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Abstract

The nonlinear behavior of the interchange mode in the LHD plasma depends on the overlap

of the vortices with different helicity. If the vortices are separated in the radial direction, each

mode saturates mildly with generating the local flat regions in the pressure profile. In the case

of the significant overlap of the vortices, appearance of large scale convection results in sudden

global reduction of the pressure. Sequence of the saturated pressure profile in the increase of

beta can suppress the overlap. Self-organization of the pressure profile to suppress the overlap

of the vortices can be the stabilizing mechanism in the LHD plasma.
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1 Introduction

In the Large Helical Device (LHD), the average beta value of 〈β 〉 = 3.2% was success-

fully achieved in the configuration with the inward shift of the vacuum magnetic axis[1]. In

order to study the magnetohydrodynamic (MHD) stability of the LHD plasma, the linear theory

was applied assuming a smooth pressure profile at first. Figure 1 shows the Mercier unstable

region[2] for the pressure profile of

P = P0(1−ρ2)(1−ρ8). (1)

This profile is consistent with the experimental results for the Shafranov shift at low beta[3].

The beta value at the magnetic axis is roughly scaled as β0 � (1/2)〈β 〉 for this pressure profile.

This figure shows the core region is quite unstable for 〈β 〉 < 1.5%. Also, the linear analysis

by using the RESORM code[4] showed that the low n ideal interchange modes resonant at the

Mercier unstable region are linearly unstable[5], where n denotes the toroidal mode number.

To explain the discrepancy between theory and experiment it is necessary to invoke the

existence of a stabilizing mechanism. The iteration of equilibrium calculation with the VMEC

code[6] and the linear stability analysis with the RESORM code showed that the local flattening

of the pressure profile effectively stabilizes the interchange mode[7]. The resultant pressure

profile stable for low n ideal modes is staircase like. However, it was not clear whether such

profile can be generated automatically or what happens in the case of the mode overlapping.

In order to solve these problems, it is necessary to examine the nonlinear behavior of multi-

helicity interchange modes. For this purpose, we developed a nonlinear code called NORM

based on the reduced MHD equations[8].

The NORM code was applied to low beta LHD plasmas which are linearly unstable to the

ideal interchange modes[8]. In the case of β0 = 0.5% with the pressure profile of eq.(1), the

kinetic energy of the perturbation is mildly saturated. The modes with different helicity interact

indirectly only through the local variation of the pressure profile. As a result, a staircase like

pressure profile is generated as was predicted by the linear calculations[7]. In the case of

β0 = 1.0% with the same pressure profile, a bursting activity occurs in the kinetic energy,

which causes a significant reduction of the pressure. However, if the pressure profile saturated

at β0 = 0.5% is used for the initial profile, the bursting activity can be suppressed. Thus, it was

indicated that the continuous deformation of the pressure profile due to the nonlinear evolution

of the interchange mode may be the stabilizing mechanism in the LHD plasmas.

2



In the present study, we make a progress of the nonlinear study by increasing the beta value

up to β0 = 1.5% and confirm that the stabilizing mechanism in the LHD plasma is attributed to

the deformation of the pressure profile. In our numerical calculations, we consider the nonlinear

evolution of low k interchange modes, where k denotes the wave number. The effect of the high

k resistive interchange modes on those low k modes is through effective dissipation terms. The

renormalized theory of resistive interchange modes shows that the turbulence-induced viscosity

and heat conductivity depend linearly with beta[9]. Here we include this effect by multiplying

a factor to the values used in Ref.[8] depending on the beta value. The increase of the viscosity

and the heat conductivity reduces the low k growth rate of the interchange mode and broadens

the eigenfunctions in the radial direction[9, 10]. Here we study the nonlinear behavior of

β0 = 1.0% and 1.5% equilibria with slight increase of the dissipation. We also discuss the

effect of the self-consistent poloidal flow at β0 = 0.5%.

2 Basic Equations and Numerical Configurations

The NORM code solves the reduced MHD equations composed of Ohm’s law, vorticity

equation, and equation of state. These equations can be written in terms of the poloidal mag-

netic flux, Ψ, the velocity stream function, Φ, and the plasma pressure, P. The normalized

equations are:
∂Ψ
∂ t

= −
(

R
R0

)2

B ·∇Φ+
1
S

Jζ , (2)

dU
dt

=
(

R
R0

)2 (
−B ·∇Jζ +

β0

2ε2 ∇Ω×∇P ·∇ζ
)

+ν∇̂2
⊥U, (3)

and
dP
dt

= κ⊥∆∗P+ ε2κ‖

(
R
R0

)2

B ·∇(B ·∇P). (4)

Here, ζ denotes the toroidal angle and ∇⊥ is defined as ∇⊥ = ∇−∇ζ (∂/∂ζ ). The magnetic

differential operator and the convective time derivative are given by

B ·∇ = g

(
R0

R

)2 ∂
∂ζ

−∇Ψ×∇ζ ·∇ (5)

and
d
dt

=
∂
∂ t

+v⊥ ·∇, v⊥ =
(

R
R0

)2

∇Φ×∇ζ , (6)
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respectively. The factor g implies the diamagnetic effect in the toroidal field and the term of

∇Ω means the averaged magnetic curvature driving the interchange mode. The vorticity U and

the toroidal current density Jζ are expressed by

U = ∇̂2
⊥Φ =

(
R
R0

)2

∇ ·∇⊥Φ, and Jζ = ∆∗Ψ =
(

R
R0

)2

∇ ·
(

R0

R

)2

∇⊥Ψ, (7)

respectively. Here β0 and S denote the beta value at the axis and the magnetic Reynolds number,

respectively. The inverse aspect ratio ε is given by a/R0 with the major radius R0 and the

average minor radius a. The time is normalized by the poloidal Alfvén time τA. Viscosity,

perpendicular and parallel heat conductivity terms are introduced with the coefficients of ν , κ⊥
and κ‖, respectively. In the resistivity and the heat conductivity terms , only the perturbed parts

of Jζ and P are included, respectively.

The flux coordinates (ρ ,θ ,ζ ) are employed to simplify the magnetic differential opera-

tor. Here ρ and θ are the square root of the normalized toroidal flux and the poloidal an-

gle, respectively. The details of the NORM code are explained in Ref.[8]. This code uses a

three-dimensional static equilibrium which is calculated by the VMEC code[6]. The zero net-

current equilibria for the shifted-in LHD configuration (Rax = 3.6m) under the free boundary

condition[11] are examined in the present study.

For the nonlinear analysis, the resistivity is fixed to S = 106. Other dissipation parameters

are given as (ν ,κ⊥,κ‖) = Fβ (ν0,κ⊥0,κ‖0). Here, ν0 = 10−4, κ⊥0 = 10−6 and ε2κ‖0 = 10−2

(ε = 0.16), which are the same as used in Ref.[8]. The factor Fβ is chosen as Fβ = 1.26 and

1.64 for β0 = 1.0% and 1.5%, respectively. The linear growth rates with these parameters at

β0 = 0.5%, 1.0% and 1.5% are shown in Fig.2 as the function of the toroidal mode number n.

All unstable modes have typical interchange mode structure. The structure of the eigenfunction

is a little broader than that of the corresponding ideal mode. The growth rates at β0 = 1.0%

and 1.5% are much larger than those at 0.5%. The growth rates at β0 = 1.5% are reduced to

the values similar to those at β0 = 1.0% because of the increase of Fβ .
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3 Bursting Behavior with Mode Overlapping

We study the nonlinear behavior of the interchange mode with multi-helicity. The pertur-

bations are assumed to be expanded in the Fourier series as follows:

Ψ̃ = ∑
mn

Ψ̃mn(ρ)cos(mθ −nζ ), Φ̃ = ∑
mn

Φ̃mn(ρ)sin(mθ −nζ ), P̃ = ∑
mn

P̃mn(ρ)cos(mθ −nζ ),

(8)

where m and n are the poloidal and the toroidal mode numbers, respectively. It was obtained the

perturbations in the equilibrium with the pressure profile of eq.(1) at β0 = 0.5% with Fβ = 1.0

is saturated mildly[8].

Here, we examine the nonlinear evolution of the instability in the equilibrium with the same

pressure profile of eq.(1) at β0 = 1.0% with Fβ = 1.26. The calculations are carried out for the

modes shown in Fig.3. The modes are selected so as to cover all of the resonant space in the

region of 1/3 ≤ ί ≤ 1 for 0 ≤ n ≤ 7. Figure 4 shows the time evolution of the kinetic energy,

which is defined by Ek = ∑n En
k , En

k = 1
2

∫ |∇⊥∑m Φ̃mn sin(mθ −nζ )|2dV . The (m,n) = (5,2)

mode is dominant in the linear phase as shown in Fig.2. After the nonlinear saturation of the

dominant mode, a bursting activity appears. In the period of of 4300τA ≤ t ≤ 6500τA, many

modes are excited simultaneously. In order to see what happens in the bursting period, we plot

the stream lines as shown in Fig.5. Before the bursting phenomena, at t = 4300τA, the modes

with (m,n) = (4,2) and (m,n) = (5,2) are localized around the rational surfaces with ί = 1/2

and 2/5 separately as shown in Fig.5(a). The bursting activity is triggered at t = 4400τA. As

shown in Fig.5(b), the absolute value of the stream function corresponding to the (m,n) = (7,3)

mode becomes comparable to those of the (4,2) and (5,2) modes. Furthermore, the vortices

with different helicity starts to merge each other at this time. At t = 4620τA, where the kinetic

energy has the maximum value, the vortices are strongly overlapped as shown in Fig.5(c). The

size of a singly vortex becomes much larger than that before the bursting activity. In the vortex

merging, the free energy due to the pressure gradient is abruptly released in the wide range of

the radial direction. Then, the kinetic energy shows the busting behavior.

The large size vortex transports the core pressure to the peripheral region by the convec-

tion. As a result, the average pressure in the wide core region degrades just after the burst-

ing phenomena (t = 6500τA) as shown in Fig.6, where the average pressure is defined as

〈P〉 = Peq + P̃00. The subscript ‘eq’ denotes the equilibrium quantity. In the saturated phase at

t = 27000, the pressure is substantially reduced in the large core region of ρ ≤ 0.5. Therefore,
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the bursting activity may correspond to the internal disruption and it may limit the achievable

beta.

In the peripheral region for ρ > 0.7, any significant activity is not observed. This is because

the driving force of the interchange mode is localized in the region of ρ < 0.5 for this equi-

librium, as shown in Fig.1. The pressure is increased a little in the peripheral region because

the bursting activity in the core region convects the pressure. The average rotational transform

defined by 〈́ι〉= (1/ρ)(∂Ψ̃00/∂ρ)+́ ιeq is also plotted in Fig.6. The nonlinear effect on the av-

erage rotational transform is much weaker than on the pressure. These results are quite similar

to the result for Fβ = 1.0[8].

4 Sequence of equilibria with nonlinearly saturated profiles

The bursting activity is obtained under the assumption that the pressure profile is fixed to

the profile of eq.(1). In the actual experiment, the pressure profile changes continuously as

the beta increases. In order to simulate this situation, we consider a sequence of equilibria at

different beta values. Each equilibrium of this sequence is calculated by using the pressure

profile of the saturated nonlinear state of the previous beta value. In Fig.7, the line for t = 0τA

corresponds to the pressure profile obtained in the nonlinear saturated state for β0 = 0.5%[8].

We use this profile to calculate a β0 = 1.0% equilibrium, which is then used as initial condition

for the dynamical evolution of the interchange instabilities. The profile is locally flattened

at the surfaces corresponding to ί =2/5, 3/7 and 1/2. This is because the single modes with

(m,n) = (5,2), (7,3) and (2,1) were saturated separately at β0 = 0.5%. The local flattening

of the pressure profile reduces the driving force of the interchange mode. Figure 8 shows the

linear growth rates at β0 = 1.0% for the saturated pressure profile. The growth rates for the

fixed pressure profile of eq.(1) are also plotted for comparison. The linear growth rates for

n =1, 2 and 4 are decreased due to the local flattening of the pressure profile.

Figure 9 shows the time evolution of the kinetic energy with Fβ = 1.26 at β0 = 1.0% for

the pressure profile saturated at β0 = 0.5%. The dominant linear mode is (m,n) = (8,3) mode.

After the saturation of the the dominant linear mode, the variation of the kinetic energy is

small and slow in the nonlinear phase. Only one burst is seen around t = 21500τA in the time

evolution. The stream lines at this time are plotted in Fig.10. The vortices with different helicity

are almost separated in the radial direction. The flow of the vortices flattens the pressure profile
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locally around the surfaces with ί = 1/2, 3/5 and 2/3 as shown in Fig.7. This means that

there is no significant pressure reduction in the wide region over the multiple low order rational

surfaces. These properties are different from those in the bursting case with the fixed initial

pressure profile. Furthermore, the pressure profile is deformed gradually in the time evolution.

The reduction of the pressure at the final state (t = 27000) is much smaller than that in the

bursting case. Therefore, the beta value of β0 = 1.0% can be achieved without the bursting

activity by the deformation of the initial pressure profile.

Next, we examine the case of β0 = 1.5% for Fβ = 1.64. In this case, we utilize the pressure

profile saturated at β0 = 1.0% for the initial profile in the β0 = 1.5% calculation, which is

shown by the solid line for t = 27000τA in Fig.7. Figure 11 shows the time evolution of the

kinetic energy of the perturbations. The behavior of the total kinetic energy is quite mild

in the nonlinear phase. In this time evolution, the dominant linear mode is (m,n) = (5,2)

mode. The saturation of this mode results in the enhancement of the local flattening of the

pressure around the ί = 2/5. Simultaneously, the pressure gradient around the surface with

ί = 6/11 and 6/10 is also enhanced. Then, the n = 6 mode that is resonant at these surfaces

is slowly excited and dominates the nonlinear saturation. In this case, the driving force of the

(m,n) = (5,2) is already reduced by the deformation of the initial pressure profile. Therefore,

the enhancement of the pressure gradient is weak. This suppresses the abrupt excitation of

simultaneous multiple modes, unlike the bursting case. Figure 12 shows the pressure contour

at t = 27000τA. We can observe not only the poloidally averaged flattening structure but also

fine deformation in the poloidal direction corresponding to the saturated mode at each resonant

surface. The formation of such structure can be considered as a self-organization of the plasma

in the nonlinear evolution of the interchange mode. On the contrary, as is also shown in Fig.11,

a tremendous bursting activity occurs if we fix the initial pressure profile to eq.(1).

These results indicates that the continuous deformation of the pressure profile due to the

nonlinear saturation interchange mode can be the stabilizing mechanism in the beta ramp-up

of the LHD plasma. This deformation of the pressure profile is a continuous self-organization,

which can provide a stable path to the high beta regime for the LHD plasma.
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5 Properties of Saturated Pressure and Effects of

Self-Consistent Flow

It is interesting to examine the properties of the nonlinearly saturated pressure profiles

obtained in the pressure sequence procedure. Figure 13 shows the pressure profiles saturated

at β0 = 0.5%[8], 1.0% and 1.5% in the nonlinear evolution. As a local structure, all of them

are locally flattened at the rational surfaces. The flattening regions result from the exhaustion

of the driving force by the resonant modes. Figure 14 shows the profile of the Mercier quantity

DI[2] of the no net current equilibria which are calculated with the saturated pressure profiles.

The local stable regions are seen at the low order rational surfaces, for example, the surfaces of

ί = 2/5, 1/2 and 2/3, which correspond to the local pressure flattening regions.

As for the change of the global structure, the pressure profile is broadened gradually as

the beta value is increased. Figure 15 shows the comparison of the peaking factor defined by

β0/〈β 〉 between the numerical and the experimental results[12]. The tendency of broadening

of the saturated pressure profile is quite consistent with the experimental results.

We also study the effects of uniform poloidal flow induced self-consistently by the inter-

change mode. For this purpose, we use the Fourier expansion for the perturbations,

Ψ̃ = ∑mn[Ψ̃c
mn(ρ)cos(mθ −nζ )+ Ψ̃s

mn(ρ)sin(mθ −nζ )],

Φ̃ = ∑mn[Φ̃c
mn(ρ)cos(mθ −nζ )+ Φ̃s

mn(ρ)sin(mθ −nζ )]

and P̃ = ∑mn[P̃c
mn(ρ)cos(mθ −nζ )+ P̃s

mn(ρ)sin(mθ −nζ )],

instead of eq.(8). In above expression, Φ̃c
00 component corresponds to the uniform poloidal

flow. Figure 16 shows the time evolution of the kinetic energy for the equilibrium with the

pressure profile of eq.(1) at β0 = 0.5% for Fβ = 1.0. In this case, the toroidal component of the

kinetic energy is calculated as En
k = 1

2

∫ |∇⊥∑m[Φ̃c
mn cos(mθ −nζ )+ Φ̃s

mn sin(mθ −nζ )]|2dV .

The n = 0 component E0
k grows significantly in the nonlinear phase and becomes almost dom-

inant for t ≥ 20000τA. This result implies the resistive interchange mode can generate uniform

poloidal flow self-consistently in the toroidal geometry. Figure 17 shows the stream lines at

t = 23000τA. The structure rotates in the poloidal direction corresponding to the large E0
k . We

also plot the total kinetic energy with the Fourier expansion of eq.(8) in Fig.16, which shows

the result without the self-consistent poloidal flow. Comparison of the results with and without

the self-consistent flow indicates that the effect of the n = 0 component growth to the behav-

ior of the total kinetic energy is small in this case. Systematic analysis for the self-consistent
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poloidal flow at higher beta value will be carried out in future.

6 Concluding Remarks

In the present study, the nonlinear behavior of the LHD plasma is analyzed based on the

reduced MHD equations.

In Ref.[8], we showed that for β0 = 0.5% and with parabolic profile the fluctuations are

mild and saturate at low level. In the present analysis we have first considered initial equilibria

with fixed pressure profile. In this case and for both β0 = 1.0% and β0 = 1.5% a bursting

behavior is observed in the evolution of the kinetic energy. This bursting behavior is attributed

to the overlapping of the vortices with different helicity. The vortices increase their size by

merging each other in the radial direction. The pressure in the wide core region is transported

outward in a short time by the convection of the large scale vortices. Therefore, the bursting

activity may limit achievable beta.

On the other hand, the bursting activity can be suppressed by considering as initial condi-

tions a sequence of equilibria with pressure profiles obtained from the nonlinear saturation of

the instabilities at the lower beta value. This is due to the fact that the driving force at rational

surfaces are reduced by the local flattening of the pressure profile, which is generated by the

mild saturation at lower beta value. It was also shown that the radial width of the linear eigen-

function is reduced as the flat pressure region is enhanced at the resonant surface[13, 14, 15].

Thus, the vortices cannot overlap each other and the bursting activity is suppressed not only at

β0 = 1.0% but also at β0 = 1.5%. Consequently, the stabilizing mechanism in the LHD plasma

is considered to be the continuous deformation of the pressure profile due to the nonlinear

saturation of the interchange mode.

The linear stability improvement is also confirmed in the sequence of the saturated pressure

profile. The Mercier quantity DI becomes locally negative at the low order rational surfaces

at β0 = 1.5%. The global pressure profile becomes broad as the beta value increases in this

sequence. This tendency is consistent with the experimental data.

Even in the bursting case, the pressure profile is flattened locally in the saturation of the

dominant linear mode. However, the flattening does not contribute to the stabilization of the

following activity. The formation of local flat region increases the pressure gradient in the

outside of the flat region. In the case of the smooth pressure profile such as eq.(1), the gradient
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becomes quite steep. This is because the pressure gradient in the region is originally steep in

the initial profile and the large driving force of the dominant linear mode results in the strong

convection. Therefore, many modes grow abruptly in the region to cause the bursting activity.

In the cases of the sequence of the pressure profile, the initial pressure profile with several local

flat region reduces the driving force at the resonant surface of the dominant linear mode and

the rational surfaces in the outside region.

In the present analysis, the viscosity and the heat conductivity are slightly increased at

β0 = 1.0% and 1.5%. This enhancement of the dissipation has a stabilizing effect on the lin-

ear mode. However, the bursting activity for the fixed pressure profile is not reduced by the

increase of Fβ in the range used here, because the behavior is quite similar to the result for

Fβ = 1.0 at β0 = 1.0% obtained in Ref.[8]. This may be due to the fact that the vorticity over-

lap is enhanced by the broadening of the eigenfunction. On the other hand, in the sequence of

pressure cases, we obtain weak bursting activities for Fβ smaller than those used here, however,

they are suppressed for the slight increase of Fβ up to the values used here. This is because the

sequence of pressure profile significantly reduces the driving force of the interchange modes.

It follows that the local flattening of the pressure profile is the essential mechanism to suppress

the bursting activity rather than the slight enhancement of the dissipation in the present study.

The effect of the finite Larmor radius (FLR) can also the interchange mode. Ref.[16] shows

that the stabilizing effect to the linear mode is evident only in the marginally unstable case or

the case of DI < 0.3. (Note that the definition of DI here[2] is different by 1/4 from that in

Ref.[16].) However, in the case of the shifted-in LHD, DI becomes easily beyond 0.3 even

at small beta. as show in Fig.1. and Fig.14. Therefore, the FLR effect cannot be the main

mechanism of the stabilization in the present case. In the nonlinear point of view, the region

for local flattening of the pressure profile discussed here is more global than the radial width of

the interchange mode that the FLR effect can stabilize. Hence, the direct effect of FLR to the

generation of the local flattening structure in the pressure profile is small. However, the global

flow due to the diamagnetic effect may change the nonlinear behavior. The systematic analysis

for this point will be needed as discussed in Section 5.

The present study is the first step of the confirmation of the stabilizing mechanism attributed

to the local pressure flattening in the increase of the beta value. The calculation for higher beta

value is in the scope of our study in near future.

Unfortunately, the local flattening region in the pressure profile related to the nonlinear
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evolution of the interchange mode has not been identified. It will be necessary to carry out the

precise comparison between the nonlinear calculation and the experimental data.
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Figure Captions

Fig.1 Contour of positive Mercier quantity DI in the (ρ ,〈β 〉) plane. Thick solid line shows the

contour of DI = 0. The region encircled by the thick solid line is unstable region. The

thin solid lines in the unstable region are contour of DI differing by ∆DI = 0.2. Dashed

lines indicate the positions of the rational surfaces corresponding to ί = 2/5, 3/7, 1/2,

3/5, 2/3 and 1.

Fig.2 Linear growth rates versus toroidal mode number n. Circles, triangles and squares show

the growth rates for the pressure of eq.(1) at β0 = 0.5%, 1.0% and 1.5%, respectively.

Numbers indicate the dominant poloidal mode number of each n mode.

Fig.3 Plot of (m,n) harmonics used in the nonlinear calculations.

Fig.4 Time evolution of the kinetic energy of the perturbation for the β0 = 1.0% equilibrium

with the pressure of eq.(1). Thick line shows the total energy and thin lines show the

n=0, 1, 2, 3, 4, 5, 6 and 7 components.

Fig.5 Stream lines on the (ρ ,θ) plane at ζ = 0 cross section for the β0 = 1.0% equilibrium at

(a) t = 4300τA, (b) t = 4400τA and (c) t = 4620τA with the pressure eq.(1), plotted only

in the region of ρ ≤ 0.8. Different thickness of the lines means the different polarization

of the flow.

Fig.6 Profiles of average pressure 〈P〉 (solid lines) at t = 0, 6500τA, and 27000τA and average

rotational transform 〈́ι〉 (dashed line) at t = 27000 in the region of ρ ≤ 0.8 for the β0 =

1.0% equilibrium with the pressure eq.(1). Several rational surfaces are indicated.

Fig.7 Profiles of average pressure 〈P〉 (solid lines) at t = 0, 21500τA, and 27000τA and average

rotational transform 〈́ι〉 (dashed lines) at t = 27000 in the region of ρ ≤ 0.8 for the

β0 = 1.0% equilibrium with the saturated pressure profile at β0 = 0.5%. Profile of the

average pressure at t = 27000τA in Fig.6 is also shown by dotted line for the comparison.

Fig.8 Linear growth rates versus toroidal mode number n for the β0 = 1.0% equilibria with

the pressure profile of eq.(1) (triangles) and the saturated pressure profile at β0 = 0.5%

(squares). Numbers indicate the dominant poloidal mode number of each n mode.
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Fig.9 Time evolution of the kinetic energy of the perturbation for the β0 = 1.0% equilibrium

with the saturated pressure profile at β0 = 0.5%. Thick line shows the total energy and

thin lines show the n = 0, 1, 2, 3, 4, 5, 6 and 7 components.

Fig.10 Stream lines on the (ρ ,θ) plane at ζ = 0 cross section for the β0 = 1.0% equilibrium at

t = 21500τA with the saturated pressure profile at β0 = 0.5%, plotted only in the region

of ρ ≤ 0.8. Different thickness of the lines means the different polarization of the flow.

Fig.11 Time evolution of the kinetic energy of the perturbation for the β0 = 1.5% equilibrium

with the saturated pressure profile at β0 = 1.0%. Thick line shows the total energy and

thin lines show the n = 0, 1, 2, 3, 4, 5, 6 and 7 components. Time evolution of the total

kinetic energy for the β0 = 1.5% equilibrium with the pressure of eq.(1) is also plotted

for the comparison.

Fig.12 Pressure contour on the (ρ ,θ) plane at ζ = 0 cross section for the β0 = 1.5% equilib-

rium at t = 27000τA with the saturated pressure profile at β0 = 1.0%, plotted only in the

region of ρ ≤ 0.8.

Fig.13 Profiles of average pressure 〈P〉 (solid lines) saturated at β0 = 0.5%, 1.0% and 1.5%

with the profile of eq.(1), and average rotational transform 〈́ι〉 at 1.5% (dashed line).

Fig.14 Profiles of Mercier quantity DI for pressure profile of eq.(1) (dashed lines) and the

saturated pressure profiles (solid lines) at β0 = 0.5% (thin) and 1.5% (thick). Numbers

denote the values of the rotational transform at the positions.

Fig.15 Peaking parameter of pressure profile observed in experiments[12] (open circles) and

obtained by the nonlinear calculation (closed circles).

Fig.16 Time evolution of the kinetic energy of the perturbation for the β0 = 0.5% equilibrium

with the pressure profile of eq.(1) including self-consistent flow. Thick line shows the

total energy and thin lines show the n = 0, 1, 2, 3, 4, 5, 6 and 7 components. Dashed line

shows time evolution of the total kinetic energy without self-consistent flow.

Fig.17 Stream lines on the (ρ ,θ) plane at ζ = 0 cross section at t = 23000τA for the β0 = 0.5%

equilibrium with the pressure profile of eq.(1) including self-consistent flow, plotted only

in the region of ρ ≤ 0.8.
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