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Introduction

• Motivations for study of stellarators Alfvén instabilities
– Seen experimentally (W7-AS, CHS, LHD)

• A. Weller, D. A. Spong, et al., Phys. Rev. Lett. 72, 1220 (1994); K. Toi, et al., Nucl. Fusion 40, 149
(2000); A. Weller, et al., Phys. of Plasmas 8 931(2001)

– Enhanced loss of fast ions

– Diagnostic use (MHD spectroscopy)

– Channeling of fast ion energy to thermal ions

• Low aspect ratio configurations provide a new environment for
Alfvén studies
– Stronger equilibrium mode couplings

– Lower number of field periods lead to
• More closely coupled toroidal modes (n0, ± n0±Nfp, etc.)

• This leads to HAE (Helical Alfvén) couplings at lower frequencies
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Introduction: Stellarator Alfvén Couplings

† 

Alfvén   coupling   condition :   k||,m,n = -k||,(m +D ),(n +aN fp )

      D,  a = integers

   n - mi = - n + aN fp - mi - Di ( )

   i =
2n + aN fp

2m + D
       w =

vA

R
Dn -amN fp

2m + D

• GAE (global Alfvén mode):          a = 0,  D = 0
• TAE (toroidal Alfvén mode):       a = 0,  D = ±1
• EAE (elliptical Alfvén mode):      a = 0,  D = ±2
• NAE (noncircular Alfvén mode): a = 0,  |D| > 2
• MAE (mirror Alfvén mode):          a = 1,  D = 0
• HAE (helical Alfvén mode):          a = 1,  D ≠ 0
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Ideal MHD Shear Alfvén Equations
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x = perturbed plasma displacement
p1 = perturbed pressure
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— ¥
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x ¥
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B ( ) = perturbed
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B field

[e.g., see I. Bernstein, et al., Proc. Royal Soc. A244,17(1958) with f0 = 0]

For now we  take g s = 0 and
r 
— ⋅
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Fast particle drive
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This leads to a set of 3 coupled equations.  A
singularity condition gives the Alfvén continuum

[A. Salat, J. A. Tataronis, Phys. Plasmas 8, 1200 (2001)]
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† 

Singular for Alfvén continuum condition : L11V = 0
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i = rotational  transform
G = poloidal  current
I = toroidal  current† 

V = E1
W1 = iwB3
W2 = E2
with   r1 =y

  r2 = q - i z
  r3 = I(y)q - G(y)z
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Stellarator Alfvén Continuum Equation
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The continuum equation in general geometry (low b) can be written:

This can be written in Boozer coordinates using the following:

For devices with stellarator symmetry, the
surface displacement can be expanded as follows:

Multiplying equation (1) by the Jacobian and integrating over a flux 
surface then leads to:

(1)
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Stellarator Alfvén Continuum Equation (contd.)

Integrating by parts then leads to the following symmetric matrix eigenvalue problem:
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STELLGAP code

† 

grr g
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The equilibrium coefficients in the continuum equation can be expanded in cos series:

Using these expansions, the matrix elements then can be
expressed in terms of the following convolution integrals:
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Since our algorithm provides all eigenvalues of the
system, the condition number is can be monitored.

• Peaks about rational
surfaces because
minimum eigenvalue goes
to zero at

• Since one is never
precisely on a rational
surface numerically, K
remains finite

• Want to keep
K < 1011 – 1012 for double
precision calculations
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Profiles, mode selection for Alfvén Continuum Plots

• Profiles used:
– For W7-AS discharges (40173, 42873, 43348), experimental profiles were used
–  For other devices: ion density µ 1 - y2,  nion(0) = 1 x 1020 m-3

– ion density profile µ (iota)2 aligns the gaps radially
• minimizes continuum damping
• implies a hollow profile for stellarator iota profiles

• Typical mode selections used:
Equilibrium

   m = 0 -19
        n = -20Nfp to 20Nfp

Eigenfunction
        at least n/         < m <  n/

        n = ±n0, ±n0 ± Nfp, ±n0 ± 2Nfp, ±n0 ± 3Nfp with n0 = toroidal mode family

Examples:
W7-AS - Nfp = 5, n0 = 1, n = …,-9, -6, -4, -1, 1, 4, 6, 9, …
QPS - Nfp = 2, n0 = 1,  n =  …, -5, -3, -1, 1, 3, 5, …

† 

i MAX

† 

i MIN
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W7-AS: discharge 40173
[Similar to cases analyzed in A. Weller, D. A. Spong, et

al., Phys. Rev. Lett. 72 (1994) 1220]

n = 1 GAE continua

n = 1

n = 1

n = 9

n = 4

n = 6

• In experiment, fluctuations were observed at ~18
kHz
• GAE mode: below the lowest n = 1 continuum
• Such modes can be approximated by cylindrical or
   axisymmetric  modelsContinua based on 3d stellarator equilibruim
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W7-AS Experimental Results for #42872:

From A. Weller, et al.
Phys. of Plasmas 8 931(2001)
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n = 1 mode family stellarator continua
dominant toroidal mode is color coded

Continua with multiple toroidal modes

W7-AS: discharge 42873
5 field periods R/<a> = 12

fluctuations observed at 30-50 kHz

n = 1
n = 4

n = 6
n = 9

n = -1

Axisymmetric limit
dominant poloidal mode is color coded
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W7-AS Experimental Results for #43348:

From A. Weller, et al.
Phys. of Plasmas 8 931(2001)



16

W7-AS: discharge 43348
fluctuations observed at: 30-40, 50-60,

  85-100, 125-150, 180-200, and 210-240 kHz

n = 1 mode family stellarator continua
dominant toroidal mode is color coded

Continua with multiple toroidal modes

n = 1

n = 4

n = 6
n = 9

n = -1

Axisymmetric limit
dominant poloidal mode is color coded
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W7-X continuum structure

n = 1
n = 6

n = 4 n = 9

n = -1
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High aspect ratio torsatron
LHD configuration

Iota profile
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LHD
(10 field periods, R/<a> = 6, torsatron)

n = 1 mode family stellarator continua
dominant toroidal mode is color coded

Continua with multiple toroidal modes

n = 1
n = 11
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n = -1

Axisymmetric limit
dominant poloidal mode is color coded
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Low aspect ratio quasi-toroidal
configuration LI383
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NCSX
3 field period, R/<a> = 4.4

quas-toroidal symmetry

n = 1 mode family stellarator continua
dominant toroidal mode is color coded

Continua with multiple toroidal modes

n = 1
n = 3

n = 5

n = 2

Axisymmetric limit
dominant poloidal mode is color coded
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Low aspect ratio quasi-poloidal
configuration QPS

Iota profile
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QPS (2 field periods, R/<a> = 2.7, quasi-poloidal symmetry)

n = 1 mode family stellarator continua
dominant toroidal mode is color coded

n = 1

n = 3 n = 5
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Recently the STELLGAP code has been upgraded to
solve the 3 coupled equations for the stable Alfvén

mode structure in compact 3D configurations
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Conclusions
• The 3-dimensional structure of stellarator

equilibria introduce new mode couplings in the
Alfvén continuum spectrum:
– Helical Alfvén mode (HAE) n, m with n+aNfp, m + D

– Mirror Alfvén mode (MAE) n, m with n+aNfp, m

• HAE modes are accessible at lower
frequencies in compact systems (e.g.,QPS,
NCSX)
– Adjacent n’s cross-link more readily (smaller Nfp -

less separation)

– Initial mode structure calculations show broad
composite modes (wider coupling than simple TAEmn,
HAEmn, MAEmn, etc. categorization)
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Conclusions
• W7-AS could access a wide range of Alfvén gap structures

through iota-profile flexibility
– Low shear (40173): GAE modes

• Cylindrical, axisymmetric, stellarator models -> similar results

– Moderate shear (43348): multiple modes
• TAE, HAE/MAE also present in plasma interior and at medium

frequency ranges

– High shear (42873): single mode
• Observed fluctuations likely TAE

• HAE/MAE present, but only at higher frequencies

• 3-D effects only slightly change torsatron (LHD) low
frequency continua away from that of the equivalent
tokamak
– HAE modes only occur near edge at higher frequency
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Next Steps

• Develop methods for calculating linearized
destabilization of these discrete modes by energetic
particles.
– compare mode structures and stability thresholds with stellarator

experiments
– Study proposed compact systems (QPS, NCSX)
– apply to 3D effects on TAE’s in tokamaks (ripple, internal tearing and

kink modes)

• MHD spectroscopy for iota/ion density profiles
– NCSX, QPS applications

• Optimization of stellarators for AE mode minimization
• Develop nonlinear models


