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We describe new analyses and signatures of the self-organized critical one dimensional directed
running sandpile model of Hwa and Kardar [Phys. Rev. A 45, 7002 (1992)]. We present results for
extremely low levels of external forcing of this SOC model and show that correlations in the dynamics
exist over very long time scales regardless of how low this driving rate is. This demonstrates that
a SOC system has nontrivial dynamics even when the system’s events do not overlap in space or
time. A consequence of this is that the power spectral and rescaled range (R/S) analysis signatures
of the SOC time series for very weak forcing are very different from a simple random superposition
of pulses.
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I. INTRODUCTION

Self-organized criticality (SOC) [1, 2] is a dynamical
framework that describes how certain large-scale complex
behaviour can emerge from a system of small-scale sim-
ple interactions. SOC concerns the dynamics of nonequi-
librium systems that have a local critical threshold. If
this threshold is constant throughout the entire system,
then an average constant global gradient is maintained
through two opposing mechanisms: an external forcing
that increases the gradient and internal transport of the
quantity that reduces the gradient. The relaxation of the
gradient usually occurs in a series of aperiodic bursts,
called avalanches in SOC lingo. The avalanche mecha-
nism allows for stable gradients to exist in the system and
contrasts with linear diffusion, which constantly acts to
reduce any gradient. In SOC, the avalanches take place
on time scales that are much shorter than those of the
external forcing.

Books [3, 4] and numerous papers [5, 6] have been
written to give detailed overviews of SOC. To get a fla-
vor of the potential generality of the theory, an oft-used
shortcut is to look at examples of the different systems
that have been studied as possibly SOC. Such systems
include, among others, confined fusion plasmas [7–10],
the magnetosphere [11–13], tectonic systems [14], electri-
cal power networks [15–17] and communication networks
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[18]. Note how very different these systems are from each
other and that entire fields of study are devoted to sep-
arately understanding them. In short, what all of these
systems seem to have in common are gradients that build
up and persist and are then reduced in relatively quick
bursts of activity. The signatures of some measures of
this avalanching activity are remarkably similar in sys-
tems proposed as SOC.

SOC may be, then, a common mechanism in many
different physical systems. To investigate whether or not
a system is consistent with SOC, a defined model must
be used to compare its signatures and features with those
of the system under study; there are many SOC models.
The rest of this paper is devoted to analyzing one such
model, the one dimensional directed running sandpile.

[19] studied this model for strong external forcing and
found that when avalanche events overlap in space and
time there is a hydrodynamic regime of intermediate time
scales over which long time correlations in the dynam-
ics exist. These time scales are greater than the longest
duration of a single avalanche and the power spectrum
in this region is shown to scale as 1/f . This is impor-
tant because power law scaling of the spectrum is one
of the common features of systems proposed to be SOC
and the specific 1/f scaling of many systems has been a
longstanding puzzle since before the introduction of SOC
(see, for instance, [20]). [19] also looked at weak forcing,
when single events do not overlap in space or time, and
found that the signatures of their sandpile model at weak
forcing are consistent with those of random superposi-
tions of pulses (an analytical treatment of this is given
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in [21] and [22]). That study concludes that overlapping
is necessary in order for this system to have “interesting
temporal fluctuations such as 1/f noise. . . .”

In contrast, we will show that interesting, nontrivial
dynamics can exist at all driving rates in this system,
including extremely weak forcing when single events do
not overlap in time. To do so we have to probe very long
time scales where the dynamics and effects of weak forc-
ing appear. We find that the strong forcing case studied
previously is the limiting case of the more fundamental
weak forcing results presented here. Specifically, we will
show that a SOC time series cannot simply be approx-
imated by a random superposition of pulses or signals.
Long time correlations among separate avalanches always
exist in the series regardless of the strength of the exter-
nal forcing and regardless of whether or not avalanches
overlap in time. The correlations are due to memory
stored in the local gradients of the system. We quan-
tify correlations with the power spectrum and rescaled
range analysis and find that the latter is a more con-
sistent measure of correlated dynamics than the former.
The comparison of these two measures reveals that the
dynamics that produces a 1/f region at high drive is also
present at low drive, though now the spectrum scales as
f−β with β < 1.

II. MODEL

The prototypical SOC model is known as the sandpile.
The name was chosen to produce a good, simple mental
picture, not because it necessarily models real sandpiles.
There are many varieties of sandpile models [2, 4, 23];
we will only describe the one dimensional directed run-
ning sandpile of [19]. In addition to general SOC theory,
this model is useful in studying physical systems where
the dynamics can be reduced to a one dimensional ap-
proximation. One example of this is a fusion plasma
confined in a tokamak [7, 24], where, because of toroidal
and poloidal symmetries, plasma transport can be ap-
proximated by a steady gradient in one dimension. The
single dimension can represent gradient-driven turbulent
transport of plasma, heat and density from the hot dense
core to the cooler, less dense edge of the tokamak.

Consider a single column of L cells. Each cell con-
tains an integer number of “sand grains”; this number
is the height of the cell. Sand is added to each cell by a
“rain” U0 from above. That is, at each time step for each
cell, there is a probability 0 < P0 < 1 that U0 grains of
sand will be added to it. The units of P0 are grains per
time step per cell. Average input current into the entire
system is then JIN = P0L grains per time step. The lo-
cal gradient Zn is the difference in height between two
neighboring cells. If this local gradient exceeds a critical
gradient Zcrit then an avalanche occurs. An avalanche
stabilizes the local gradient by transferring Nf grains of
sand from the higher cell to the lower. This avalanche
can make Zn+1 and/or Zn−1 unstable at the next time

step so that the avalanche spreads to other cells. In this
way, spatially and temporally extended events in a sys-
tem can occur. This sandpile can be extended to two or
more dimensions [2] but, again, we will only discuss the
one dimensional case.

The time scales of the external drive and the internal
relaxations are well-separated in a defined SOC system.
For the sandpile, this can be accomplished in two ways:
by using the zero drive model or by using the running
sandpile model with low driving rate. In the zero drive
model, the rain of sand is suspended (P0 → 0) when an
avalanche is taking place. This ensures the separation of
time scales needed in a SOC process but clouds the mean-
ing of one time step. In contrast, time is well-defined
in the running sandpile, where the rain of sand contin-
ues with the same probability even when an avalanche
is taking place. For this study, the fixed parameters are
U0 = 1, Zcrit = 8 and Nf = 3. We explore a parameter
space of the two remaining parameters, system size L and
probability P0.

The time series that we analyze is called the flips—all
of the analyses in this paper are of this specific type of
sandpile data. Flips are defined as the total number of
unstable sites (where Z ≥ Zcrit) at each time step in a
sandpile model in steady state. An unstable cell flips Nf

grains of sand to the next cell. The total flips at each
time step can be thought of as the instantaneous (poten-
tial) energy dissipation in the system. Avalanches in a
flips time series appear as structures—multiple sequential
nonzero flips separated by periods of inactivity, or quiet
times. Quiet times are Poisson distributed because of
the random drive of the system. See [25, 26] for detailed
discussions of quiet times.

III. METHODS

This model is a dynamical system; a characteristic
of such systems that can quantify the dynamics is long
time correlations. We study long time correlations with
the power spectrum and rescaled range (R/S) analy-
sis. The power spectrum is defined as the square of
the Fourier transform, S(f) = |F (f)|

2
, where F (f) =

N−1
∑N−1

t=0 X(t)e−i2π(f/N)t. For a finite real time series,
the spectrum also equals the Fourier transform of the
autocorrelation function of the time series.

What does the power spectrum say about correlations
in a series? More appropriate here, what does a power
spectrum that scales as a power law f−β have to say
about correlations in a series? We can qualitatively an-
swer this. For β > 0, the low frequencies are more impor-
tant in the dynamics so the series tends to look relatively
smooth and trends persist. Such series are said to be cor-
related. For β < 0, the high frequency components are
more important and the series is very rough. Trends do
not persist long and the series is called anticorrelated.
Truly random noise, with neither correlations nor anti-
correlations, has a spectrum that scales with β = 0.
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Another measure of correlations is the Hurst exponent,
H ∈ (0, 1) [27]. A value of H > 0.5 implies correlated
dynamics, H < 0.5 anticorrelated and H = 0.5 uncorre-
lated. Opinions in the literature differ over which method
is best for calculating H . Each of the various methods
has strengths and weaknesses. We measure H by using
R/S analysis [27–29], though there are other techniques,
such as scaled window variance [30], detrended fluctua-
tion analysis [31] and structure functions [32]. For ref-
erence, an application of using R/S analysis to calcu-
late H is in evaluating various computer algorithms for
pseudorandom number generators (PRNGs) [33]. In that
study, the quality of various PRNGs is evaluated based
on the length of a data series that can be produced where
H ≈ 0.5.

The rescaled range is defined as R′(τ) ≡ R(τ)/S(τ),
where S(τ) is the standard deviation and

R(τ) = max
1≤k≤τ

W (k, τ) − min
1≤k≤τ

W (k, τ) (range),

W (k, τ) =
k

∑

t=1

(Xt − 〈X〉τ ) (cumulative deviation) and

〈X〉τ =
1

τ

τ
∑

t=1

Xt (mean).

If the rescaled range of the time series scales as R′(τ) ∼
τH , the slope of the plot of R′(τ) versus the time lag τ
on a doubly logarithmic plot is the Hurst exponent, H .
We use both the power spectrum and R/S analysis to
characterize correlations.

IV. RESULTS

The study reported here is of the SOC sandpile model
for very low external forcing. Very low drive can be de-
fined empirically by examining the flips time series and
choosing cases where individual avalanches are distinct
and well-separated by quiet times, that is, where there is
no overlapping of events.

In [34], we show that this criterion is satisfied by
P0L

2 � 1, where P0L
2 is the effective driving rate. We

use P0L
2 instead of the average input rate P0L because

the former takes into account both the total flux into
the system and the system size itself. This is important
because a given total flux P0L that, for a large system,
is weak enough that avalanches do not overlap in time
may actually be very strong for a much smaller system
so that avalanches do overlap in time. Therefore, P0L
is effectively larger for a smaller system. Using the ef-
fective driving rate allows systems of different sizes and
strengths of forcing to be compared.

Figure 1(a) shows a flips time series of a very low drive
case for L = 200 and P0L

2 = 0.2. As seen in the in-
set plots, the characteristic shape of an avalanche is a
trapezoid because of the rules of the sandpile. In other
words, the pulse shape is due to the lowest level physics

of the system. These trapezoids are the building blocks
of the sandpile time series. An avalanche grows in size
with time; this corresponds to the left sloping edge of
the trapezoid. Once it reaches its maximum size the
avalanche either immediately shrinks or stays the same
size for a number of time steps; this latter case corre-
sponds to the flat part of the trapezoid. In either case,
the avalanche shrinks in size with time until it ends; this
process corresponds to the right sloping edge of the trape-
zoid. Now the flips are zero again, indicating no unstable
cells in the sandpile. Notice that no spatial information
is conveyed by a flips time series. An avalanche in the
sandpile can move up the pile, down the pile or stay in the
same location as it grows and then shrinks in size. Also,
multiple avalanches can occur simultaneously in distant
regions of the system (though not typically in the low
drive case). But each of these examples can appear iden-
tical in the flips time series (Figure 1(b)).

The power spectrum and R/S analysis for flips time
series of different sizes of sandpile are shown in Figure 2.
Five distinct regions are seen in the power spectrum and
six in the R/S. We label the different regions and break-
points as in the sketches in Figure 3 and analyze them
below. The cartoons are drawn in the spirit of Figure 6
of Reference [19]. Short annotations indicating the cause
of each region are printed on each cartoon. The most
interesting and significant region is the SOC region D: it
is the only region that is due simply to long time corre-
lations in the system. Though SOC implies more than
just long time correlations, that specific characteristic is
at the root of region D so our naming convention in this
paper is to refer to this region as the SOC region. To
fully understand its causes, we first explain regions A, B
and C.

A. Regions A and B: pulse shapes

In the spectrum, regions A and B scale as ∼ f−β with
β ≈ 3.4 and β ≈ 2. These regions are due to the single
trapezoidal pulses that represent avalanches in the time
series. This was noted for the high drive case in [19] for
a single region A but here we add to that an analysis of
the slopes and breakpoints of both regions. To isolate
the effect of the pulses from the dynamics, we randomly
shuffle the time series, keeping the trapezoids intact but
placing them randomly in time. The spectrum and R/S
analysis are both shown in Figure 4, along with the spec-
trum of the original unshuffled time series. The spectra
and R/S plots of the shuffled and SOC data are identical
at short time scales because they share identical shapes.
That the values of T−1

B from the two series—SOC and
shuffled—are identical says that the reason is not due to
dynamics but instead to the shapes of the pulses.

The R/S analysis shows a strongly correlated Hurst
exponent, H ≈ 0.9, up to TB because a defined shape,
such as a trapezoid, is correlated with itself up to its
width. There is no breakpoint between regions A and B
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FIG. 1: Partial flips time series from running sandpile model for low drive and space-time diagram and flips time series of
separate avalanches. There are approximately 30 distinct and separated events in ∼ 106 time steps. In space-time diagram,
solid circles in upper figure represent unstable (avalanching) cells. Flips time series, lower figure, is a record of total number of
unstable cells at each time step. Structures in flips time series do not give information of location, size, number or direction of
avalanches, since the same structure can be produced in multiple ways.
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in the R/S analysis because this only measures correla-
tions not shape. We test this by replacing all trapezoids
in both time series with rectangles of the same width
and height as the corresponding trapezoid. The result-
ing R/S analysis is unchanged, since it still simply mea-
sures the correlations of the pulses with themselves. The
cutoff TB (and T−1

B ) remains the same as before since
the widest pulse has not changed. The only difference is
in the power spectrum, where regions A and B are re-
placed by a single region that scales as f−2. This is a
demonstration of the results of [21] and [22].

Three features must be discussed to fully explain the
high frequency regions of the spectrum: 1) the break-
point T−1

B between regions C and B; 2) the presence of

two power law scaling regions above T−1
B and the break-

point between them; and 3) the slopes of regions A and
B. Breakpoint T−1

B is due to the average duration of an
avalanche, the two power law regions A and B are due
to the trapezoidal pulse shape of an individual avalanche
and the slopes of these two regions are due to the super-
position of many nonoverlapping individual avalanches
(trapezoids).

To explain these high frequency regions, we note that
the power spectrum of a single trapezoid of width W =
2(a + b) and height A, as defined in Figure 5, is

Ptrap(ω) = |Ftrap(ω)|2 =
{

2A

bω2
[cos(ωa) − cos (ω(b + a)) + bω sin(ωa)]

}2

.

For convenience, we have used ω = 2πf . The scal-
ing behaviour of this function depends upon the ratio
a/b. When a/b / 1 the trapezoid is more triangular
and two scaling regions of ω0 and ω−4 appear with a
breakpoint between them at ω ≈ W−1 ≈ b−1. (Figure
5). When a/b � 1 the trapezoid is more rectangular
and three scaling regions appear with two breakpoints,
ω1 ≈ W−1 ≈ a−1 and ω2 ≈ b−1 > a−1. As in the more

triangular case, the lowest and highest regions scale as
ω0 and ω−4, respectively but in the new middle region
the spectrum scales as ω−2.

Since there are three scaling regions in the sandpile
spectra that scale similarly to those of a single trapezoid,
we conclude that most of the avalanches have durations
much longer than the sum of their growth and decay
times, as this is the a/b � 1 condition for a trapezoid.
Therefore the first breakpoint T−1

B must be a measure
of the average duration. TB is on the same order as but
less than L, since the majority of avalanche durations
will be less than the system size. (Some can be larger
because occasional large continuous events propagate up
and down the sandpile, like waves sloshing back and forth
in a tank.)

The slope of the spectrum in region A (≈ 3.4) is flatter
than that found for a single trapezoid (= 4) because of a
process that ‘contaminates’ the f−4 spectrum with f−2
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triangular pulses and power spectra of 5 trapezoids with
changing a and b.
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and f 0 contributions. Not all of the trapezoids in the
time series are of width TB ≈ L. Most are smaller so
that the cutoff in frequency space for their spectra will
be at higher frequencies. That is, the cutoff due to, say,
a trapezoid of width L/n occurs at n times the frequency
of that due to a large trapezoid of width L. This means
that the f−2 and f 0 regions of the smaller pulses occur
at higher frequencies and tend to reduce β = 4 of the
larger pulses. While this flattens the slope in region A it
does not do the same in region B.

Before leaving regions A and B we address two of
the assumptions of [21] and [22]: 1) events are well-
approximated as rectangular pulses and 2) events in a
superposition are random and independent. These as-
sumptions are not appropriate for the flips time series of
a SOC sandpile model. The first of these is contradicted
by the high frequency β ≈ 3.4 region of the sandpile spec-
trum. If the fundamental pulse shape were rectangular,
then this region would be a continuation of the middle
β ≈ 2 region; there would be only two regions (count-
ing the flat one for ω � ω0). This is not just trivia or
a pedantic argument to stake a claim for the ‘proper’
pulse shape for the sandpile. Instead, it is a statement
of the lowest level physics of the system. The high fre-
quency regions of the sandpile spectrum scale as they do
because of the trapezoidal pulse shapes. Similarly, the
spectra of systems (SOC or otherwise) with different low
level physics and different fundamental pulse shapes may
scale differently.

We have already touched on the other assumption, that
events in a superposition are random and independent.
This is not the case in the SOC sandpile, as shown by
the comparison of the spectra of shuffled and unshuffled
pulses in Figure 4. Memory stored in the sandpile gradi-
ents create correlations among avalanches. For this very
low drive case, the difference in spectra due to this mem-
ory appears at very low frequencies; we will discuss this
further in Section IV C. But since at high frequencies
(short time scales) the spectra of correlated pulses are
identical to the spectra of random pulses and since be-
fore this study the necessary long, low-drive time series
had not been seen, this assumption of randomness had
made sense.

B. Region C: quiet times

This is a region not previously described; it is due to
quiet times, which are periods with no avalanches [25, 26].
Region C scales as f 0 in the power spectrum and as
H ≈ 0.5 in the R/S analysis, both signatures of an un-
correlated process. This region reflects the random ex-
ternal addition of sand to the system, where avalanches
are randomly triggered. Beyond the time scale of the
largest single avalanche, TB, there can be a period where
the correlations are dominated by the random trigger-
ing. The width of region C is inversely related to the
driving rate. Thus, the lower the driving rate, the fewer

avalanches occur in a given time period and the longer
the system must wait for enough avalanches to occur to
correlate with each other. The cutoff, TC, is a measure of
a minimum time needed for enough avalanches to occur
that are correlated with each other.

Since the power spectrum is also the Fourier trans-
form of the autocorrelation function, visualizing the au-
tocorrelation process can help in understanding why the
spectrum is flat and H ≈ 0.5 on these time scales. Con-
sider a time series of length T0 ≈ TC from the low drive
sandpile. This series consists of trapezoidal pulses, rep-
resenting avalanches, alternating with flat quiet time re-
gions, representing inactivity in the sandpile. Now pic-
ture the autocorrelation process, where a copy of the se-
ries is shifted by a time lag τ and multiplied by the orig-
inal series; the resulting product is then summed. Up
to a time lag τ ≈ TB, pulses overlap with themselves,
producing the correlations of regions A and B described
in Section IV A. But since average quiet times TC are
longer than average avalanche durations TB, for time lags
TC ' τ ' TB pulses in the shifted copy of the series now
overlap quiet times in the unshifted series. When these
two series are multiplied, the pulses are cancelled by the
quiet times. This is, of course, an average behaviour in
the same way that in a truly random time series, troughs
and peaks cancel each other out on average in the au-
tocorrelation. The difference now is that for time lags
τ > TC (and for a longer time series), the pulses begin to
correlate with other pulses that occur, on average, more
than TC time steps later. This correlation is due to the
memory stored in the local sandpile gradients, discussed
below.

Even if the quiet times were greatly reduced or com-
pletely removed, correlations would not immediately be-
gin at TB because successive avalanches in time usually
take place in different spatial regions of the sandpile.
These spatially separated but temporally close events
do not affect each other on short time scales. But an
avalanche does affect the next event that occurs in the
same spatial neighborhood. Analogously (and simplisti-
cally), one might assume that a small earthquake located
at one end of a 1,000 kilometer fault is not related to one
that occurs one hour later at the other end of the same
fault. However, through a local shift in stress/strain the
first temblor is almost surely connected to another earth-
quake only 10 kilometers away that also occurs one hour
later.

We test this by removing all of the quiet times from the
flips time series and comparing the spectra of the two se-
ries (Figure 4). Regions A and B are unchanged since the
same shapes are still in both series. Region C has been
essentially eliminated, though a vestige of its former self
remains because correlations among successive events do
not usually occur. In the R/S analysis, this region is too
small to be identified when the quiet times are removed.
The region’s disappearance in R/S is consistent with its
shrinkage in the spectrum.

This test also reveals the link between the running
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sandpile and the zero drive sandpile of [35], where the ad-
dition of sand is suspended during an active avalanche.
The spectrum and R/S analysis of the zero drive case
are identical with those of the low drive case with quiet
times removed. This makes sense, since the zero drive
sandpile has very few quiet times by construction, as
sand is always added during a time step when there is
no avalanche. This prevents long periods of inactivity.
In contrast, in the running sandpile there is always a fi-
nite probability of a grain of sand not falling during a
time step. Since at low drive this probability increases,
quiet times can become quite large. The important sim-
ilarity between the two cases, though, is that there are
few or no overlapping avalanches. When an avalanche is
initiated the probability is low (nonexistent in the zero
drive case) that another avalanche will initiate before the
first one ends. We emphasize this to introduce the next
section, which shows that overlapping of events is not
necessary to produce correlated dynamics.

C. Region D: SOC and correlated events

The physics of this region is the main point of this pa-
per. Region D is the only true dynamical SOC region
in the sense that its signatures arise solely from inter-
actions and correlations among separate events in the
system. On the time scales in this region, the signatures

reflect only long time correlations and nothing about pulse

shape, quiet times, random superpositions, overlapping of

pulses or system size. Because the high frequency end of
this region is due to driving rate and the low frequency
end is due to the finite capacity of the sandpile, larger
systems have larger regions D. The limiting extension is
that a system of infinite size would have a region D that
extends to infinitely low frequencies and there would be
no regions E or F.

For all cases in the low drive regime, regardless of sys-
tem size, we find H ≈ 0.75 in region D, indicating long
time correlations among distinct and separate events.
This region exists on time scales far greater than the
maximum duration of an individual avalanche (TB) so
the correlations must arise from the interactions among
those distinct events. But since there is no (or very little)
overlapping in the low drive regime the correlations must
be due to the specific order of events that occur in the
sandpile. This order is due to memory in the system.

Memory in the sandpile is retained in the heights (and,
therefore, the local gradients) of each cell. Since quiet
times are the lack of any activity, they play no role in
the memory. That is, whether quiet times are left to
evolve naturally or are completely removed or are even
imposed artificially and randomly (with a Poisson distri-
bution) between events, the same sequence of avalanches
(statistically) will occur based on the dynamical rules of
the sandpile. If quiet times grow extremely long because
the drive is so low then this simply means that region
C will extend to lower frequencies before the inevitable

region D begins. On the other hand, if quiet times grow
either very short or nonexistent, because of high drive,
then the simple pulses discussed here will overlap, leading
to a regime with different characteristics (see [34]).

Still, though, how does this memory lead to positive
correlations? This question is equivalent to: why does an
avalanche now increase the probability of an avalanche
later even though the random drive is unchanged? Con-
sider the initiation of an avalanche, which, by definition,
occurs after a quiet time when a grain of sand from the
random external drive is added to a cell n that has slope
Zn = Zcrit − 1. After the addition of sand, that cell is
critical and it then relaxes to Zn = Zcrit−Nf by dumping
Nf grains to the cell below. The slope in cells n − 1 and
n + 1 have increased by Nf as flux is transported down
the gradient. If either of their slopes were greater than
Zcrit −Nf before this toppling, then one or both of them
are now critical and the avalanche continues to propagate
up and/or down the sandpile. If, however, their slopes
were less than Zcrit −Nf , then the avalanche would stop
but their slopes would be closer to critical by an amount
Nf , making an avalanche more likely to occur there the
next time sand is added (Figure 6).

This is the root of the positive correlation: when an
avalanche ends, the cells at the endpoints of its active
zone are closer to critical and are more likely to be the
initiation point of another avalanche. This, also, is the
basis for memory in the system: a cell “remembers” that
an avalanche just stopped there and “knows” that it
will initiate an avalanche with the next slope increase
from either random drive or from another neighboring
avalanche. Regardless of how long the intervening quiet

time is between two events, they are correlated in the

same way. Such a process can easily be pictured for
a natural system, where disturbances propagate to some
finite extent and leave the gradients at their endpoints
greater than before the event.

Though events are triggered at random intervals, the

event time series is not random. That is, correlations
exist among separate events. We show this by using the
time series of shuffled pulses as before, Figure 4. Regions
C, D, E and F collapse into a single uncorrelated region
for all time scales beyond TB, where the shuffled series is
seen to have a f 0 spectrum down to the lowest frequen-
cies and a Hurst exponent H ≈ 0.5 to the longest time
scales. This is in contrast to the spectrum of the sand-
pile series, which shows structure in the spectrum at low
frequencies and H 6= 0.5 at long time scales. A random
time series is known to have a spectrum that scales as
f 0 and H = 0.5 so this shows that the SOC series is not
simply a random superposition of pulses.

This is remarkable. Given N pulses from a power law
pdf in a time series there are N ! possible ways in which
they can be ordered. The sandpile dynamically selects
one of just a relatively few such orderings that give cor-
relations and structure in the R/S analysis and spectrum.

To show that the correlations are among the separate
events and that quiet times have no role in these corre-
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At time step T
this column is
unstable so it
will avalanche to
the next cell.

It will avalanche
to the next cell,
leaving the new
cell critical.

When a grain
falls at T + n . . .

this column will
avalanche because
the previous
avalanche at T
left it critical.

The two events
are correlated
regardless of how
large n is.

FIG. 6: Correlations between avalanches because of memory in local gradients.

lations, we return to the time series with all quiet times
removed. As seen in Figure 4, region C disappears. That
is, the H ≈ 0.5 region is replaced by a H ≈ 0.75 region.
We take this to mean that the H ≈ 0.75 region D of
the original data (with quiet times) has moved to shorter
time scales due to the removal of quiet times and the con-
comitant shortening of the series. But the correlations
among events must remain the same since neither their
order nor their sizes have changed. Only their frequency
is different and this is reflected in the same H ≈ 0.75 re-
gion at shorter time scales. This value of H holds for this
region regardless of system size or driving rate, indicating
that H ≈ 0.75 is a robust signature of SOC dynamics.

Understanding the power spectrum for this region is
not as simple as for the R/S analysis. The slope of this
region, β, changes with driving rate and with system size,
as well as with the removal of quiet times. As an example
case, we examine a sandpile of L = 200 and JIN = 10−3

and see that β ≈ 0.45. For the first of the two tests
above, shuffling the pulses, we see similar behaviour to
that in the R/S analysis. Namely, region D disappears
or merges with regions C, E and F, leaving one large
region of spectrum that scales as f 0, the signature of
uncorrelated random noise. Again, shuffling the individ-
ual avalanches destroys the sandpile-selected order and
eliminates all long time correlations.

The results of the second test are more interesting:
removing the quiet times produces a 1/f region. That is,
when quiet times are eliminated, the correlations among
the events go to shorter time scales (higher frequencies),
as described above. But the slope of region D changes
from β ≈ 0.45 to β ≈ 1.

This implies that a 1/f region is not a necessary sig-
nature of SOC dynamics. But the SOC dynamics and
events that produce a 1/f signature are present at low
drive when the f−β region appears with β < 1. Even as
β changes, though, the Hurst exponent remains constant.

Recall that the low drive case with quiet times removed

was shown to be dynamically equivalent to the zero drive
case. Now we see that this zero drive case, which is the
original 1D model of [1, 2], modified by [35] to restrict
Nf > 1, does contain a 1/f region. The search for an
explanation of such a region was one of the original mo-
tivations behind SOC.

Since the same correlations among the same events still
hold, we interpret this behaviour of β and H to indi-
cate that R/S analysis is a more robust measure of cor-
relations among events than the power spectrum. The
spectrum, though, may be a good measure of amount of
overlap and/or effective drive.

The question of why the slope of region D in the spec-
trum changes to 1/f when the quiet times are removed
is puzzling. It is not due to the conservation of the inte-
grated power of the shorter time series; this can be calcu-
lated using the Parseval-Rayleigh Theorem [36]. Though
not yet completely understood, we feel that this change
lies at the root of the 1/f question. We discuss the issue
of changing β and constant H further in [34].

D. Region E: anticorrelated events

This is the discharge event region well-studied by [19]
for high drive. The same process drives both the low and
high drive cases, namely the finite capacity sandpile even-
tually fills up and empties out in great system-wide dis-
charges. (Again, a sandpile of infinite size would not have
this region.) The finite sandpile is always being driven
towards a globally critical slope. Once all or almost all
cells have slope Zcrit − 1, a keystone toppling, usually
near the bottom, will produce a system-size avalanche
or a rapid succession of smaller avalanches that removes
enough sand so that the slopes at all sites are reduced to
much less than critical (≈ Zcrit −Nf). Once such a large
event occurs, it is unlikely that one will happen again
for a long time. Hence, large events are anticorrelated;
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FIG. 7: Breakpoint of beginning of anticorrelated region ver-
sus driving rate for three different system sizes. Solid lines
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the signature of anticorrelated dynamics is β < 0 in the
spectrum and H < 0.5 in R/S analysis. Both signatures
are seen in the sandpile.

Note that these large discharge events are not neces-
sarily a single avalanche. While such an event is possible,
a discharge event can comprise many smaller avalanches
that occur over a short time span. The key point is that
both types of discharge events effectively reset the sys-
tem by relaxing the near-critical local gradient to much
less than critical at all or most locations.

After a discharge event, the sandpile fills up, on av-
erage, in at least TE and at most TF time steps, so the
breakpoints defining this region can be calculated. The

maximum sandpile capacity is Cmax = ZcritL
2

2 . After a
systemwide event, the total mass is reduced to approxi-

mately Cmin = (Zcrit−Nf )L
2

2 . The minimum time needed

to refill to maximum is then Tre,min = NfL
2

2P0L . This ex-
pression is plotted in Figure 7 and is seen to agree with
the breakpoint data of TE versus P0L.

The above Tre,min is a minimum time and, hence, is

related to a maximum frequency, T−1
E . To calculate the

minimum frequency, T−1
F , we notice that since sand con-

tinues to leave the sandpile at the bottom during the
refilling process, Trefill is usually greater than Tre,min.
Though the sandpile is in steady state in the longest time
scales, at some smaller ones flux into the system exceeds
flux out. The reason for this is that sand falls into all
cells with equal probability from the random drive but
sand can only leave the system through the bottom cell.
In the SOC region D, there is a finite time and a con-
voluted path for sand to travel from where it initially
lands to where it exits at the bottom. This time is much
slower when the system as a whole is farther from criti-
cal (region D). But once all cells are critical, this time is
much shorter and one large avalanche (or rapid succes-
sion of many) is the very efficient mechanism that quickly
removes much mass and keeps the sandpile in a steady

state over the longest time scales. At this point, though,
we have not derived breakpoint TF.

Beyond breakpoint T−1
F , at the lowest frequencies, the

spectrum is flat; the following is conjecture about its
cause and limits. The flat spectrum is a reflection of the
random drive of the system on the longest time scales
since all dynamics is on time scales much smaller than
those in this region. This is the extent of the memory
process discussed in regards to region D. That memory
is eventually erased by the system-wide events which tend
to destroy the record of events stored in the heights of
each cell. The memory is shuffled by the random drive
at time scales longer than TF. Region F extends to in-
finitely low frequencies; there are no further dynamical
regions below it.

V. CONCLUSIONS

We have studied the one dimensional directed running
sandpile at very low drive and have shown that correla-
tions from a memory mechanism in SOC dynamics pro-
duce nontrivial signatures in the power spectra and R/S
analysis of flips time series. The memory is stored in the
local gradient of each cell, regardless of driving rate. The
signatures of the correlations appear at longer time scales
for lower external forcing. A consequence of this is that
a time series for any system, be it a defined SOC model
or a real physical system suspected of being SOC, can be
too short to see the correlation signatures and thus could
be mistaken for a simple random time series. Given long
enough time series, a very distinct difference can be seen
between the signatures of random data and the sandpile
data. The sandpile chooses the particular size, order and
separation of events in a way that is very different from
any random combination of size, order and separation.

Multiple distinct power law regions are found in spec-
tral and rescaled range analysis of the SOC avalanche
time series but only one of these (region D) is due solely
to correlations among events. Its signature is a power law
region in the spectrum that scales as f−β with 0 < β ≤ 1
and a Hurst exponent H ≈ 0.75. An infinite sandpile
would have infinite capacity and, thus, have no discharge
events. Therefore the SOC region D would extend to
infinitely long time scales.

Part of the allure of SOC has been the lack of tuning
required for the system to be critical. By probing the low
drive system at very long times we have shown that over-
lapping of events and, therefore, tuning of the external
forcing is not necessary in order to have SOC dynamics.
Regions of nontrivial f−β are seen at very low frequen-
cies. This indicates that in a SOC system avalanches

always correlate over very long times even when they do

not overlap in time. It also shows that tuning of the
drive is not necessary for a SOC system to be in its self-
organized critical state, as the memory mechanism is al-
ways present in the gradients regardless of how slowly or
quickly sand is added.
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Signatures of these long time correlations in the form of
power laws in the spectra and R/S analysis are present at
all drives. In a sense, the signatures at low drive are more
fundamental than those at high drive because the actual
time series are composed of the basic non-overlapping
events of the SOC system. These events contain all of the
relevant dynamics and are the building blocks to which
the title refers.
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