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The QPS CDR design fulfills the missions of the

quasi-poloidally (QP) symmetric stellarator
QPS

« QPS is a very low aspect ratio (A = 2.7)
Quasi-poloidal (QP) stellarator that is
unique in the world fusion program

 The QPS physics design meets the
following requirements:

Equilibrium robustness at low A
Neoclassical << anomalous transport

Reduced poloidal viscosity effects on
shear flow -> transport reduction

Stability limits up to <p> = 2.2%
Significant configurational flexibility
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The QPS physics properties have been enhanced
since by improvements in our design and analysis

tools:

* Improved optimizations
— Merged coil/plasma optimizations
« allowed significant cost reductions in coil design (Dec., 2002)
— Effective ripple transport target
 improved transport properties (~50-100% increased ;)
— New flux surface quality target
* B, omalvacuum = 0 0N P = 2% VMEC surface
» Less configurational change with 3

« Improved flexibility and physics analysis tools
— Fixed coil geometry/variable coil current optimizations
* Transport
« Stability
— VMEC/DKES
— AORSA RF code applied to 3D equilibria
— Finite-n MHD stability analysis with Terpsichore
— Viscosity/flow damping
— Runaway electron losses
— Alfvén continuum C%Sglggigpl for 3D systems
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Outline

QPS

Performance predictions

Confinement properties
— Low collisionality ¢4 coefficient, QP symmetry
— Diffusive DKES neoclassical transport coefficients
— Monte Carlo global energy lifetimes
— Viscosities/flow damping effects
— Runaway electron losses

Stability Properties
— Mercier
— High-n ballooning
— Finite-n instability
— Kink/vertical modes
Flexibility Properties
— Transport optimization/de-optimization
— lota control: island avoidance
— Stability
« Conclusions
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TRANSPORT MISSION - QPS performance predictions show for
normal regimes (H = 1) neoclassical power flows << anomalous.

QPS

« Simple 1-D transport model 12
used to asses performance

* Fixed density/power
deposition profiles

* Neoclassical (Shaing-
Houlberg E. dependence

with overall scaling by ¢_%?)
* Anomalous ISS95 transport

— Anomalous transport scaled
for various H-ISS95 factors

r/a
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With moderate Power ECH (1.5MW), H > 2, T _(0) = 2-3
keV, T;(0) = 0.2-0.5 keV
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Four heating scenarios have been analyzed that allow

exploration of significant parameter ranges

7-11 July 2003

Case H-ISS95 Xanom. <B> (%) T.(0) T.(0)
(m?/sec)

0.15 MW 1 3.9 0.2 0.27 0.2
ECH 2 1.5 04 0.61 04
2x10"9m3 4 0.5 0.8 1.08 0.6
1.5 MW 1 11.3 0.5 1.1 0.2
ECH 2 4.8 1.0 2.15 0.31
2x10"9m3 4 1.5 2.0 3.3 0.49

= require successful transport reduction (H = 4)

QPS

The following cases will require development of

high density heating techniques.

Case H-ISS95 Xanom. <B> (%) T.(0) T.(0)
(m?/sec)

2 MW 1 7 1.3 0.36 0.3
EBW/ICRF 2 2.9 2.6 0.78 0.62

10%m= 4 1.2 5.2 1.5 1.0

4 MW 1 10 1.7 0.53 0.38
EBW/ICRF 2 4.2 3.4 1.14 0.74

10%0m- 4 1.7 6.8 2.0 1.1
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Understand quasi-poloidal symmetry and its effect on
neoclassical transport, bootstrap current, and plasma flow

damping.
QPS

* |n order to develop a sound scientific basis for the
QPS stellarator we use a spectrum of tools as
measures of transport:

— Effective ripple’ ¢ ¥?: asymptotic low collisionality transport
— QP symmetry: ratio of energy in non-symmetric modes (m # 0)
to that in symmetric modes (m = 0)

— Diffusive transport coefficient matrix (DKES code)
« Will be integrated into 1-D models in the near future
« Monte Carlo 6f used to supplement low collsionality regime

» Viscosities: related to DKES coefficients by recent work of
Sugama?
— Global Monte Carlo energy lifetimes

V.V. Nemov, et. al, Phys. Plasmas 6, 4622 (1999).
2H. Sugama, S. Nishimura, Phys. Plasmas 9, 4637 (2002).
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Our design has made continuing improvements in the
effective ripple ¢ >
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Our design has made continuing improvements in the
effective ripple ¢ >
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QPS-CDR maintains a high degree of QP-Symmetry in

QPS
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Local QPS DKES transport coefficients show that both plateau

and 1/v regimes are accessed. aps
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DKES transport coefficients show similar
improvements in our design as ¢_;°”
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Monte Carlo ion energy lifetime estimates show that
improved engineering and lower cost coils of the
QPS CDR go along with improved neoclassical

QPS

QPS CDR (8 =0) |

confinement.
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Monte Carlo analysis of runaway electrons gives us information
about confinement and loss locations

7 QPS
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QPS Transport Enhancement Mission:
understand the unique effects of quasi-poloidal

symmetry on anomalous transport suppression
QPs

« Enhanced confinement regimes in tokamaks have been
attributed to electric field shear

— Shredding of turbulent eddys
* This can be driven by a variety of sources
— Self-amplified background plasma flows
— Flows driven by external sources (beams, RF)
— Turbulence
— Pressure gradient drive

« The QPS design has achieved several goals that will allow a
better understanding of enhanced confinement regimes in
compact stellarators

— Neoclassical transport << anomalous
— Poloidal flow damping reduced from that of a tokamak
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Poloidally symmetric devices offer unique flow damping
characteristics that can help access enhanced confinement regimes

QPS
Tok.  QPS
Lowestorder ,_ ,. \\ Y —~0 u—0
flow equilibrium: <B' (V ' ”)> =w,u, +uu =0
Tokamak: exact symmetry QPS: exact symmetry
B-field B-field
B B E B B
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QPS offers a significant reduction in poloidal viscosity (vs.
tokamak) without large increases in parallel viscosity for ion
colisionalities (v/iv = 0.001-0.01)
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Further reductions in poloidal viscosity occur when
ambipolar electric fields are present.
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Ambipolar electric fields provide a source for self-
generated poloidal flows (QPS can access both
electron and ion roots)
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Flexibility: QPS offers substantial flexibility through 9
independently variable coil currents

QPS
TF coil
VE-3 VF-2 » Flexibility is a significant advantage
VE-1 offered by stellarator experiments

« Flexibility will aid scientific
understanding in:
— Flux surface fragility/island avoidance
— Neoclassical vs. anomalous transport
— Transport barrier formation
— Plasma flow dynamics
— MHD stability

« QPS offers flexibility through:

— 5 individually powered modular coill
groups

— 3 vertical field coil

— toroidal field coil set

— Ohmic solenoid

» Variable ratios of Ohmic/bootstrap
current
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QPS can vary low collisionality levels by a factor of
~25 and QP symmetry by a factor of ~10

Low collsionality transport
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Collisional transport (V.= plateau regime) shows a
factor of ~25 variation. Poloidal viscosities show
factor of 5-30 variation.
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Monte Carlo global energy lifetimes (E, = 0) indicate
that a 50 - 100% variation is possible.
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Flux surface fragility: Coil current optimizations coupled with
Ohmic current allow low shear iota profiles in QPS at § = 0.

QPs

As in the W7-AS approach, these transform profiles can be
placed in windows that avoid low order rational surfaces
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IOTA

Flux surface fragility: Good surfaces and resonance
avoidance is possible for § > 0 with Ohmic current.
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Flux surface fragility: lota profile changes lead to

relatively small changes in transport properties
QPs

Monte Carlo ion energy lifetimes, ICH
regime: n(0) = 8x10¥m3, T (0) = 0.5
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Conclusion: The QPS continues to offer good physics features

QPS

Equilibrium robustness at low A

— PIES and field line following (AVAC) analysis shows good
surfaces for a range of ’s with:

» Ohmic/bootstrap current control
 Coil current optimization

Transport
— Can access interesting parameter regimes
— Can control transport in measurable ways
— Lowered poloidal viscous damping relative to tokamak
» Improved control over electric field shear
Stability

— Can vary ballooning stability limits and test with access to
enhanced confinement regimes

Flexibility

— Significant control demonstrated over: transport, iota, flux surface
robustness, MHD stability
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Future Work
QPs

* Optimization
— QPS will have ongoing needs to choose combinations of plasma current/coil
currents that provide good flux surfaces
— Further study of ballooning/kink de-stabilization regimes
— Target reductions in poloidal viscosity

 Transport
— Continue to study combinations of transport and heating that best push
— Integrated transport modeling

« Couple DKES coefficients and magnetic flux evolution with 1-D model,
bootstrap current prediction (ORNL/PPPL)

« Work with international stellarator collaboration (IPP-Greifswald)

« Self-consistent flow evolution (parallel momentum balance/Ohm’s
law/quasi—neutrality)

— Monte Carlo modeling
* Reduced models
» Low collisionality df supplement to DKES coefficients

« Energetic ion/runaway electron losses
* Heating
— ECH modeling
— High density heating methods

 MHD stability

— Resistive modes, neoclassical tearing, Alfvén modes
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