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Abstract. We use a self-organized criticality (SOC) model to show that 1) such a
system can have different characteristic signatures depending on the level of external
forcing while still having the same underlying dynamics and that 2) current time
series of Sun–Earth processes are too short to compare with all dynamical regions
of a SOC model. SOC is a concept that has been applied to various aspects of
the Sun–Earth system, such as rearrangement of magnetic flux loops on the Sun,
AE indices and substorm statistics. The basic tenet of SOC is that simple local
interactions produce complex global signatures that are not simply predicted by the
low level physics. Simple SOC models, such as the sandpile, are used to compare
their signatures with those observed in a physical system.

1. Introduction

Self-organized criticality (SOC) Bak et al. [1987, 1988] has been suggested as a model for the
dynamics of various aspects of the Sun–Earth system. The basic tenet of SOC is that simple
local interactions produce complex global signatures that are not simply predicted by the low level
physics. The Sun–Earth system and SOC models share similar dynamical and statistical signatures,
such as power law scaling of event size distributions Uritsky et al. [2002] and of the power spectra of
some characteristic time series, discussed below. Another shared signature is a Hurst exponent that
indicates correlated dynamics over some time scales longer than an autocorrelation time Price and

Newman [2001]. These very brief statements clearly do not do justice to all that is implied about
the Sun-Earth system when viewed from the perspective of SOC. References Uritsky and Pudovkin

[1998]; Angelopoulos et al. [1999]; Chang [1999]; Klimas et al. [2000]; Lui et al. [2000]; Chapman and

Watkins [2001]; Chang et al. [2003] are some examples of more thorough treatments of the subject.

When deciding whether or not a system is SOC, a usual practice is to compare specific signatures
of a defined SOC model and the physical system under study. Rather than saying: “If these
signatures are similar, then the system must be SOC,” the more cautious approach is to say: “If
these signatures are similar, then this system is consistent with SOC dynamics.” Fundamentally,
it is the characteristics of the dynamics that are of interest. Here, we investigate two basic issues
involved in whether or not even this second statement can be safely made. It is important to note
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that one cannot prove that a system is SOC unless it has been constructed as such. But it is the
shared dynamics among systems that matters most, not the name.

Before presenting those two issues, we briefly mention the measures that we use in this study: the
power spectrum and rescaled range (R/S) analysis. We will define and discuss them further below,
but for now we simply say that they are two measures that quantify a time series in the frequency
domain and time domain, respectively. Both measures can produce distinct straight line regions
when plotted on doubly logarithmic axes, indicating power law scaling. Two important features
of a SOC time series in this regard are that it 1) produces multiple power law regions and 2) the
number and behavior of these power law regions are very different from any other known model,
including random uniform or Gaussian noise, fractional Gaussian noise, fractional Brownian motion
and random superposition of pulses. We elaborate on the significance of power laws below.

For our results, we first show that the spectral and R/S signatures of a SOC system can change
drastically when the external forcing of the system changes. Because of this, there is no single
reference signature that a system must match in order to be considered SOC. An application of this
idea is in considering the fluctuations in the solar wind as the external driver of the magnetosphere,
for which SOC has been suggested as a model. Since the solar wind can range from very strong and
steady to practically nonexistent, the reaction to this changing forcing can easily produce different
spectra over different time scales.

This result, changing spectrum with changing forcing, can be seen in two ways: by changing
the strength of the external drive and by changing the level of correlations in the external drive.
Strength of drive is the intuitive notion of how much of some quantity is being deposited in the
system per unit time. In terms of the solar wind, for example, very weak drive was seen during the
period 10-12 May 1999, when it almost disappeared Le et al. [2000b, a]. (In general, though, SOC is
concerned with dynamics on much longer time scales.) The level of correlations deals with the issue
of whether the external drive is completely random or not. For instance, the solar wind has been
seen to be a correlated source so that the subsequent external driving of the magnetosphere is not
completely random. We will only discuss strength of driving here. Refer to Sánchez et al. [2002] for
studies of the effect of correlations in the drive in a SOC system.

Second, we show that the longest available time series of a space climate process is likely far
too short to show all of the power law regions in the spectra and R/S measures associated with
SOC. ‘Too short’ here implies a needed time scale on the order of a century. That is, many more
generations of scientists will pass before long enough time series are acquired and this issue can be
settled.

The rest of this paper is organized as follows. We first review power laws, the power spectrum
and rescaled range analysis in Section 2 so that we can refer to them in Section 3, which is a brief
overview of self-organized criticality, our model and some recent work in space physics from the
perspective of SOC. We will present and discuss our results of the strength of forcing and the effects
of the length of a time series in Sections 4 and 5. Conclusions are drawn in Section 6.

2. Power Laws, the Power Spectrum and R/S Analysis

A characteristic associated with SOC since its introduction have been power laws. A power law
is any function of the form y = cxa. On doubly logarithmic axes, this function appears as a straight
line with slope a; a is also referred to as the scaling exponent. Power laws appear in many measures
of many systems, such as probability distributions, power spectra and R/S analysis. We will only
discuss the spectral and R/S analyses. For a thorough discussion of power laws in probability
distributions refer to Sornette [2000] and references therein.
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Figure 1. Time series and power spectra of AE index, sandpile and Gaussian noise.

When discussing power laws, a usual unstated assumption is that the power law is an appropriate
fit of the data over a reasonably wide domain. ‘Reasonably wide’ is vague so this criteria must be
separately established for each case. A common critical, yet reasonable, observation made in regard
to these studies is that any function—power law, exponential, sine curve, etc.—can be fit very well
to any data if one zooms in to a small enough scale on a plot. Moreover, when two neighboring
power law regions are claimed, with different scaling exponents, the additional issue of whether or
not there is a distinct breakpoint between the two regions is raised. Needless to say, these are critical
issues and the scientist must be aware of them. We are, and elsewhere we have investigated them
thoroughly for the data that we present here Woodard et al. [2004]. In general, we find that a decade
(power of 10) is a reasonable minimum for establishing a power law as a good fit.

Having established that a power law is a good fit to a region and that the limits of the region
are identified by breakpoints that separate neighboring regions that may or may not also be fit by a
power law, the most important task is to identify the process or processes in the system that produce
such a signature. This is where understanding of the particular measure is needed. In practice we
find that using more than one measure is invaluable in attempts to understand such systems and
signatures. This allows us to use multiple measures to distinguish and quantify separate regions.
Hence we complement the power spectrum with the lesser known R/S analysis, with which we
estimate the Hurst exponent H .

The power spectrum of a discrete time series f(τ) allows one to examine the data in frequency

space. It is defined as S(f) = |F (f)|
2
, where F (f) is the Fourier transform of f(τ); power is plotted

versus frequency. The spectrum of random noise (with Gaussian or uniform distribution) is flat
(∼ f 0) so that the power at all frequencies is the same.

The task of any spectral analysis is to understand why a system has a spectrum that differs from
the flat one of a completely random series. A simple example is the spectrum of a sine curve; it is
the same flat spectrum as that of the random one except for a spike at the characteristic frequency,
indicating where most of the power is concentrated. (Analytically, the spectrum is a delta function;
we will deal mainly with finite discrete time series.) A spectrum that has more than one such peak
indicates multiple periodic processes in the system.

Besides distinct peaks, another feature of some power spectra is a power law dependence on
frequency, where the spectrum scales as f−β with β 6= 0; β can be positive or negative. The power
law extends over a finite frequency band (for a finite time series) and there may be more than one
such scaling region. Again, the task is to understand why this spectrum is different from that of a
random one. Specifically, one must understand why each region has a particular value of β and why
the breakpoints of the region occur where they do.
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Figure 2. Time series and R/S analysis of sine curve.

Some spectral power laws are not due to dynamics in a system and can be analytically derived. We
refer to this type of power law as one due to pulse shape, which is the highest frequency component
of a series. The smoother a function is, the faster its spectrum falls off with increasing frequency.
This is quantified by taking derivatives of the function. The spectrum falls off as f−2k if the kth
derivative becomes impulsive. For instance, a sawtooth wave (a triangular pulse) of width w has an
impulsive second derivative so its spectrum scales as f−4 as f → ∞. For frequencies below w−1,
the spectrum is flat. One can extend this and think of the sine wave as a function that does not
have any impulsive derivatives; its spectrum, then, the delta function, falls off infinitely fast with
increasing frequency Bracewell [2000]. Another analytically derived power law spectrum is that of
a random superposition of square pulses, which falls off as f−2 for frequencies above the inverse of
the widest pulse Jensen et al. [1989]; Kertész and Kiss [1990].

Part of the interest in physical systems that have power law scaling regions in their power spectra
is because the time series themselves are far from the simple examples above. Most time series of
‘real’ physical processes, such as the AE index or fluctuations in the solar wind velocity, are not
simple shapes or superpositions of simple shapes. They look noisy, almost random. Yet they still
have spectra that are very different from that of a completely random process (Figure 1). Spikes
in the spectra can usually be explained by known periodicities in the system (rotation of the earth,
11 year solar cycle, etc.). But the observed values of β and the locations of breakpoints between
scaling regions, in most cases, are not well understood and are probably important indicators of the
dynamics.

Qualitatively, a spectrum that falls off as f−β with β > 0, a negative slope on log-log axes, means
that lower frequencies are most important in characterizing the time series. For values of β < 0, a
positive slope, the higher frequencies dominate the signal. So signals with β > 0 are smoother than
those with β < 0. Because of this, the smoother signals with positive β are said to be correlated and
the rougher ones with negative β are anticorrelated. Here, correlated implies that a current trend in
the data continues. The value of β, then, is often used as a measure of correlations in a time series.

A different and perhaps better measure of correlations in a time series is the Hurst exponent,
H ∈ [0, 1]. A value of H = 0.5 implies a data set that is completely random, with no correlations.
Series with H > 0.5 are correlated and those with H < 0.5 are anticorrelated. The closer H is to 0
the rougher and more anticorrelated is the signal; the closer to 0.5, the more uncorrelated; and the
closer to 1 the smoother and more correlated. For instance, H = 0.5 for a time series of fair dice
being rolled and H = 1 for a sine curve up to its period (Figure 2). Price and Newman [2001] has
estimated the Hurst exponent of the AE index as H ≈ 0.7, indicating that the AE process has long
time correlations.
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Figure 3. Time series, power spectrum and R/S analysisof a sawtooth pulse.

One technique of estimating H is through rescaled range (R/S) analysis Hurst [1951]; Mandelbrot

[2002]; there are other methods Bassingthwaighte and Raymond [1994]; Bassingthwaighte et al.

[1994]; Bassingthwaighte and Raymond [1995]. For a series of data ξt, the rescaled range is defined
as:

R′(s) ≡ R(s)/S(s) (rescaled range)

R(s) = max
1≤t≤s

X(t, s) − min
1≤t≤s

X(t, s), (range)

X(t, s) =

t
∑

u=1

(ξu − 〈ξ〉s) (cumulative deviation)

S(s) =

[

1

s

s
∑

t=1

(ξt − 〈ξ〉s)
2

]1/2

(standard deviation)

〈ξ〉s =
1

s

s
∑

i=1

ξi (mean)

If the rescaled range of the time series scales as R′(s) ∼ sH , the slope of the plot of R′(s) versus the
time lag s on a doubly logarithmic plot is an estimate of the Hurst exponent, H .

H can be related to the more familiar measure, variance. Consider classical Brownian motion (a
random walk), the increments of which are simply a Gaussian distributed random noise. For a large
ensemble of random walks, the expectation value of the variance of the motion scales linearly with
time, σ2 ∼ t. For the noise series, H = 0.5. In general, the variance of the motion is related to the
Hurst exponent of the noise by σ2 ∼ t2H .

Algorithms exist Mandelbrot [2002] that create synthetic time series with Gaussian distributions
and a given value of 0 < H < 1. Such a series is called fractional Gaussian noise (fGn) and when
integrated produces fractional Brownian motion (fBm). For these series, H is analytically related
to the slope of the power spectrum of the fGn via β = 2H − 1. For discrete fGn data, though, this
relation does not hold so well at all values of H . A thorough discussion of H and β in the context
of fGn is given in Malamud and Turcotte [1999].

It is very important to note that the relation β = 2H − 1 is not always true for physical data.
This is equivalent to saying that fGn is not an appropriate model for the system under study. A
basic example is the time series of a single sawtooth pulse mentioned above. It has a power spectrum
that falls off as f−4 and a Hurst exponent, calculated via R/S analysis, of H ≈ 1 (Figure 3). Here,
β 6= 2H − 1; the spectrum and the R/S analysis describe two different aspects of the same series.
β = 4 is a statement about the discontinuity of the first derivative of the sawtooth pulse and H ≈ 1
is a statement of the strong correlation that a defined shape has with itself for time scales up to its
width.
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Self-organized criticality is a model where β 6= 2H − 1 over different time scale regions. But the
reasons are not as simple as for that of a single pulse. Here, the dynamics of a SOC system has
correlations, anticorrelations and lack of correlations on distinctly different time scales and on time
scales larger than that of the largest fundamental single pulse. The changing levels of correlations
appear in the power spectrum and R/S analysis of a SOC system as separate and distinct power
law regions.

Looking at only the spectrum or the R/S alone does not adequately explain the regions of a
SOC system. But together the measures give a clear picture of SOC dynamics. We emphasize this
to encourage the use of multiple measures in any system; taken alone, the power spectrum does not
always explain the dynamics of a system.

3. Self-Organized Criticality and the Sun-Earth System

The underlying idea behind self-organized criticality is that, in many complex systems, simple
local interactions produce complex global signatures that are not easily predicted by the local low
level physics. That is, the fundamental physics of a system is often understood but some of the
observed signatures are not captured by models that are built on that physics. The problem is that,
inevitably, all models must leave something out, must make some approximations. An example is
the power spectrum of the AE index seen in Figure 1.

The main approximation that a SOC model makes is to reduce all of the local physics in a system
to a simple physical rule: if the local gradient of some quantity between two nearest neighbors
exceeds some critical gradient, then reduce the gradient by transporting some of the quantity from
one neighbor to the other. A ‘neighbor’ is purposefully vague and can be different for each system.
It represents the notion that gradients exist on macroscopic scales and the source of the gradients is
not as important as the fact that they grow, shrink and interact. Crucial to the SOC dynamics are
that the time scales of the driving and relaxing processes are very different: the gradients are reduced
much faster than they are produced. Within these bounds, a plethora of models can be constructed
but all adhere to this one rule; we describe our model, the sandpile, below. The interesting dynamics
appears because the transport from one neighbor to the next may make the next local gradient
exceed the critical gradient, causing a new transport event. In this way, disturbances can propagate
throughout the model.

In the jargon of SOC, the disturbances are often referred to as avalanches. Avalanches can range
in size from the smallest possible (one transport event) up to the size of the system. Over much of
this range of scales, SOC avalanches are distributed as a power law, indicating no preferred spatial
scale within that range. This is the criticality part of SOC. It refers to statistical mechanics, where
disturbances in a material at a phase transition can propagate throughout the entire sample. In
such a case, a control parameter—the temperature—must be tuned to reach this critical state. In
contrast, a SOC system arrives at criticality with no external tuning of a parameter †. The system
self-organizes to the critical and steady state.

Time series of the avalanches can be constructed and analyzed. Regions of the power spectra
of these time series scale as power laws, indicating correlations and anticorrelations on different
time scales. These temporal power laws together with the spatial power laws of the avalanche
size distributions are important signatures of SOC systems that are similar to signatures of many
observed physical systems. Because of these similarities and of the underlying physics, the Sun-Earth
system has been studied as possibly SOC.

†This is a matter of discussion in the world of SOC. See, for example, Jensen [1998] and references therein
for a discussion.
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The model that we use is the one dimensional running sandpile, studied extensively in Hwa

and Kardar [1992]; Woodard et al. [2004]. The sandpile consists of L cells labeled by an index
n ∈ [1, L]. Each cell stores an amount of sand hn and the local gradient between two cells is defined
as Zn = hn − hn+1. U0 grains of sand are dropped randomly on every cell at each iteration with
probability P0. The external drive per cell is thus S0 = U0P0 grains per time step. SOC dynamics
appears because of the existence of a critical slope Zcrit that, when locally overcome, triggers the
removal of Nf grains of sand to the next cell in the downhill direction (increasing n). The sandpile
is initialized with hn = (Zcrit − 1)(L − n) and run for Tmax time steps. We study the sandpile in
steady state so that transient time steps before TT are ignored in the following analysis.‡ We used
U0 = 1 (therefore S0 = P0), Zcrit = 8 and Nf = 3, the same parameters used in a study of confined
plasmas Newman et al. [1996]. In this study, we use sandpile sizes of L = 200 and 1000 and driving
rates of P0L = 0.2, 0.1 and 0.001. We study a more complete range of five orders of magnitude of
driving rate and three orders of magnitude of system size in Woodard et al. [2004].

Effective driving rate is given by P0L
2 Woodard et al. [2004]. The idea of effective driving rate

is that a fixed driving rate P0, which is in units of grains per cell per time step, is effectively higher
for a small sandpile than for a larger one. Since a larger sandpile has a greater capacity, P0 will
take longer to fill it up when compared with the same rate of sand falling onto a smaller system. In
the past, P0L has been used as the measure of driving rate because its units are in grains per time
step for the entire system. But since the average avalanche size is larger in a larger sandpile, two
sandpiles of different sizes but with the same P0L can be in very different drive regimes because the
quiet times will be shorter in the larger system. We find that a better measure, effective driving
rate, should be used. Systems with different size and/or P0 but with the same value of P0L

2 have
power spectra that are related via a rescaling function. We elaborate on effective driving rate in
Woodard et al. [2004].

The time series that we analyze is called the flips. Consider the total number of unstable sites
(where Z ≥ Zcrit) at each time step in a sandpile model in steady-state. An unstable cell spills Nf

grains of sand to the next cell; this action is a flip. The total flips at each time step can be thought
of as the instantaneous (potential) energy dissipation in the system. The sandpile is driven by a
random process but the number of flips fluctuates with time in a way that is not entirely random,
as we show.

4. Effect of Strength of External Forcing and System Size

We now show that systems with very different driving rates can have very different spectral and
R/S signatures. Figure 4 shows the power spectra from three different sandpile runs. Runs (a) and
(b) differ in their driving rate P0L and runs (b) and (c) differ in their driving rate and system size, L.
Run (a) is the smallest system with the highest driving rate; run (b) is the same size but with a lower
driving rate; run (c) has a lower driving rate and larger system size than (b). The effective driving
rate P0L

2, then, decreases from run (a) through (c), with (c) being the lowest effective driving rate.
The spectra can be seen to change systematically.

The spectra in Figure 4 show different power law scaling regions for all driving rates. Each
spectrum actually has 4 or 5 separate regions, depending on effective driving rate Woodard et al.

[2004]; we have sketched lines on each indicating only three of these regions. The highest frequency
region with β ≈ 3.5 indicates correlations at short time scales, where avalanche pulse shapes correlate
with themselves. On longer time scales, the middle frequency region has a slope 0 < β ≤ 1 that
changes with driving rate. These positive values of β indicate correlations among separate and
overlapping avalanches. The time scales for this region are greater than the maximum duration of

‡The initialization saves computer time; the same results hold when the sandpile is started from any
initial condition. The transient time TT must be adjusted accordingly.
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plot. These are not fits of the data but lines of the indicated slope to guide the eye.

a single avalanche. The lowest frequency region with β ≈ −1.5 indicates anticorrelations on the
longest time scales. These are the time scales of global discharge events, where one such event is
unlikely to be followed by another similar event.

The R/S analysis of sandpile flips also shows multiple regions. We have only indicated two in
Figure 4. These correspond to the middle and long time scales of the power spectra. The estimated
values of the Hurst exponent can be compared with the values of β in the spectra. For both cases,
β 6= 2H − 1. Most importantly, the middle time scale region has a constant value of H ≈ 0.8
while β changes with driving rate. This is because H measures correlations in the sandpile that are
produced by the memory in the system due to the system rules. The rules do not change as driving
rate changes, hence H stays relatively constant. Because of the changing values of β in this region,
it is not clear what aspect of the correlations is measured by the power spectrum.

The goal of these results is to show that the SOC running sandpile model will produce very
different power spectra when the level of external forcing changes. This is why comparing the values
of the slope or the number of regions of the spectrum of a physical system like the Sun-Earth system
with those of a single run of a SOC model can be misleading. If the values of the slope do not match
or if the number of regions are different, this does not necessarily mean that the system is not SOC.
Instead, it could be that the system is in a different drive regime than that of the model being used.

An important aspect of the running sandpile model is that over a very wide range of driving rate
it is still in a state of SOC. That is, it still exhibits all of the qualitative signatures that collectively
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are called SOC. These include power law distributions of event sizes, power law regions in the power
spectra, correlated dynamics indicated by Hurst exponents H 6= 0.5 and regions and event sizes
that scale with system size. More importantly, the physics in the models is identical regardless of

driving rate. Sand is still added at a constant probability that triggers avalanches that may or may
not spread throughout the entire system. The memory of the avalanches is retained in the local
gradients of each cell and this is the source of long time correlations. The only difference is the rate
at which the avalanches and the time scales over which the correlations occur.

This idea can be applied to data that is already in the literature. The first power spectrum
of the AE index showing the broken power law behavior was seen in Tsurutani et al. [1990] for
data from three separate periods, 1967-1970, 1971-1974 and 1978-1980. Similar spectra were shown
subsequently by Consolini et al. [1996], Uritsky and Pudovkin [1998], Price and Newman [2001] and
N. W. Watkins [2002]. The time periods studied in all of these works, as well as the slopes of the
spectra in the two regions and the location of the breakpoints are shown in Table 1. That they
vary over different periods is completely consistent with an SOC model that runs for a time at one
driving rate and then for another time at a different driving rate. In general, the slopes found for
shorter periods of observations differ the most from the average of all samples. In the language of
the sandpile, there are two possible causes for this.

First, the driving rate can change over time so that the average input of the solar wind over the
period 1 January through 19 February 1975 was very different from the period 1978-1979. These two
periods were chosen as examples because they show the greatest difference in slopes for both spectral
regions among the values presented. That one period is near the solar minimum and the other near
the solar maximum should be noted and taken as a possible example of the level of external forcing
changing the power spectrum, as in the running sandpile model.

A second and, in this case, more likely possibility that can account for changing spectra for the
time periods shown is that over a long time scale, say the roughly 40 year period for which we have
AE index data, the input to the system (the solar wind) is constant in the same way that the mean
of a series of random numbers is constant. But when one looks at a small subset of the random
series, the mean may be very different and there will certainly be fluctuations far from the overall
mean. In other words, data is scattered within the errors bars of a sampling. All of the values of β
in Table 1 are within 2σ of the mean.

Both of these possibilities are intuitively appealing because the Sun, the driver in the Sun-Earth
system, is known to not have a constant output from year to year. But whether that change is due
to a fundamental change in the drive regime of the Sun or to intrinsic fluctuations within a steady
state is not clear.

As a quick test of this idea, we compared power spectra for three different three day periods,
10-12 May 1999, 26-28 January 1999 and 12-14 November 1999. The solar wind essentially vanished
during the first period Le et al. [2000b, a], falling more than 98% for a period of approximately 30
hours. The other two periods were closer to the yearly mean. There is no significant difference in
the spectra among the three cases. We attribute this to the very short observation time, as the
spectra show much ringing at high frequencies, making determination of any sort of fit statistically
irrelevant. We must wait for longer periods of no solar wind to pursue this idea further.

In addition to those of measured AE indices, the literature also holds power spectra of a con-
tinuum model that “provides a link between the sandpile model studies . . . and a realistic plasma
physical study of SOC dynamics in the plasma sheet Klimas et al. [2000].” That study refers to the
Lu model of Lu [1995], which “can be viewed as an idealized one-dimensional resistive field reversal
model in which the resistivity is generated self-consistently.” This is a model where a scalar field
is evolved in time while coupled to a variable diffusion coefficient and source term that are space
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Table 1. Time period, resolution, slopes of first two spectral regions and breakpoint of AE index data
found in Tsurutani et al. [1990], Consolini et al. [1996], Uritsky and Pudovkin [1998], Price and Newman

[2001] and N. W. Watkins [2002]. Breakpoint for Consolini et al. [1996] taken between labeled second and
third regions. Breakpoint for Price and Newman [2001] 1978-1979 estimated from plot at intersection of two
power law fits. Slope for N. W. Watkins [2002] taken as best fit with a straight edge, slope estimated from
axes.

Study Period Res. βA βB Break (mHz)
Tsurutani et al. [1990] 1967–1970 5 min 2.42 1.02 0.059 (4.7 hr)
Tsurutani et al. [1990] 1971–1974 1 hr 2.2 0.98 0.050 (5.5 hr)

Uritsky and Pudovkin [1998] 1973–1974 1 hr 2.10 0.95 0.056 (5.0 hr)
Consolini et al. [1996] 1/1–19/2 1975 1 min 2.65 1.14 0.073 (3.8 hr)
N. W. Watkins [2002] 1978 5 min 2.1 1.1 0.056 (5.0 hr)

Price and Newman [2001] 1978–1979 1 min 1.85 0.82 0.033 (8.4 hr)
Tsurutani et al. [1990] 1978–1980 1 hr 2.2 1.00 0.056 (5.0 hr)

Price and Newman [2001] March 1979 1 min 1.89 n/a n/a

Mean ± σ 2.4 ± 0.26 1.0 ± 0.10

and time dependent. In terms of the sandpile model, the scalar field of the Lu model represents the
height or gradient at each cell, the variable diffusion represents the avalanche rule and the source
term represents the rain of sand. §

Power spectra of this model are shown in Klimas et al. [2000] for varying levels of the source
term and the diffusion operator. As in the spectra of the running sandpile for varying driving rates,
these spectra exhibit a wide range of behavior. Also, as in the sandpile model, the same physics
from the same system produces these different spectra. This says that a system in a state of SOC
can show very different signatures depending upon the drive regime in which it operates.

Concerning the anticorrelated region of the spectra, reference Klimas et al. [2000] states that
the comparison of that model with the running sandpile appears to fail in this region because no
system-wide discharges where all grid points are simultaneously unstable are seen in the continuous
model. Instead, the largest events observed show wave-like behavior in the hydrodynamic regime.
This behavior is, in fact, consistent with the sandpile model because of the following.

We have performed additional sandpile runs Woodard et al. [2004] that append the results of Hwa

and Kardar [1992] and show that all sites are rarely, if ever, simultaneously unstable. System-wide
discharges do not refer to a single time step where all cells are unstable. Instead, these large events
occur over a short period of time. Recall that sand only exits the sandpile through the bottom
cell, which has a small and fixed amount of sand, Nf , that it can transport at a single time step.
The nature of the sandpile is such that, in what is called the Nf/2 limit, a cell in the middle of a
spatially extended avalanche alternates between stable and unstable until the avalanche has either
washed passed it or died. The drive regimes studied by Hwa and Kardar [1992] and Woodard et al.

[2004] are well below the Nf/2 limit. Furthermore, animated visualizations Woodard [2004] of the
sandpile show that these system-wide discharge events are really a series of many avalanches in a
short period of time and that they are very wave-like in nature. So then the observed behavior of
the Lu model discussed in Klimas et al. [2000] is consistent with that of the running sandpile. This
is another motivation for looking for similar SOC regions in physical data, as we next discuss.

§In the interest of cross-field communication, we mention that a very similar model to that of Lu [1995]
has been applied to the study of the running sandpile model in the context of plasma transport in confined
plasma devices Garcia et al. [2002]. Citations within that work refer to other studies of sandpile dynamics
in confined plasmas.
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Figure 5. Power spectrum of AE index 1980-1981 and cartoon of time scales of additional spectrum.

5. Effect of Length of Time Series

The comparison of regions between the AE index and the sandpile model end at region B because
of the limited time series for the AE index. The question arises: How long must the AE index time
series be in order to see a new region at lower frequencies? This question assumes that the long-term
process that drives the Sun-Earth system and that some properties of the Sun, magnetosphere and
the space in between remain somewhat constant.

This question also assumes that the lower region seen in the spectrum of the AE index will end.
Of course, the lifetime of a star ensures this on the longest time scales but this ending falls outside
the bounds of the first assumption. We claim that this region will end for dynamical reasons. The
positive slope β > 0 of a spectral region and Hurst exponent H > 0.5 imply long time correlations.
But the correlations must end on some time scale because a system of finite size driven randomly
will reflect the random drive at the longest time scales Woodard et al. [2004].

Given a steady state Sun-Earth system and a randomly driven yet deterministic universe, then
the correlations must end at some time scale. Anticorrelations may arise in this system in the same
way that they do in the running sandpile: all gradients in a finite system eventually grow close to
critical and then trigger a system-wide discharge. This speaks to the finite capacity of the system.
Perhaps an energy and mass balance calculation between the fluctuations of the input from the solar
wind and output through the magnetotail, magnetopause and other parts of the system can give an
estimate of a time scale on which the magnetosphere reaches capacity.

Figure 5 shows the same spectrum of the AE index as that in Figure 1 but now we have drawn
lines showing possible behavior of the spectrum at longer time scales based on the behavior seen
in sandpile spectra. We adamantly state here: the breakpoints and slopes of these lines are not
predictions of breakpoints and slopes that would be seen given arbitrarily long AE time series.
Instead, they are drawn to demonstrate how long the time series would have to be to see this
behavior. At best, we now have roughly 40 years of AE index data. Since we look at scaling
behavior on log-log axes, the full 40 years of data would only slightly extend the plot to the point
labeled. An order of magnitude greater time series, 400 years, would extend the plot as shown.
Observation of the spectra of sandpile models, AE index and other physical systems shows that
nature does not cut her spectra off abruptly at low frequency. This is, of course, a rough and
qualitative argument. But we do expect to see the spectrum of the AE index roll over to, possibly,
an anticorrelated region with β < 0 and/or, definitely, a flat, uncorrelated region. Based on the
slope of the best current spectra and longest available time series, we will not be around to see that
new region.
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6. Conclusions

We have shown that a rich diversity of spectral signatures can be produced by a self-organized
critical system when the effective driving rate is changed. This has implications in the ongoing
investigations of studying SOC as a model of various physical systems, including the Sun-Earth
system. Our results show that failure of the power spectrum of a physical system to match that of
the running sandpile model with a certain driving rate does not at all exclude SOC as an appropriate
model for the system. A system can be in a wide range of drive regimes yet still be considered SOC
even though the spectral signatures differ among the different regimes. This is a statement on the
lack of tuning that is required for a SOC system to be critical; it is the self-organized portion of the
name.

The system remains critical because the physics does not change when the driving rate changes.
In the sandpile, changing the driving rate merely changes how fast or how slowly sand is added to
the pile. The rules of the system have not changed. A memory of past events is stored in the local
gradients of the system regardless of how fast or slowly sand is added. The analogy to a physical
system is this: the underlying physics of the transport of a system, such as the Sun-Earth system,
does not change when it is driven more strongly or weakly. Gradients still grow and shrink by the
fundamental physical processes. But the rate at which this happens changes and this change is
reflected in the different spectra of a process over different periods of time.

We also discussed that the current longest available time series of the AE index only shows
two regions in the power spectrum. Inevitably, the region at lower frequency with β ≈ 1 must
either flatten or turn down to an anticorrelated region with β < 0 before flattening at the lowest
frequencies. The flat f 0 spectrum is a signature of a fundamental random process that is driving the
system. An anticorrelated region reflects a system of finite size and capacity that non-periodically
relaxes in a series of long bursts over a short period of time.

The running sandpile model has a well-defined clock which makes it diffferent from other SOC
models. More importantly, this feature, along with its dynamics that is similar to many physical
processes, make it an appropriate model to use in the study of physical systems that are suspected
to be SOC, such as that of the Sun and Earth.
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