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Evidence for Self-Organized Criticality in a Time
Series of Electric Power System Blackouts

Benjamin A. Carreras, David E. Newman, Ian Dobson, and A. Bruce Poole

Abstract— We analyze a 15-year time series of North American
electric power transmission system blackouts for evidence of self-
organized criticality. The probability distribution functions of
various measures of blackout size have a power tail and R/S
analysis of the time series shows moderate long time correlations.
Moreover, the same analysis applied to a time series from a
sandpile model known to be self-organized critical gives results
of the same form. Thus the blackout data seem consistent
with self-organized criticality. A qualitative explanation of the
complex dynamics observed in electric power system blackouts
is suggested.

Index Terms— blackouts, complex systems, time series, power
system security, reliability, risk analysis.

I. INTRODUCTION

Electric power transmission networks are complex systems
that are commonly run near their operational limits. Major
cascading disturbances, or blackouts of these transmission sys-
tems have serious consequences. Individually, these blackouts
can be attributed to specific causes, such as lightning strikes,
ice storms, equipment failure, shorts resulting from untrimmed
trees, excessive customer load demand, or unusual operating
conditions. However, an exclusive focus on these individual
causes can overlook the global dynamics of a complex system
in which repeated major disruptions from a wide variety
of sources are a virtual certainty. We analyze a time series
of blackouts to probe the nature of these complex system
dynamics.

The North American Electrical Reliability Council (NERC)
has a documented list summarizing major blackouts1 of the
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1The NERC data arises from government incident reporting requirements.
The thresholds for report of an incident include uncontrolled loss of 300 MW
or more of firm system load for more than 15 minutes from a single incident,
load shedding of 100 MW or more implemented under emergency operational
policy, loss of electric service to more than 50,000 customers for 1 hour or
more, and other criteria detailed in US Department of Energy form EIA-417.

North American power grid [1]. They are of diverse magnitude
and of varying causes. It is not clear how complete this data
is, but it is the best-documented source that we have found for
blackouts in the North American power transmission system.
An initial analysis of these data [6] over a period of 5 years
suggested that self-organized criticality (SOC) [2], [3], [23]
may govern the complex dynamics of these blackouts. Here
we further examine [7], [13] this hypothesis by extending the
analysis to 15 years. This extended data allows us to develop
improved statistics and gives us longer time scales to explore.
We compare the results to the same types of analysis of time
sequences generated by a sandpile model known to be SOC.
The similarity of the results is quite striking and is suggestive
of the possible role that SOC plays in power system blackouts.
A plausible qualitative explanation of SOC in power system
blackouts is outlined in section VI.

As an introduction to the concept, a SOC system is one in
which the nonlinear dynamics in the presence of perturbations
organize the overall average system state near to, but not at, the
state that is marginal to major disruptions. SOC systems are
characterized by a spectrum of spatial and temporal scales of
the disruptions that exist in remarkably similar forms in a wide
variety of physical systems [2], [3], [23]. In these systems, the
probability of occurrence of large disruptive events decreases
as a power function of the event size. This is in contrast to
many conventional systems in which this probability decays
exponentially with event size.

It is apparent that large blackouts are rarer than small black-
outs, but how much rarer are they? Fig. 1 shows a probability
distribution of blackout size from the North American blackout
data that is discussed in detail in Section II. Fig. 2 shows a
probability distribution of number of line outages obtained
from a blackout model that represents cascading failure and
complex dynamics [11]. These data suggest a power law
relationship between blackout probability and blackout size.
For comparison, Fig. 2 also shows the binomial probability
distribution of number of line outages and its exponential tail
that would be obtained if the line outages were independent.
Blackout risk is the product of blackout probability and
blackout cost. Here we assume that blackout cost is roughly
proportional to blackout size, although larger blackouts may
well have costs (especially indirect costs) that increase faster
than linearly. In the case of the exponential tail, large blackouts
become rarer much faster than blackout costs increase so
that the risk of large blackouts is negligible. However, in the
case of a power law tail, the larger blackouts can become
rarer at a similar rate as costs increase, and then the risk of
large blackouts is comparable to, or even exceeding, the risk
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of small blackouts [11]. Thus power laws in blackout size
distributions significantly affect the risk of large blackouts
and the evidence for power laws in real blackout data that
we address in this paper is pertinent. Standard probabilistic
techniques that assume independence between events imply
exponential tails and are not applicable to systems that exhibit
power tails.

Large blackouts are typically caused by long, intricate
cascading sequences of rare events. Dependencies between
the first few events can be assessed for a subset of the most
likely or anticipated events and this type of analysis is certainly
useful in addressing part of the problem (e.g. [26]). However,
this combinatorial analysis gets overwhelmed and becomes
infeasible for long sequences of events or for the huge number
of all possible rare events and interactions, many of which
are unanticipated, that cascade to cause large blackouts. One
aim of global complex systems analysis of power system
blackouts is to provide new insights and approaches that could
address these challenges. As a first step towards this aim, this
paper analyzes observed blackout data and suggests one way
to understand the origin of the dynamics and distribution of
power system blackouts. Indeed, we suggest that the slow,
opposing forces of load increase and network upgrade in
response to blackouts shape the system operating margins so
that cascading blackouts occur with a frequency governed by
a power law relationship between blackout probability and
blackout size. Moreover, we discuss the dynamical dependen-
cies and correlations between blackouts in the NERC data.

II. TIME SERIES OF BLACKOUT DATA

We have analyzed 15 years of data for North America
from 1984 to 1998 that is publicly available from NERC [1].
There are 427 blackouts in 15 years and 28.5 blackouts per
year. The average period of time between blackouts is 12.8
days. The blackouts are distributed over the 15 years in an
irregular manner. We have detected no evidence of systematic
changes in the number of blackouts or periodic or quasi-
periodic behavior. However, it is difficult to determine long
term trends or periodic behavior in just 15 years of data.
We constructed time series from the NERC data with the
resolution of a day for the number of blackouts and for three
different measures of the blackout size. The length of the time
record is 5479 days. The three measures of blackout size are:

1) energy unserved (MWh)
2) amount of power lost (MW)
3) number of customers affected.

Energy unserved was estimated from the NERC data by
multiplying the power lost by the restoration time.

III. ANALYSIS OF THE BLACKOUT TIME SERIES

In order to gain an understanding of the dynamics of a
system from analysis of a time series, one must employ
a variety of tools beyond basic statistical analysis. Among
other measures which should be employed, the tails of the
Probability Distribution Function (PDF) should be investigated
for normality and frequency spectra should be viewed in order
to begin to look at dependencies in the time domain. The
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Fig. 1. Log-log plot of PDF of the number of customers unserved comparing
the total data set with the data excluding the weather related events.

time domain is particularly important as the system dynamics
are expressed in time. Periodicities and long time correlations
must both be examined and compared to systems with known
dynamics. We will present details of the analysis of the PDFs
later; however, the first striking characteristic of the data is the
power law tail of these PDFs. This power law tail is shown
in Fig. 1, where we have plotted the PDF of the number of
customers unserved for all events (the squares) on a log-log
plot. The PDF falls off with a power of approximately –1.7
which implies a divergent variance. The PDF is clearly not
a distribution with exponential tails. In this paper, the PDFs
are non-cumulative probability density functions obtained by
binning the data.2 An alternative way to estimate the distri-
bution is to plot the number of blackouts with more than
n customers unserved against n to give the complementary
cumulative frequency shown in Fig. 3. The empirical data
in Fig. 3 falls off with a power of approximately –0.8 (all
tail points considered) or –0.7 (last 7 tail points neglected
due to sparse data). The relationship for an exact distribution
is that a power law exponent α in a PDF yields a power
law exponent of α − 1 in the corresponding complementary
cumulative frequency. Thus the power law exponents obtained
from Figs. 1 and 3 are consistent.

Looking in the time domain, a time series is said to have
long range dependence if its autocorrelation function falls off
asymptotically as a power law. This type of dependence is
difficult to determine because noise tends to dominate the
signal for long time lags. One way to address this problem is
the rescaled range statistics (R/S statistics) proposed by Man-
delbrot and Wallis [24] and based on a previous hydrological

2The bins are chosen to require a minimum number of points per bin.
The minimum number of points per bin is reduced when the weather-related
blackouts are excluded.
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Fig. 2. Log-log plot of PDF of number of line outages from blackout model
compared with binomial random variable with exponential tail.

Fig. 3. Complementary cumulative frequency of the number of customers
unserved.

analysis by Hurst [21]. The R/S statistics considers blocks of
m successive points in the integrated time series and measures
how fast the range of the blocks grows as m increases. The
calculation of the R/S statistics is further described in the
Appendix.

It can be shown that in the case of a time series X with
an autocorrelation function that has an algebraic tail, the R/S
statistic scales proportionally to mH , where H is the Hurst
exponent. Thus H is the asymptotic slope on a log-log plot
of the R/S statistic versus the time lag. If 1 > H > 0.5, there
are long range time correlations, for 0.5 > H > 0, the series
has long range anticorrelations, and if H = 1.0, the process is
deterministic. Uncorrelated noise corresponds to H = 0.5. A
constant H parameter over a long range of time lag values is
consistent with self-similarity of the signal in this range [32]
and with an autocorrelation function that decays as a power
of the time lag with exponent 2 − 2H .

We have determined the long range correlations in the 15
year blackout time series using the R/S method. The time
series has 5479 days and 427 blackouts. The calculated Hurst
exponents [21] for the different measures of blackout size
are shown in Table I. The H values are obtained by fitting
over time lags between 100 and 3000 days. In this range, the
behavior of the R/S statistic is power-like (Fig. 7). The values
of H obtained for all the time series are close to 0.6. This
seems to indicate that they are all equally correlated over the
long range. These values of H are somewhat lower than the
previously obtained values [6], but still significantly above 0.5.
Note that the “events” in the time series are the events that
have produced a blackout and not all the events that occurred.
The latter are supposed to be random (H = 0.5); however,
the events that produce a blackout may indeed have moderate
correlations because they depend on the state of the system.

TABLE I

HURST PARAMETER H FROM R/S ANALYSIS OF BLACKOUT SIZE TIME

SERIES

H
Events 0.62

Power lost 0.59
Customers 0.57

MWh 0.53

A method of testing the independence of the triggering
events has been suggested by Boffetta et al. [4]. They evaluated
the times between events (waiting times) and argued that the
PDF of the waiting times should have an exponential tail. Such
is clearly the case for the waiting times of sandpile avalanches
(Fig. 4). In the case of waiting times between blackouts, we
also have observed the same exponential dependence of the
PDF tail (Fig. 5). This observation is confirmed in [13]. This
strengthens the contention that the apparent correlations in
the events come from SOC-like dynamics within the power
system rather than from the events driving the power system
dynamics.

Examining the R/S results in more detail, Fig. 6 shows the
R/S statistic for the time series of the number of customers
affected by blackouts. The average period of time without
blackouts is 12.8 days, hence, in looking over time lags of
this order we typically find either one blackout or none. For
the shorter time lags less than 50 days, we are unable to
get information on correlations between blackouts because
the time intervals are too short to contain several blackouts.
We see a correlation between absences of blackouts, and
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Fig. 4. Distribution of waiting times between avalanches in a sandpile for
two values of the probability of adding grains of sand.

because these time intervals tend to only contain absences of
blackouts, we see H close to 1 (trivially deterministic). For
time lags above 50 days, the R/S shows a power behavior
and gives a correct determination of blackout correlation. The
R/S calculation is sensitive to this change in regime and there
is an obvious change of behavior for time intervals around
50 days. An alternative method of determining correlations
is the scaled window variance method. We do not use the
scaled window variance method in this paper because in this
method, the correlations between absences of blackouts skew
the correlations between blackouts at larger time lags [7].

IV. THE EFFECT OF WEATHER

Approximately half of the blackouts (212 blackouts) are
characterized as weather related in the NERC data. In at-
tempting to extract a possible periodicity related to seasonal
weather, we consider separately the time series of all blackouts
and the time series of blackouts that are not weather related.
An important issue in studying long range dependencies is
the possible presence of periodicities. Both R/S analysis and
spectral analysis of this data do not show any clear periodic-
ity. However, since the weather related events may play an
important role in the blackouts, one may suspect seasonal
periodicities. However, the data combines both summer and
winter peaking regions of North America. Because of the
limited amount of data, it is not possible to separate the
blackouts by geographical location and redo the analysis.
What we have done is to reanalyze the data excluding the
blackouts triggered by weather related events. The results are
summarized in Table II. As can be seen, the exclusion of
the blackouts triggered by weather related events does not
significantly change the value of H . When looking solely at
the blackouts triggered by weather related events, the value
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Fig. 5. PDF of the waiting times between blackouts
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Fig. 6. R/S for the number of customers affected by blackouts.

of H is closer to 0.5 (random events), although the available
data is too sparse to be sure of the significance of this result.

Another question to consider is the effect of excluding the
weather related events on the PDF. We have recalculated the
PDF for all the measures of blackout size when the weather
related events are not included. The PDFs obtained are the
same within the numerical accuracy of this calculation. This
is illustrated in Fig. 1, where we have plotted the PDFs of
the number of customers unserved for all events and for the
non-weather related events. Therefore, for both long range
dependencies and structure of the PDF, the blackouts triggered
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TABLE II

HURST PARAMETER H FOR MEASURES OF BLACKOUT SIZE COMPARING

ALL DATA WITH THE DATA EXCLUDING BLACKOUTS TRIGGERED BY

WEATHER

H H
all events non weather events

Events 0.62 0.62
Power lost 0.59 0.64
Customers 0.57 0.58

MWh 0.53 0.57

by weather events do not show any particular properties that
distinguish them from the other blackouts. Therefore, both
the long time correlations and the PDFs of the blackout sizes
remain consistent with SOC-like dynamics.

In addition to weather effects, one might expect spatial
structure of the grid to have an effect on the dynamics.
However, analysis of the NERC data by Chen and Thorp
in [13] suggests that similar results are obtained when data
for the eastern and western North American power systems
is analyzed separately. Since the eastern and western power
systems have different characteristics, this interesting result
tends to support the notion that there are some underlying
common principles for the system dynamics.

V. COMPARISON TO A SOC SANDPILE MODEL

The issue of determining whether the power system black-
outs are governed by SOC is a difficult one. There are no
unequivocal determining criteria. One approach is to compare
characteristic measures of the power system to those obtained
from a known SOC system. The prototypical model of a SOC
system is a one-dimensional idealized running sandpile [22].
The mass of the sandpile is increased by adding grains of sand
at random locations. However, if the height at a given location
exceeds a threshold, then grains of sand topple downhill. The
topplings cascade in avalanches that transport sand to the edge
of the sandpile, where the sand is removed. In the running
sandpile, the addition of sand is on average balanced by the
loss of sand at the edges and there is a globally quasi-steady
state or dynamic equilibrium close to the critical profile that is
given by the angle of repose. There are avalanches of all sizes
and the PDF of the avalanche sizes has an algebraic tail. The
particular form of the sandpile model used here is explained
in [25] and the sandpile length used in the present calculations
is L = 800. We are, of course, not claiming that the running
sandpile is a model for power system blackouts. We only use
the running sandpile as a black box to produce a time series
of avalanches characteristic of an SOC system.

It is convenient to assume that every time iteration of the
sandpile corresponds to one day. When an avalanche starts, we
integrate over the number of sites affected and the number of
steps taken and assign them to a single day. Thus we construct
a time series of the avalanche sizes. The sandpile model has a
free parameter p0, which is the probability of a grain of sand
being added at a location. p0 is chosen so that the average
frequency of avalanches is the same as the average frequency
of blackouts.
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Fig. 7. R/S for avalanche sizes in a running sandpile compared to R/S for
power lost in blackouts.

In evaluating the long range time dependence of the black-
outs, we use the rescaled range or R/S [24] technique described
earlier. As stated before, the R/S technique is useful in deter-
mining the existence of an algebraic tail in the autocorrelation
function and calculating the exponent of the decay of the tail
(see Appendix for details). The same R/S analysis used for the
blackout time series is applied to the avalanche time series.
Fig. 7 shows the R/S statistic for the time series of avalanche
sizes from the sandpile and for the time series of power
lost by the blackouts. The similarity between the two curves
is remarkable. A similarly good match of the R/S statistics
between the blackout and sandpile time series is obtained for
the other measures of blackout size.

Fig. 8 shows the PDF of the avalanche sizes from the
sandpile data together with the rescaled PDF of the energy
unserved from the blackout data. The resemblance between the
two distributions is again remarkable. The rescaling is neces-
sary because of the different units used to measure avalanche
size and blackout size. That is, we assume a transformation of
the form

P (X) = λF (X/λ) (1)

X is the variable that we are considering, P (X) is the
corresponding PDF, and λ is the rescaling parameter. If the
transformation (1) works, F is the universal function that
describes the PDF for the different parameters. Transformation
(1) is used to overlay the sandpile and blackout PDFs.

We can consider PDFs of the other measures of blackout
size and use transformation (1) to plot each of these PDFs with
the sandpile avalanche size PDF. In all cases, the agreement
is very good. Of course, the scaling parameter differs for each
measure of blackout size. The exponents obtained for these
PDFs tails are between –1.3 and –2. These exponents imply
divergence of the variance, one of the characteristic features
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Fig. 8. Rescaled PDF of energy unserved during blackouts superimposed on
the PDF of the avalanche size in the running sandpile.

of systems with SOC dynamics. In fact, divergence of the
variance is a general feature of systems near criticality. This
comparison of the PDFs of the measures of blackout and
avalanche sizes is useful in evaluating the possible errors in
the determination of the algebraic decay exponent of the PDFs.
One can see that for the large size events where the statistics
are sparse, there may be deviations from the curve. These
deviations can influence the computed value of the exponent,
but they are probably of little significance for the present
comparisons.

VI. POSSIBLE EXPLANATION OF POWER SYSTEM

SELF-ORGANIZED CRITICALITY

To motivate comparisons between power system blackout
data and SOC sandpile data, we suggest a qualitative descrip-
tion of the structure and effects in a large scale electric power
transmission system which could give rise to SOC dynamics.
The power system contains many components such as gener-
ators, transmission lines, transformers and substations. Each
component experiences a certain loading each day and when
all the components are considered together they experience
some pattern or vector of loadings. The pattern of component
loadings is determined by the power system operating policy
and is driven by the aggregated customer loads at substations.
The power system operating policy includes short term actions
such as generator dispatch as well as longer term actions
such as improvements in procedures and planned outages
for maintenance. The operating policy seeks to satisfy the
customer loads at least cost. The aggregated customer load
has daily and seasonal cycles and a slow secular increase of
about 2% per year.

Events are either the limiting of a component loading to a
maximum or the zeroing of the component loading if that

component trips or fails. Events occur with a probability
that depends on the component loading. For example, the
probability of relay misoperation [13] or transformer failure
generally increases with loading. Another example of an event
could be an operator redispatching to limit power flow on
a transmission line to its thermal rating and this could be
modeled as probability zero when below the thermal rating
of the line and probability one when above the thermal rating.
Each event is a limiting or zeroing of load in a component and
causes a redistribution of power flow in the network and hence
a discrete increase in the loading of other system components.
Thus events can cascade. If a cascade of events includes
limiting or zeroing the load at substations, it is a blackout.
A stressed power system experiencing an event must either
redistribute load satisfactorily or shed some load at substations
in a blackout. A cascade of events leading to blackout usually
occurs on a time scale of minutes to hours and is completed
in less than one day.

It is customary for utility engineers to make prodigious
efforts to avoid blackouts and especially to avoid repeated
blackouts with similar causes. These engineering responses
to a blackout occur on a range of time scales longer than
one day. Responses include repair of damaged equipment,
more frequent maintenance, changes in operating policy away
from the specific conditions causing the blackout, installing
new equipment to increase system capacity, and adjusting or
adding system alarms or controls. The responses reduce the
probability of events in components related to the blackout,
either by lowering their probabilities directly or by reducing
component loading by increasing component capacity or by
transferring some of the loading to other components. The
responses are directed towards the components involved in
causing the blackout. Thus the probability of a similar blackout
occurring is reduced, at least until load growth degrades
the improvements made. There are similar, but less intense
responses to unrealized threats to system security such as near
misses and simulated blackouts.

The pattern or vector of component loadings may be thought
of as a system state. Maximum component loadings are driven
up by the slow increase in customer loads via the operating
policy. High loadings increase the chances of cascading events
and blackouts. The loadings of components involved in the
blackout are reduced or relaxed by the engineering responses
to security threats and blackouts. However, the loadings of
some components not involved in the blackout may increase.
These opposing forces driving the component loadings up and
relaxing the component loadings are a reflection of the stan-
dard tradeoff between satisfying customer loads economically
and security. The opposing forces apply over a range of time
scales. We suggest that the opposing forces, together with the
underlying growth in customer load and diversity give rise
to a dynamic equilibrium and conjecture that this dynamic
equilibrium could be SOC-like. It is important to note that
this type of system organizes itself to an operating point near
to but not at a critical value. This could make the system
intrinsically vulnerable to cascading failures from unexpected
causes as the repair and remediation steps taken to prevent a
known failure mode are part of the system dynamics.
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We briefly indicate the roughly analogous structure and
effects in an idealized sand pile model. Events are the toppling
of sand and cascading events are avalanches. The system state
is a vector of maximum gradients at all the locations in the
sand pile. The driving force is the addition of sand, which
tends to increase the maximum gradient, and the relaxing force
is gravity, which topples the sand and reduces the maximum
gradient. SOC is a dynamic equilibrium in which avalanches
of all sizes occur and in which there are long time correlations
between avalanches. The rough analogy between the sand
pile and the power system is shown in Table III. There are
also some distinctions between the two systems. In the sand
pile, the avalanches are coincident with the relaxation of high
gradients. In the power system, each blackout occurs on fast
time scale (less than one day), but the knowledge of which
components caused the blackout determines which component
loadings are relaxed both immediately after the blackout and
for some time after the blackout.

TABLE III

ANALOGY BETWEEN POWER SYSTEM AND SAND PILE

power system sand pile
system state loading pattern gradient profile
driving force customer load addition of sand
relaxing force response to blackout gravity
event limit flow or trip sand topples

VII. CONCLUSIONS

We have calculated long time correlations and PDFs for
several measurements of blackout size in the North American
power transmission grid from 1984 to 1998. These long time
correlations and PDFs seem consistent with long range time
dependencies and PDFs for avalanche sizes in a running
sandpile known to be SOC. That is, for these statistics, the
blackout size time series seem indistinguishable from the
sandpile avalanche size time series. This similarity suggests
that SOC-like dynamics may play an important role in the
global complex dynamics of power systems.

We have outlined a possible qualitative explanation of the
complex dynamics in a power system which proposes some
of the opposing forces that could give rise to a dynamic
equilibrium with some properties of SOC. The opposing forces
are, roughly speaking, a slow increase in loading (and system
aging) weakening the system and the engineering responses
to blackouts strengthening parts of the system. Here we are
suggesting that the engineering and operating policies of the
system are important and integral parts of the system long-
term complex dynamics. Carlson and Doyle have introduced
a theory of highly optimized tolerance (HOT) that describes
power law behavior in a number of engineered or otherwise
optimized applications [5]. After this paper was first submitted,
Stubna and Fowler [33] published an alternative view based

on HOT of the origin of the power law in the NERC data.3

The PDFs of the measures of blackout size have power
tails with exponents ranging from –1.3 to –2 and therefore
have divergent variances. Thus large blackouts are much more
frequent than might be expected. In particular, the application
of traditional risk evaluation methods can underestimate the
risk of large blackouts. R/S analysis of the blackout time
series shows moderate (H ≈ 0.6) long time correlations
for several measures of blackout size. Excluding the weather
related blackouts from the time series has little effect on the
results. The exponential tail of the PDF of the times between
blackouts supports the contention that the correlations between
blackouts are due to the power system global dynamics rather
than correlations in the events that trigger blackouts.

The strength of our conclusions is naturally somewhat
limited by the short time period (15 years) of the available
blackout data and the consequent limited resolution of the
statistics. To further understand the mechanisms governing the
complex dynamics of power system blackouts, modeling of
the power system is indicated. There is substantial progress
in modeling and analyzing the approach inspired by SOC
outlined in Section VI [8], [9], [10], [11], [12], [17] and in
modeling blackouts and cascading failure from other perspec-
tives [14], [15], [16], [18], [19], [20], [27], [29], [30], [31],
[34].

If the dynamics of blackouts are confirmed to have some
characteristics of SOC, this would open up possibilities for
monitoring statistical precursors of large blackouts or control-
ling the power system to modify the expected distribution of
blackout sizes [11]. Moreover, it would suggest the need to
revisit the traditional risk analysis based on random variables
with exponential tails since these complex systems have statis-
tics with power tails.
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APPENDIX

Consider the time series X = {Xt; t = 1, 2, ..., n}. We
construct the series Y = {Yt; t = 1, 2, ..., n} that is the
original series integrated in time: Yt =

∑t
s=0 Xs. For the

series Y and for each m = 1, 2, ..., n a new series Y (m) =
{Y (m)

u ;u = 1, 2, ..., n/m} is generated. The elements of the
series Y (m) are blocks of m elements of Y so that Y

(m)
u =

{Y (m)
um−m+1, ..., Yum}. We then calculate the range Ri

m and
standard deviation Si

m within each of the n/m blocks of m
elements of Y (m), and compute for each block Ri

m/Si
m. The

R/S statistic as a function of the time lag m is then the average
m
n

∑n/m
i=1 Ri

m/Si
m.
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