability through control
of current in external coils
– largest impact is from the TF and modular coils

• QPS can also impact ballooning stability through
control of the current profile
– with an Ohmic current profile QPS is more unstable to

balloning modes than with a bootstrap current profile
– increased plasma current can  induce a weak ballooning

instability
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Future Work (CDR, post-CDR)

• Transport
– Better understanding of flexibility issues
– Further incorporation of DKES coefficients (energy

integrated)
• 1D and point models
• Bootstrap current prediction
• Ambipolar electric field profile prediction

– Evaluation/extension of Sugama/Nishimura
calculation (Phys. Plasmas, Nov., 2002) for QPS
devices

• Viscosity coefficients/flow dynamics
• Multi-species momentum conservation corrections

– Advanced Monte Carlo models
• Current code limited by number of particles (noise),

simulation time interval, disparate electron/ion timescale
• New approaches (address self-consistent profiles, Er, Eq)

– Hybrid models (DKES electrons, guiding center ions)
– Bounce averaged Monte Carlo
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Future Work (CDR, post-CDR)

• Stability
– Better understanding of flexibility issues

– More complete kink and vertical mode stability

– Finite toroidal mode number calculations

– Alfvénic modes

• Explore possibilties for excitation at low B/density
with probes (as done on CHS, APS meeting, 2002)

• Optimization
– Continued analysis of opportunities for flexibility based

on coil current variations


