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running title: A MODEL OF CASCADING FAILURE

Abstract: We propose an analytically tractable model of loading-dependent cascading
failure that captures some of the salient features of large blackouts of electric power
transmission systems. This leads to a new application and derivation of the quasibino-
mial distribution and its generalization to a saturating form with an extended parameter
range. The saturating quasibinomial distribution of the number of failed components
has a power law region at a critical loading and a significant probability of total failure
at higher loadings.
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1. INTRODUCTION

Cascading failure is the usual mechanism for large blackouts of electric power trans-
mission systems. For example, long, intricate cascades of events caused the August
1996 blackout in Northwestern America (NERC [24]) that disconnected 30,390 MW
of power to 7.5 million customers (Kosterev, Taylor, and Mittelstadt [22]). An even
more spectacular example is the August 2003 blackout in Northeastern America that
disconnected 61,800 MW of power to an area spanning eight states and two provinces
and containing 50 million people (U.S.-Canada Power System Outage Task Force [32]).
The vital importance of the electrical infrastructure to society motivates the construc-
tion and study of models of cascading failure.

In this paper we describe some of the salient features of cascading failure in black-
outs with an analytically tractable probabilistic model. The features that we abstract
from the formidable complexities of large blackouts are the large but finite number of
components, components that fail when their load exceeds a threshold, an initial dis-
turbance loading the system, and the additional loading of components by the failure of
other components. The initial overall system stress is represented by upper and lower
bounds on a range of initial component loadings. The model neglects the length of
times between events and the diversity of power system components and interactions.
Of course, an analytically tractable model is necessarily much too simple to represent
with realism all the aspects of cascading failure in blackouts; the objective is rather to
help understand some global systems effects that arise in blackouts and in more de-
tailed models of blackouts. While our main motivation is large blackouts, the model
is sufficiently simple and general that it could be applied to cascading failure of other
large, interconnected infrastructures.

We summarize our cascading failure model and indicate some of the connections
to the literature that are elaborated later. The model has many identical components
randomly loaded. An initial disturbance adds load to each component and causes some
components to fail by exceeding their loading limit. Failure of a component causes
a fixed load increase for other components. As components fail, the system becomes
more loaded and cascading failure of further components becomes likely. The prob-
ability distribution of the number of failed components is a saturating quasibinomial
distribution. The quasibinomial distribution was introduced by Consul [10] and further
studied by Burtin [3], Islam, O’Shaughnessy, and Smith [18], and Jaworski [19]. The
saturation in our model extends the parameter range of the quasibinomial distribution
and the saturated distribution can represent highly stressed systems with a high prob-
ability of all components failing. Explicit formulas for the saturating quasibinomial
distribution are derived using a recursion and via the quasimultinomial distribution of
the number of failures in each stage of the cascade. These derivations of the quasi-
binomial distribution and its generalization to a saturating form appear to be novel.
The cascading failure model can also be expressed as a queueing model and, in the
nonsaturating case, the number of customers in the first busy period is known to be
quasibinomial (Charalambides [9], Takács [31]).

The paper is organized as follows. Section 2 describes cascading failure blackouts
and Section 3 describes the model and its normalization. Section 4 derives the saturat-
ing quasibinomial distribution of the number of failures and shows how the saturation
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generalizes the quasibinomial distribution and extends its parameter range. Section 5
illustrates the use of the model in studying the effect of system loading.

2. THE NATURE OF CASCADING FAILURE BLACK-
OUTS

Bulk electrical power transmission systems are complex networks of large numbers of
components that interact in diverse ways. For example, most of America and Canada
east of the Rocky mountains is supplied by a single network running at a shared supply
frequency. This network includes thousands of generators, tens of thousands of trans-
mission lines and network nodes, and about one hundred control centers that monitor
and control the network flows. The flow of power and some dynamical effects propa-
gate on a continental scale. All the electrical components have limits on their currents
and voltages. If these limits are exceeded, automatic protection devices or the sys-
tem operators disconnect the component from the system. We regard the disconnected
component as failed because it is not available to transmit power (in practice it will be
reconnected later). Components can also fail in the sense of misoperation or damage
due to aging, fire, weather, poor maintenance or incorrect design or operating settings.
In any case, the failure causes a transient and causes the power flow in the component
to be redistributed to other components according to circuit laws, and subsequently re-
distributed according to automatic and manual control actions. The transients and read-
justments of the system can be local in effect or can involve components far away, so
that a component disconnection or failure can effectively increase the loading of many
other components throughout the network. In particular, the propagation of failures
is not limited to adjacent network components. The interactions involved are diverse
and include deviations in power flows, frequency, and voltage as well as operation or
misoperation of protection devices, controls, operator procedures and monitoring and
alarm systems. However, all the interactions between component failures tend to be
stronger when components are highly loaded. For example, if a more highly loaded
transmission line fails, it produces a larger transient, there is a larger amount of power
to redistribute to other components, and failures in nearby protection devices are more
likely. Moreover, if the overall system is more highly loaded, components have smaller
margins so they can tolerate smaller increases in load before failure, the system nonlin-
earities and dynamical couplings increase, and the system operators have fewer options
and more stress.

A typical large blackout has an initial disturbance or trigger events followed by
a sequence of cascading events. Each event further weakens and stresses the system
and makes subsequent events more likely. Examples of an initial disturbance are short
circuits of transmission lines through untrimmed trees, protection device misoperation,
and bad weather. The blackout events and interactions are often rare, unusual, or unan-
ticipated because the likely and anticipated failures are already routinely accounted for
in power system design and operation. The complexity is such that it can take months
after a large blackout to sift through the records, establish the events occurring and
reproduce with computer simulations and hindsight a causal sequence of events.
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The historically high reliability of North American power transmission systems is
largely due to estimating the transmission system capability and designing and oper-
ating the system with margins with respect to a chosen subset of likely and serious
contingencies. The analysis is usually either deterministic analysis of estimated worst
cases or Monte Carlo simulation of moderately detailed probabilistic models that cap-
ture steady state interactions (Billington and Allan [2]). Combinations of likely con-
tingencies and some dependencies between events such as common mode or common
cause are sometimes considered. The analyses address the first few likely failures rather
than the propagation of many rare or unanticipated failures in a cascade.

We briefly review some other approaches to cascading failure in power system
blackouts. Carreras, Lynch, Dobson, and Newman [5] represent cascading transmis-
sion line overloads and outages in a power system model using the DC load flow ap-
proximation and standard linear programming optimization of the generation dispatch.
The model shows critical point behavior as load is increased and can show power tails
similar to those observed in blackout data. Chen and Thorp [8] model power sys-
tem blackouts using the DC load flow approximation and standard linear programming
optimization of the generation dispatch and represent in detail hidden failures of the
protection system. The expected blackout size is obtained using importance sampling
and it shows some indications of a critical point as loading is increased. Rios, Kirschen,
Jawayeera, Nedic, and Allan [29] evaluate expected blackout cost using Monte Carlo
simulation of a power system model that represents the effects of cascading line over-
loads, hidden failures of the protection system, power system dynamic instabilities,
and the operator responses to these phenomena. Ni, McCalley, Vittal, and Tayyib [25]
evaluate expected contingency severities based on real time predictions of the power
system state to quantify the risk of operational conditions. The computations account
for current and voltage limits, cascading line overloads, and voltage instability. Roy,
Asavathiratham, Lesieutre, and Verghese [30] construct randomly generated tree net-
works that abstractly represent influences between idealized components. Components
can be failed or operational according to a Markov model that represent both internal
component failure and repair processes and influences between components that cause
failure propagation. The effects of the network degree and the inter-component influ-
ences on the failure size and duration are studied. Pepyne, Panayiotou, Cassandras, and
Ho [28] also use a Markov model for discrete state power system nodal components,
but propagate failures along the transmission lines of a power systems network with a
fixed probability. They study the effect of the propagation probability and maintenance
policies that reduce the probability of hidden failures. The challenging problem of de-
termining cascading failure due to dynamic transients in hybrid nonlinear differential
equation models is addressed by DeMarco [14] using Lyapunov methods applied to a
smoothed model and by Parrilo, Lall, Paganini, Verghese, Lesieutre, and Marsden [27]
using Karhunen-Loeve and Galerkin model reduction. Watts [33] describes a general
model of cascading failure in which failures propagate through the edges of a random
network. Network nodes have a random threshold and fail when this threshold is ex-
ceeded by a sufficient fraction of failed nodes one edge away. Phase transitions causing
large cascades can occur when the network becomes critically connected by having suf-
ficient average degree or when a highly connected network has sufficiently low average
degree so that the effect of a single failure is not swamped by a high connectivity to
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unfailed nodes. Lindley and Singpurwalla [23] describe some foundations for causal
and cascading failure in infrastructures and model cascading failure as an increase in
a component failure rate within a time interval after another component fails. Initial
versions of the cascading failure model of this paper appear in Dobson, Chen, Thorp,
Carreras, and Newman [15] and Dobson, Carreras, and Newman [16].

3. DESCRIPTION OF MODEL

The model has n identical components with random initial loads. For each component
the minimum initial load is Lmin and the maximum initial load is Lmax. For j = 1, 2,
..., n, component j has initial load Lj that is a random variable uniformly distributed
in [Lmin, Lmax]. L1, L2, · · · , Ln are independent.

Components fail when their load exceeds Lfail. When a component fails, a fixed
and positive amount of load P is transferred to each of the components.

To start the cascade, an initial disturbance loads each component by an additional
amount D. Some components may then fail depending on their initial loads Lj and the
failure of each of these components will distribute an additional load P that can cause
further failures in a cascade. The components become progressively more loaded as
the cascade proceeds.

In particular, the model produces failures in stages i = 0, 1, 2, ... according to the
following algorithm, where Mi is the number of failures in stage i.

CASCADE Algorithm

0. All n components are initially unfailed and have initial loads L1, L2, · · · , Ln that
are independent random variables uniformly distributed in [Lmin, Lmax].

1. Add the initial disturbance D to the load of each component. Initialize the stage
counter i to zero.

2. Test each unfailed component for failure: For j = 1, ..., n, if component j is un-
failed and its load > Lfail then component j fails. Suppose that Mi components
fail in this step.

3. Increment the component loads according to the number of failures Mi: Add
MiP to the load of each component.

4. Increment i and go to step 2

The CASCADE algorithm has the property that if there are no failures in stage j
so that Mj = 0, then 0 = Mj = Mj+1 = ... so that there are no subsequent failures
(in step two, Mj can be zero either because all the components have already failed, or
because the loads of the unfailed components are less than Lfail). Since there are n
components, it follows that Mn = 0 and that the outcome with the maximum number
of stages with nonzero failures is 1 = M0 = M1 = ... = Mn−1. We are most
interested in the total number of failures S = M0 + M1 + ... + Mn−1.

When interpreting the model in an application, the load increment P need not cor-
respond only to transfer of a physical load such as the power flow through a component.
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Many ways by which a component failure makes the failure of other components more
likely can be thought of as increasing an abstract “load” on the other components until
failure occurs when a threshold is reached.

It is useful to normalize the loads and model parameters so that the initial loads
lie in [0, 1] and Lfail = 1 while preserving the sequence of component failures and
M0, M1, .... First note that the sequence of component failures and M0, M1, ... are
unchanged by adding the same constant to the initial disturbance D and the failure
load Lfail. In particular, choosing the constant to be Lmax − Lfail, the initial dis-
turbance D is modified to D + (Lmax − Lfail) and the failure load Lfail is modi-
fied to Lfail + (Lmax − Lfail) = Lmax. Then all the loads are shifted and scaled
to yield normalized parameters. The normalized initial load on component j is lj =
(Lj − Lmin)/(Lmax − Lmin) so that lj is a random variable uniformly distributed on
[0, 1]. The normalized minimum initial load is zero, and the normalized maximum ini-
tial load and the normalized failure load are both one. The normalized modified initial
disturbance and the normalized load increase when a component fails are

d =
D + Lmax − Lfail

Lmax − Lmin
, p =

P

Lmax − Lmin
. (1)

An alternative way to describe the model follows. It is convenient to use the nor-
malized parameters in Eq. (1). Let N(t) be the number of components with loads in
(1 − t, 1]. If the n initial component loadings are regarded as n points in [0, 1] ⊂ R,
then N(t) is the number of points greater than 1 − t. Then 0 ≤ N(t) ≤ n, the sample
paths of N are nondecreasing, and N(t) = 0 for t ≤ 0 and N(t) = n for t ≥ 1.

Let the number of components failed at or before stage j be Sj = M0 + M1 +
... + Mj . Then, assuming S−1 = 0, the CASCADE algorithm generates S0, S1, ...
according to

Sj = N(d + Sj−1p), j = 0, 1, ... . (2)

Then 0 ≤ Sj ≤ n, Sj is nondecreasing and Sk = Sk+1 implies that Sj = Sj+1 for
j ≥ k. The minimum such k is the maximum stage number in which failures occur and
S−1 < S0 < S1 < ... < Sk = Sk+1 = ... and the total number of failures S = Sk.
That is,

N(d + Sp) = S, (3)

N(d + Sjp) > Sj , −1 ≤ j < k. (4)

Moreover, for j < k and r = 0, 1, ..., Mj+1 − 1,

N(d + (Sj + r)p) ≥ N(d + Sjp) = Sj+1 = Sj + Mj+1 > Sj + r. (5)

Therefore N(d + sp) > s for s = 0, 1, ..., S − 1, and this inequality and Eq. (3) allow
the total number of failures to be characterized as

S = min{s | N(d + sp) = s, s ∈ {0, 1, 2, ...}}. (6)

If, at stage j, d + Sjp > 1, we say that the model saturates. Saturation implies
Sj+1 = n. Saturation never occurs if d and p are small enough that d + np < 1.
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The model can be formulated as a queue with a single server. Exactly n customers
arrive during a given hour independently and uniformly. The server is available to
serve these customers at time d after the start of the hour because of completing some
other task. The customer service time is p. Then S is the number of customers that
arrive during the first busy period. The queue saturates when the first busy period runs
past the end of the hour. Charalambides [9] and Takács [31] analyze this queue in the
nonsaturating case as described in section 4.3.

The model can also be recast in the form of an approximate and idealized fiber
bundle model. There are n identical, parallel fibers in the bundle. The Lj of the
unnormalized model now indicates breaking strength: fiber j has random breaking
strength Lfail − Lj that is uniformly distributed in [Lfail − Lmax, Lfail − Lmin]. Each
fiber has zero load initially. Then an initial force is applied to the bundle that increases
the load of each fiber to D and this starts a burst avalanche of fiber breaks of size S.
When a fiber breaks, it distributes a constant amount of load P to all the other fibers.
In contrast, and with better physical justification, idealized fiber bundle models with
global redistribution as described by Kloster, Hansen, and Hemmer [21] redistribute
the current fiber load equally to the remaining fibers.

4. DISTRIBUTION OF NUMBER OF FAILURES

The main result is that the distribution of the total number of component failures S is

P [S = r] =




( n
r

)
φ(d)(d + rp)r−1(φ(1 − d − rp))n−r,

r = 0, 1, ..., n − 1,

1 −
n−1∑
s=0

P (S = s), r = n,

(7)

where p ≥ 0 and the saturation function is

φ(x) =




0 ;x < 0,
x ; 0 ≤ x ≤ 1,
1 ;x > 1.

(8)

It is convenient to assume that 00 ≡ 1 and 0/0 ≡ 1 when these expressions arise in any
formula in this paper.

If d ≥ 0 and d+np ≤ 1, then there is no saturation (φ(x) = x) and Eq. (7) reduces
to the quasibinomial distribution

P [S = r] =
(

n
r

)
d(d + rp)r−1(1 − d − rp)n−r. (9)

The quasibinomial distribution was introduced by Consul [10] to model an urn prob-
lem in which a player makes strategic decisions. Burtin [3] derives the distribution of
the number of initially uninfected nodes that become infected in an inverse epidemic
process in a random mapping. This distribution is quasibinomial with d the fraction
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of initially infected nodes and p the uniform random mapping probability. Islam et al.
[18] interpret d and p as primary and secondary infection probabilities and apply the
quasibinomial distribution to data on the final size of influenza epidemics. Jaworski
[19] generalizes the derivation to a random mapping with a general fixed point proba-
bility.

The cascading failure model gives a new application and interpretation of the qua-
sibinomial distribution. Moreover, the saturation in Eq. (7) extends the range of pa-
rameters of the quasibinomial distribution to allow d + np > 1. Section 5 shows
that this extended parameter range can describe regimes with a high probability of all
components failing.

The next two subsections derive Eq. (7) from the CASCADE algorithm in two
ways by means of a recursion and by means of the quasimultinomial joint distribution
of M0, M1, ..., Mn−1.

4.1 Recursion

It is convenient to show the dependence of the distribution of number of failures on the
normalized parameters by writing P [S = r] = f(r, d, p, n).

In the case of n = 0 components,

f(0, d, p, 0) = 1. (10)

According to the CASCADE algorithm, when the initial disturbance d ≤ 0, no com-
ponents fail, and when d ≥ 1, all n components fail. Then

f(r, d, p, n) =




1 − φ(d) ; r = 0
0 ; 0 < r < n

φ(d) ; r = n


 ,

(d ≤ 0 or d ≥ 1)
and n > 0.

(11)

We assume n > 0 and 0 < d < 1 for the rest of the subsection.
The initial disturbance d causes stage zero failure of the components that have

initial load l in (1 − d, 1]. Therefore the probability of any component failing in stage
zero is d and

P [M0 = k] =
(

n
k

)
dk(1 − d)n−k. (12)

Suppose that M0 = k and consider the n − k components that did not fail in stage
zero. Since none of the n− k components failed in stage zero, their initial loads l must
lie in [0, 1 − d] and the distribution of their initial loads conditioned on not failing in
stage zero is uniform in [0, 1−d]. In stage one, each of the n−k components has had a
load increase d from the initial disturbance and an additional load increase kp from the
stage zero failure of k components. Therefore the equivalent total initial disturbance
for each of the n − k components is D = kp + d.

To summarize, assuming M0 = k, the failure of the n−k components in stage one
is governed by the model with initial disturbance D = kp + d, load transfer P = p,
Lmin = 0, Lmax = 1−d, Lfail = 1, and n−k components. Normalizing the parameters
using Eq. (1) yields that the failure of the n − k components is governed by the model

8



with normalized initial disturbance kp/(1−d) and normalized load transfer p/(1−d).
That is,

P [S = r|M0 = k] = f(r − k,
kp

1 − d
,

p

1 − d
, n − k). (13)

Combining Eqs. (12) and (13) yields the recursion

f(r, d, p, n) =
r∑

k=0

P [S = r|M0 = k]P [M0 = k]

=
r∑

k=0

(
n
k

)
dk(1 − d)n−kf(r − k,

kp

1 − d
,

p

1 − d
, n − k)

; 0 ≤ r ≤ n , 0 < d < 1 , n > 0. (14)

Eqs. (10), (11) and (14) define f(r, d, p, n) = P [S = r] for all n ≥ 0 and p ≥ 0.
Eqs. (10) and (11) agree with Eqs. (7). Moreover it is routine to prove in the Appendix
that Eq. (7) satisfies recursion (14). Therefore Eq. (7) is the distribution of S in the
CASCADE algorithm. Thus the recursion offers a simple way to derive the saturating
quasibinomial distribution that avoids complicated algebra or combinatorics. It is also
straightforward to use Eq. (10) and Eq. (14) to confirm by induction on n that Eq. (7)
is a probability distribution.

4.2 A Quasimultinomial Distribution

This subsection shows that the joint distribution of M0, M1, ..., Mn−1 is quasimultino-
mial and hence derives Eq. (7). It is convenient throughout to assume d ≥ 0, restrict
m0, m1, ... to nonnegative integers, and to write si = m0+m1+...+mi for i = 0, 1, ...
and s−1 = 0.

Let α0 = φ(d), β0 = 1, and, for i = 1, 2, ...,

αi = φ
( mi−1p

1 − d − si−2p

)
, βi = φ(1 − d − si−2p). (15)

The identity

βi(1 − αi) = βi+1 , i = 0, 1, 2, ... (16)

can be verified using 1 − φ(x) = φ(1 − x) and d ≥ 0 and considering all the cases.
In step two of stage zero in the CASCADE algorithm, the probability that the load

increment of d causes one of the components to fail is α0 = φ(d) and the probability
of m0 failures in the n components is

P [M0 = m0] =
( n

m0

)
αm0

0 (1 − α0)n−m0 . (17)

Consider the end of step two of stage i ≥ 1 in the CASCADE algorithm. The
failures that have occurred are M0 = m0, M1 = m1, ..., Mi = mi and there are n− si

unfailed components, but the component loads have not yet been incremented by mip
in the following step three.
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Suppose that d + si−1p < 1. Then, conditioned on the n − si components not yet
having failed, the loads of the n− si unfailed components are uniformly distributed in
[d + si−1p, 1]. In the following step three, the probability that the load increment of
mip causes one of the unfailed components to fail is αi+1 and the probability of mi+1

failures in the n − si unfailed components is

P [Mi+1 = mi+1|Mi = mi, ..., M0 = m0] =
(

n − si

mi+1

)
α

mi+1
i+1 (1 − αi+1)n−si+1 ,

mi+1 = 0, 1, ..., n − si. (18)

Suppose that d + si−1p ≥ 1. Then all the components must have failed on a
previous step and P [Mi+1 = mi+1|Mi = mi, ..., M0 = m0] = 1 for mi+1 = 0 and is
zero otherwise. In this case, αi+1 = 0 and Eq. (18) is verified.

We claim that for si ≤ n,

P [Mi = mi, ..., M0 = m0] =
n!

m0!m1! ... mi! (n − si)!

(α0β0)m0(α1β1)m1 ... (αiβi)miβn−si
i+1 . (19)

Eq. (19) is proved by induction on i. For i = 0, Eq. (19) reduces to Eq. (17). The
inductive step is verified by multiplying Eqs. (18) and (19) and using Eq. (16) to obtain
P [Mi+1 = mi+1, ..., M0 = m0] in the form of Eq. (19).

An expression equivalent to Eq. (19) obtained using Eq. (16) is

P [Mi = mi, ..., M0 = m0] =
n!

m0!m1! ... mi! (n − si)!

(β0 − β1)m0(β1 − β2)m1 ... (βi − βi+1)miβn−si
i+1 . (20)

The CASCADE algorithm has the property that if there are no failures in stage j
so that Mj = 0, then 0 = Mj = Mj+1 = ... and there are no subsequent failures.
This property is verified by Eq. (20) because mj = 0 implies βj+1 = βj+2 so that the
factor (βj+1 − βj+2)mj+1 = 0mj+1 , which vanishes unless mj+1 = 0. Iterating this
argument gives 0 = Mj = Mj+1 = ... . Since the maximum number of failures is n,
the longest sequence of failures has n stages with M0 = M1 = ... = Mn−1 = 1. It
follows that 0 = Mn = Mn+1 = ... and that the nontrivial part of the joint distribution
is determined by M0, M1, ...., Mn−1. It also follows that Mn−1 = 0 if there are less
than n stages with failures.

Eq. (20) can now be rewritten for i = n − 1. Let I be the largest integer not
exceeding n such that 1 − d − sI−2p > 0. Then Eq. (20) becomes, for sn−1 ≤ n,

P [Mn−1 = mn−1, ..., M0 = m0] =
n!

m0!m1! ... mn−1! (n − sn−1)!
(φ(d))m0(m0p)m1(m1p)m2 ...(mI−2p)mI−1(φ(1 − d − sI−2p))n−sI−1A(m, I), (21)

where A(m, n) = 1 and A(m, I) = 0mI+1 ... 0mn−10n−sn−1 for I < n. It follows
from the definition of A(m, I) that Eq. (21) vanishes for I < n unless 0 = MI+1 =
... = Mn−1 and S = M0 + ... + MI = n. (Although Eq. (21) was derived assuming
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d ≥ 0, it also holds for d < 0. In particular, for d < 0, Eq. (21) implies P [Mn−1 =
0, ..., M0 = 0] = 1.)

Eq. (21) generalizes the quasibinomial distribution and is a form of quasimulti-
nomial distribution. It is a different generalization of the quasibinomial distribution
than the quasitrinomial distribution considered by Berg and Mutafchiev [1] to describe
numbers of nodes in central components of random mappings.

Suppose that S = M0 + ... + Mn−1 = r < n. Then Mn−1 = 0 and M0 + ... +
Mn−2 = r − Mn−1 = r and Eq. (21) vanishes unless I = n. Summing Eq. (21) over
nonnegative integers m0, ..., mn−1 that sum to r yields

P [S = r] =
∑

sn−1=r

n!
m0!m1! ... mn−1! (n − r)!

(φ(d))m0(m0p)m1 ... (mn−2p)mn−1(φ(1 − d − rp))n−r

=
( n

r

)
(φ(1 − d − rp))n−rpr

∑
sn−1=r

r!
m0!m1! ... mn−1!

(
φ(d)

p

)m0

mm1
0 ... m

mn−1
n−2 ,

which reduces to Eq. (7) using a lemma by Katz [20]. (The context of Katz’s lemma
assumes φ(d)/p is a positive integer, but the generalization is immediate.)

4.3 Applying a Generalized Ballot Theorem

Charalambides [9] explains how the quasibinomial distribution appears as a conse-
quence of generalized ballot theorems in the theory of fluctuations of stochastic pro-
cesses (Takács [31]). We summarize this approach and comment that it derives only
the nonsaturating cases of Eq. (7).

We assume 0 < d < 1. Consider p multiplied by the number of components
N(t) with loads in (1 − t, 1]. For 0 ≤ t ≤ 1, pN(t) is a stochastic process with
interchangeable increments whose sample functions are nondecreasing step functions
with pN(0) = 0. According to Eq. (6), the first passage time of t− pN(t) through d is
min{t | pN(t) = t − d} = min{d + sp |N(d + sp) = s} = d + Sp. Then, according
to Takács [31, sec. 17, thm. 4],

P [d + Sp ≤ t] =
∑

d≤y≤t

d

y
P [pN(y) = y − d] (22)

for 0 < d ≤ t ≤ 1. That is,

�(t−d)/p�∑
k=0

P [S = k] =
�(t−d)/p�∑

k=0

d

d + kp
P [N(d + kp) = k]. (23)

Setting t = d + rp in Eq. (23) for r = 0, 1, ..., min{n, (1 − d)/p}, differencing the
resulting equations and using the binomial distribution of N(t) for 0 ≤ t ≤ 1 yields the
nonsaturating cases of Eq. (7). However, the approach does not extend to the saturating
cases because pN(t) does not have interchangeable increments when t > 1.
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4.4 Approximate Power Tail Exponent at a Critical Case

We describe standard approximations of the quasibinomial distribution that yield a
power tail exponent at the critical case. For parameters satisfying np + d ≤ 1 (no
saturation), the distribution of S is quasibinomial and can be approximated by letting
n → ∞, p → 0 and d → 0 in such a way that λ = np and θ = nd are fixed to give the
generalized (or Lagrangian) Poisson distribution (Consul [11, 12]; Consul and Shoukri
[13])

P [S = r] ≈ θ(rλ + θ)r−1 exp(−rλ − θ)
r!

, (24)

which is the distribution of the number of offspring in a Galton-Watson-Bienaymé
branching process with the first generation produced by a Poisson distribution with
parameter θ and subsequent generations produced by a Poisson distribution with pa-
rameter λ. The critical case for the branching process is np = λ = 1 and Otter [26]
proved that at criticality the distribution of the number of offspring has a power tail
with exponent −1.5. Further implications for cascading failure of the branching pro-
cess approximation are considered in Dobson, Carreras, and Newman [17].

5. EFFECT OF LOADING

How much can an electric power transmission system be loaded before there is undue
risk of cascading failure? This section discusses qualitative effects of loading on the
distribution of blackout size and then applies the model to describe the effect of loading
and illustrate its use.

5.1 Distribution of Blackout Size at Extremes of Loading

Consider cascading failure in a power transmission system in the impractically extreme
cases of very low and very high loading. At very low loading near zero, any failures
that occur have minimal impact on other components and these other components have
large operating margins. Multiple failures are possible, but they are approximately
independent so that the probability of multiple failures is approximately the product of
the probabilities of each of the failures. Since the blackout size is roughly proportional
to the number of failures, the probability distribution of blackout size will have an
exponential tail. The probability distribution of blackout size is different if the power
system were to be operated recklessly at a very high loading in which every component
was close to its loading limit. Then any initial disturbance would necessarily cause a
cascade of failures leading to total or near total blackout. It is clear that the probability
distribution of blackout size must somehow change continuously from the exponential
tail form to the certain total blackout form as loading increases from a very low to a
very high loading. We are interested in the nature of the transition between these two
extremes.

12



5.2 Effect of Loading in Model

This subsection describes one way to represent a load increase in the model and how
this leads to a parameterization of the normalized model. Then the effect of the load
increase on the distribution of the number of components failed is described.

For purposes of illustration the system has n = 1000 components. Suppose that the
system is operated so that the initial component loadings vary from Lmin to Lmax =
Lfail = 1. Then the average initial component loading L = (Lmin + 1)/2 may be
increased by increasing Lmin. The initial disturbance D = 0.0004 is assumed to be the
same as the load transfer amount P = 0.0004. These modeling choices for component
load lead via the normalization of Eq. (1) to the parameterization p = d = 0.0004/(2−
2L), 0.5 ≤ L < 1. The increase in the normalized power transfer p with increased L
may be thought of as strengthening the component interactions that cause cascading
failure.

For average initial load L = 0.5, d = p = 0.0004 and the probability distribution
of the number S of components failed is close to the binomial distribution obtained for
d = 0.0004 and p = 0 and the tail is exponential. The distribution as L increases from
0.5 is shown in Figure 1. The distribution for the nonsaturating case L = 0.6 has a tail
slightly heavier than binomial but still approximately exponential. The tail becomes
heavier as L increases and the distribution for the critical case L = 0.8, np = 1 has
an approximate power law region over a range of S. The power law region has an
exponent of approximately –1.4 and this compares to the exponent of –1.5 obtained
by the analytic approximation in subsection 4.4. The distribution for the saturated
case L = 0.9 has a slightly heavier than exponential tail for small r, zero probability
of intermediate r, and a probability of 0.80 of all 1000 components failing. If an
intermediate number of components fail in a saturated case, then the cascade always
proceeds to all 1000 components failing.

The increase in the mean number of failures ES as the average initial component
loading L is increased is shown in Figure 2. The sharp change in gradient at the critical
loading L = 0.8 corresponds to the saturation of Eq. (7) and the consequent increasing
probability of all components failing. Indeed, at L = 0.8, the change in gradient in
Figure 2 together with the power law region in the distribution of S in Figure 1 suggest
a type two phase transition in the system. If we interpret the number of components
failed as corresponding to blackout size, the power law region is consistent with North
American blackout data and blackout simulation results (Chen, Thorp, and Parashar
[7]; Dobson et al. [15]; Carreras et al. [5]). In particular, North American blackout
data suggest an empirical distribution of blackout size with a power tail with exponent
between –1 and –2 (Carreras, Newman, Dobson, and Poole [4]; Chen et al. [7]). This
power tail indicates a significant risk of large blackouts that is not present when the
distribution of blackout sizes has an exponential tail (Carreras, Lynch, Newman, and
Dobson [6]).

The model results show how system loading can influence the risk of cascading
failure. At low loading there is an approximately exponential tail in the distribution
of number of components failed and a low risk of large cascading failure. There is a
critical loading at which there is a power law region in the distribution of number of
components failed and a sharp increase in the gradient of the mean number of com-
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ponents failed. As loading is increased past the critical loading, the distribution of
number of components failed saturates, there is an increasingly significant probability
of all components failing, and there is a significant risk of large cascading failure.
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APPENDIX: SATURATING QUASIBINOMIAL FORMULA
SATISFIES RECURSION

We prove that the saturating quasibinomial formula Eq. (7) satisfies recursion (14) for
0 < d < 1 and n > 0.

In the case d + rp < 1 and r < n, since

d + rp < 1 ⇐⇒ kp

1 − d
+ (r − k)

p

1 − d
< 1, (25)
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none of the instances of f in the right hand side of Eq. (14) saturate so that the right
hand side of Eq. (14) becomes

r∑
k=0

(
n
k

)
dk(1 − d)n−k

(
n − k
r − k

) kp

1 − d

( rp

1 − d

)r−k−1(
1 − rp

1 − d

)n−r

=
(

n
r

) r∑
k=0

(
r
k

)k

r
dk(rp)r−k(1 − d − rp)n−r =

(
n
r

)
d(d + rp)r−1(1 − d − rp)n−r.

In the case d + rp ≥ 1 and r < n, Eq. (25) and r − k < n − k imply that all the
instances of f in the right hand side of Eq. (14) vanish.

In the case r = n, substituting the expression from Eq. (7) for f(n − k, (kp)/(1 −
d), p/(1 − d), n − k) into the right hand side of Eq. (14) leads to

1 −
n−1∑
t=0

t∑
k=0

( n
k

)
dk(1 − d)n−kf(t − k,

kp

1 − d
,

p

1 − d
, n − k) = 1 −

n−1∑
s=0

f(s, d, p, n),

where the last step uses the result established above that Eq. (7) satisfies Eq. (14) for
r < n.
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Figure 1: Log-log plot of distribution of number of components failed S for three
values of average initial load L. Note the power law region for the critical loading
L = 0.8. L = 0.9 has an isolated point at (1000, 0.80) indicating probability 0.80 of
all 1000 components failed. Probability of no failures is 0.61 for L = 0.6, 0.37 for
L = 0.8, and 0.14 for L = 0.9.
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Figure 2: Mean number of components failed ES as a function of average initial com-
ponent loading L. Note the change in gradient at the critical loading L = 0.8. There
are n = 1000 components and ES becomes 1000 at the highest loadings.
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