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Outline of Talk

• Two low aspect ratio stellarator designs are being pursued
in the U.S.
– QPS (ORNL) - symmetry in the poloidal direction (R0/<a> = 2.7)
– NCSX (PPPL) - symmetry in the toroidal direction (R0/<a> = 4.4)
– Compactness fi lower development cost for fusion, better reactor

economics

• Energetic particle issues include:
– Confinement

• Beam heating and slowing down
• Alpha confinement in reactor extrapolations

– Impact on power balance
– Wall heat loads
– Ash removal

• Impact of energetic particle losses on thermal confinement via
ambipolar electric field

• Runaway, elevated ECH tail generation

– Alfvén and other collective instabilities/external MHD excitation
• GAE/TAE/HAE/MAE modes
• Tearing modes, fishbones
• Kinetic ballooning
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Compact stellarators have been designed with
complementary/orthogonal forms of quasi-symmetry:

QPS (quasi-poloidal symmetry) NCSX (quasi-toroidal symmetry)
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QPS offers substantial flexibility through 9

independently variable coil currents

• Flexibility is a significant advantage
offered by stellarator experiments

• Flexibility will aid scientific
understanding in:
– Flux surface fragility/island avoidance
– Neoclassical vs. anomalous transport
– Transport barrier formation
– Plasma flow dynamics
– MHD stability

• QPS offers flexibility through:
– 5 individually powered modular coil

groups
– 3 vertical field coil
– toroidal field coil set
– Ohmic solenoid

• Variable ratios of Ohmic/bootstrap
current
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Stellarators and tokamaks share generic burning
plasma physics issues:

• Ignition access and maintenance
– Must go through the “Cordey pass”

• Density/temperature path that minimizes heating power -
determined by

– confinement scaling
– alpha loss rates

– Profile sustainment
• Pressure profile/bootstrap current/rotational transform

coupling
• Plasma flow/ambipolar electric field - maintenance of

enhanced confinement conditions

– Burn Control
• Stability depends on temperature scaling of confinement
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Generic Burning Plasma Physics Issues (cont’d.)

• Alpha particle orbit confinement
– Losses driven by symmetry breaking

• Tokamaks - toroidal field ripple
• Stellarators - deviations from B = B(y,h) in Boozer coordinates

where h = toroidal, helical or poloidal angles

– Impact on power balance
– First wall protection - loss regions, power loading
– Energy recovery
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Access Path to Ignition: Operating Space for a
Quasi-toroidal Stellarator Reactor

(taken from J. Lyon, IAEA 2000 (Sorrento meeting)

R = 7.1 m, B0 = 5.4 T

•  Operating Point
<n> = 1.7 x 102 0 m– 3, <T> = 9.3 keV
<b> = 4.04%, for H-95 = 2.9
nDT/ne = 0.82, Zeff = 1.48

•  Saddle Point
<n> = 0.9 x 102 0 m– 3, <T> = 5.4 keV
<b> = 1.4 %, and Paux = 20 MW

Assumes ARIES-AT n(r/a) and
T(r/a), a losses = 0.1, tHe/tE = 6
Bmax = 12 T

• Ignition point (0) is determined
  by balance between

• alpha heating power
    (1/5 of fusion power)
• plasma energy losses
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With higher alpha-particle losses (less heating power)
confinement must be better to maintain a steady-

state power balance [from J. F. Lyon, IAEA 2000 (Sorrento)]
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Compact stellarators can have a variety of
orbit topologies

passing

locally trapped

toroidally
trapped
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Histograms of escaping fast NBI ions in compact
stellarators elucidate the loss mechanisms.

• There are prompt losses for counter-moving particles
• As fast ions slow-down, they pitch angle scatter
• Trapped/transitional orbits lead to a large fraction of
   the intermediate energy losses

Pitch angle distribution Energy distribution
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Energetic passing particles in compact stellarators form drift

islands over limited regions of phase space.  Control of these

islands could offer an attractive mechanism for alpha ash
removal and/or for burn control.
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Compact stellarator designs are achieving tolerable level of

alpha loss.  Further configuration optimization (L.–P.!Ku!–!ARIES

CS reactor study) is expected to lead to even lower losses.

Alpha loss rates improve in a second
stable QPS device as b is increased.

The well formed in |B| aligns flux
surfaces and |B|.

Alpha loss rates improve in a series of
NCSX devices as the |B| spectrum is

made more symmetric.
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Fast ion losses in toroidal devices are dominated by
trapping in local wells:

Fast Ion losses In Compact Stellarators

NCSXQPS
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Monte Carlo analysis of runaway electrons provides information

about confinement and loss locations

ECH regime: n(0) = 2x1019 m-3,
Te(0) = 1.4 keV, Ti(0) = 0.15 keV

10

100

1000

104

105

106

107

0.0001 0.001 0.01 0.1

K
in

et
ic

 E
ne

rg
y 

(e
V

)

time(sec)

V
loop

 = 4 V

2 V

1 V

200 keV
500 keV
1 MeV

Free fall acceleration
energy gain

0

0.2

0.4

0.6

0.8

1

1.2

10-7 10-6 10-5 0.0001 0.001 0.01

Fr
ac

tio
n 

of
 c

on
fin

ed
 ru

na
wa

ys

simulation time(sec)

1 Mev
500
keV

200
keV

500
keV

200
keV

1
MeV

1 Mev

Trapped
runaways

Passing
runaways

500
keV

Free-fall times

Trapped loss locationsPassing loss locations



5 Oct 2003 IAEA Technical Meeting

Controlled runaway electron production can be
a useful tool for plasma microturbulence studies

• Work by Kwon, Diamond, et al., Nuclear Fusion (1988)
used the decay rate of ~1 MeV runaway electrons in
ASDEX to infer:
– Thermal plasma microturbulence eddy size and electromagnetic

fluctuation level

• Compact stellarators offer a more controlled environment
than tokamaks for such studies
– Closed flux surfaces present from t = 0

– Sawteeth, tearing modes absent

– Need to tailor Ohmic drive to avoid damaging runaway levels
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Alpha-destabilized Alfvén modes are an important issue for

both stellarator and tokamak reactors

• Motivations for studying Alfvén instabilities in stellarators
– Readily seen experimentally (W7-AS, CHS, LHD)

• A. Weller, D. A. Spong, et al., Phys. Rev. Lett. 72, 1220 (1994); K. Toi, et al., Nucl. Fusion 40, 149 (2000);
A. Weller, et al., Phys. of Plasmas 8 931(2001)

– Can lead to enhanced loss of fast ions
– Potentially useful as a diagnostic (MHD spectroscopy)
– Possible catalyst for direct channeling of fast ion energy to thermal ions

• Low aspect ratio configurations provide a new environment for Alfvén
mode studies
– Stronger equilibrium mode couplings
– Lower number of field periods lead to

• More closely coupled toroidal modes (n0, n0±Nfp, etc.)
• This results in MAE (Mirror Alfvén), HAE (Helical Alfvén) couplings at lower

frequencies
• Wider spread of bounce and precessional frequencies than in a tokamak
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Comparisons of Alfvén Continuum structure
between tokamaks and stellarators

• Equilibrium only couples poloidal mode
numbers

– m and m ± 1, m ± 2, etc.

• Toroidal mode numbers can be
examined independently (n is a good
quantum number)

– n = n0, m = 0, 1, 2, ...

• Higher frequency gaps generally closed;
lower frequency gaps open

• Low continuum density
• Profile consistency limits variation of q-

profile unless special techniques are
used.

Tokamak
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Comparisons of Alfvén Continuum structure
between tokamaks and stellarators

• Equilibrium only couples poloidal mode
numbers

– m and m ± 1, m ± 2, etc.

• Toroidal mode numbers can be
examined independently (n is a good
quantum number)

– n = n0, m = 0, 1, 2, ...

• Higher frequency gaps generally closed;
lower frequency gaps open

• Low continuum density
• Profile consistency limits variation of q-

profile unless special techniques are
used.

• Equilibrium introduces poloidal, toroidal
(bumpy), and helical couplings

• Both grrand |B|2 couplings can induce gaps
• Families of modes must be examined

– n = ± n0, ± n0 ± Nfp, ± n0 ± 2Nfp, ... (Nfp = field
periods in equilibrium) and m = 0, 1, 2, …

• Open gaps present in both high and low
frequency ranges

• High continuum density in the case of
compact stellarators

• External control of rotational transform
profile allows a range of different AE
phenomena to be examined

Tokamak Stellarator



5 Oct 2003 IAEA Technical Meeting

Beam-driven Alfvén instabilities dominated by a single

frequency are observed on the W7-AS stellarator:
 [taken from A. Weller, et al., Phys. Of Plasmas 8 (2001) 931]
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STELLGAP1 code applied to W7-AS case #42872

1D. A. Spong, et al., Phys. Plasmas 10 (2003) 3217]
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In other regimes, W7-AS sees complex multiple
frequency Alfvén instabilities:

[taken from A. Weller, et al., Phys. Of Plasmas 8 (2001) 931]
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STELLGAP1 code applied to W7-AS case #43348

1D. A. Spong, et al., Phys. Plasmas 10 (2003) 3217]
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Stellarators (W7-AS discharge #46535) also see
complex nonlinear bursting phenomena correlated

with fast ion loss and Te drops:
[taken from A. Weller, et al., Phys. Of Plasmas 8 (2001) 931]
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Continuum gap structure for QPS (QA-symmetry)
n = 1 mode family using STELLGAP code
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Continuum gap structure for NCSX (QA-symmetry)
n = 1 mode family using STELLGAP code
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Compact stellarator reactors face many of the
same alpha physics issues as tokamaks:

• Access to the ignited state
– Depends both on a better understanding of alpha loss

mechanisms as well as anomalous transport in the core plasma
• Profile maintenance in the ignited state

– Dynamics and alignment of bootstrap current, plasma shear flow
and pressure profiles crucial to burn control

• Prediction of classical alpha loss (driven by symmetry-breaking)
– Important for first wall protection, power balance, ash removal

• Alpha collective phenomena
– Complex nonlinear physics
– Reactor regime (high toroidal mode number) difficult to test in

existing devices
– Important for first wall protection, power balance, burn control



5 Oct 2003 IAEA Technical Meeting

Compact stellarator reactors also offer new
possibilities for improved control of burning plasma

physics issues:

• 3D shaping introduces a higher degree of design flexibility
• Bootstrap current levels are naturally reduced (by the magnetic

geometry) from axisymmetric levels
• Resilience to disruptions, external kinks
• Can be designed with no instability to neoclassical tearing

modes
• May be possible to design alpha ash removal and burn control

mechanisms that can be externally turned on and off
– passing particle drift islands

• Alfvén continuum damping and mode structure may be
influenced through magnetic design


