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Abstract

The CASCADE probabilistic model for cascading failures
gives a simple characterization of the transition from an
isolated failure to a system-wide collapse as system loading
increases. Using the basic ideas of this model, the parameters
that lead to a similar characterization for power transmission
system blackouts are identified in the OPA dynamical model of
series of blackouts. The comparison between the CASCADE
and OPA models yields parameters that can be computed from
the OPA model that indicate a threshold for cascading failure
blackouts. This is a first step towards computing similar
parameters for real power transmission systems.

1. Introduction

We have developed the ORNL-PSerc-Alaska (OPA)
model to study blackout dynamics in the power transmission
grid [1-3]. This model incorporates self-organization processes
based on the engineering response to blackouts and the long-
term economic response to customer load demand. It also
incorporates the apparent critical nature of the transmission
system. The combination of these mechanisms leads to
blackouts that range in size from single load shedding to the
blackout of the entire system.  This model shows a probability
distribution of blackout sizes with power tails [2] similar to that
observed in real blackout data from North America.

In addition to the OPA model, we have constructed
CASCADE, a probabilistic model that incorporates some
general features of cascading failure.  A detailed description of
the CASCADE model is given in Refs. [4,8]. This model shows
the existence of two critical thresholds. One is associated with
the minimal load needed to start a disturbance. In a power
transmission system, it can be interpreted as the load increase
that will cause a line (or a few independent lines) to overload
and fail. The second critical threshold is associated with the
minimal load transfer throughout a cascading event that can
lead to a total system blackout. This type of threshold is less
evident in real systems, and the parameter or parameters
controlling it are not easy to identify.

Those cascading events are similar to the “domino
effect.”  In this case, the force needed to trip the first domino
gives the first threshold. The second threshold is given by the
ratio of the separation between dominos to their height; the
threshold must be less than the critical value of one to cause all
the dominos to fall. Of course, transmission systems are a great

deal more complicated than dominos, but here we want to focus
on identifying this second type of threshold.

To identify the type of threshold that causes system-
wide blackouts, we compare the probabilistic model, where this
threshold is easy to identify, with the dynamical model. This
dynamical model incorporates the structure of a network, and a
linear programming (LP) approach is used to find instantaneous
solutions to the power demand. In such a model, the threshold
to system-wide blackouts is not obvious, and its understanding
may provide a path toward application to realistic systems.

2. Critical transitions in the CASCADE model

The CASCADE model has n identical components
with random initial loads. The minimum initial load is Lmin, and
the maximum initial load for each component is Lmax.. For
j=1,2,...,n, component j has an initial load of Lj that is a random
variable uniformly distributed in [Lmin, Lmax]. L1, L2, · · · , Ln are
independent.  Components fail when their load exceeds Lfail.
When a component fails, a fixed amount of load P is
transferred to each of the remaining components.

We assume an initial disturbance that starts the
cascade by loading each component with an additional amount,
D.  Other components may then fail, depending on their initial
loads, Lj, and the failure of any of these components will
distribute an additional load, P ≥ 0, that can cause further
failures in a cascade. This model describes the cascading failure
as an iterative process. In each iteration, loads fail as the
transfer load, P, from other failures makes them reach the
failure limit. The process stops when none of the remaining
loads reaches the failure limit.

It is convenient to normalize all of the loads in the
system so that they are distributed in the [0,1] interval. Thus,
we normalize the initial load:

l
L L

L Lj
j=

−

−
min

max min

. (1)

Then lj is a random variable uniformly distributed on [0, 1].
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Then, p is the amount of load increase on any
component when one other component fails when expressed as
a fraction of the load range Lmax – Lmin. Similarly, d is the initial
disturbance expressed as a fraction of the load range.

An analytic solution was found [4,8,9] for the
probability, f(r, d, p, n), of a cascade with r components failing:

f r d p n

n

r
d rp d rp d

r n

f s d p n r n

r n r

s

n
, , ,

,

, ,...,

, , , ,

( ) =







( ) +( ) − −( )[ ]
= −

− ( ) =
















− −

=

−

∑

φ φ1

0

1

1

0 1 1

1

(3)

where p is a positive quantity and the function φ is
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Equation (3) uses 0 10 ≡  and 0 0 1≡ where needed. If d˚‡˚0

and d np+ ≤ 1, then φ x x( ) =  and Eq.˚(3) reduces to the
quasibinomial distribution introduced by Consul [10].

For a given system, there are two possible types of
situations: (1) the system has no component failures or (2)
some components in the system have failed. In the CASCADE
model, there is clearly a transition from one situation to the
other and the control parameter is d.  The transition point is
d = 0. The probability of failure is
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Near the critical point, the transition probability scales
as nd. For large systems, it is better to introduce θ ≡ nd  as the
control parameter for this transition. In this way, θ remains
finite for n → ∞ . It is also useful to consider λ ≡ np, the total
load transfer from a failing component, as the second parameter
in this model. The use of the λ and θ is justified in Ref. [9] by
approximating CASCADE as a branching process and
identifying λ and θ as parameters of the branching process. The
situation with no failures is rather simple, and there is a single
point in configuration space with no ambiguity in its
characterization. However, the failed system has multiple
possible states, each characterized by the number r of failed
loads. For a given set of values for θ  and λ, there is a
distribution of possible states, each characterized by a
probability p r nb , , ,λ θ( ) ,
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Because we are interested in system-wide collapses, an
important quantity to consider is the probability of a full system
cascade, r = n,
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This probability has the properties of the order parameter in a
critical transition. As shown in Fig. 1, this expression is such as
that P ˚=˚0 at λ˚< λ̊c, where λc is the critical value of λ .
However, above the critical value for λ, system-wide failures
are possible. In the CASCADE model, which assumes a
uniform random distribution of loads, the critical point is
λc˚=˚1. This is the second transition point that we discussed in
the introduction. It separates the localized failures of the system
from system-wide cascading failures.  This type of transition is
the one we want to also characterize for the OPA dynamical
model.
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Figure 1: Probability of system-wide cascade events
as a function of λ.

The parameter λ is a direct measure of the total load
transferred by a failing component to the entire system. It also
characterizes other properties of the system that are useful in
giving a meaningful interpretation of λ for different systems.
One of the approximate properties of the CASCADE model
that applies when the model is not saturated due to finite size
effects is that the average number of failures during the
iteration k is

r
k

k= θλ . (7)

This is an important relationship that will be used in
comparison with the dynamical model.

3. The dynamical OPA model and the cascading
transition

We developed the OPA model to study the dynamics
of a power transmission system [1-3]. In the OPA model, the
dynamics involve two intrinsic time scales.

In the OPA model, there is a slow time scale of the order
of days to years, over which load power demand slowly
increases and the network is upgraded in response to the
increased demand. The upgrades are done in two ways.
Transmission lines are upgraded as engineering responses to



blackouts and maximum generator power is increased in
response to increasing demand.  The transmission line upgrade
is implemented as an increase in maximum power flow, Fij

max ,
for the lines that have overloaded during a blackout. That is,
F t F tij ij

max max( ) = −( )µ 1  if line ij overloads during a blackout.

We take µ to be a constant. These slow, opposing forces of load
increase and network upgrade self-organize the system into a
dynamic equilibrium.  As discussed elsewhere [3], this
dynamical equilibrium is close to the critical points of the
system [5, 6].

In the OPA model, there is also a fast time scale, of the
order of minutes to hours, over which cascading overloads or
outages may lead to a blackout. Cascading blackouts are
modeled by overloads and outages of lines determined in the
context of LP dispatch of a DC load flow model. Random line
outages are triggered with a probability p0. They simulate the
consequence of intentional or accidental events. A cascading
overload may also start if one or more lines are overloaded in
the solution of the LP problem.  In this situation, we assume
that there is a probability, p

1
, that an overloaded line will

become an outage.  When a solution is found, the overloaded
lines of the solution are tested for possible outages. If there are
one or more line outages, we reduce the maximum power flow
allowed through this line by several orders of magnitude.  In
this way, there is practically no power flow through this line.
Once the power flow through the lines is reduced, a new
solution is then calculated.  This process can lead to multiple
iterations, and the process continues until a solution with no
more line outages is found.  The overall effect of the process is
to generate a possible cascade of line outages that is consistent
with the network constraints and the LP dispatch optimization.

The OPA model allows us to study the dynamics of
blackouts in a power transmission system.  This model shows
dynamical behaviors characteristic of complex systems. It has a
variety of transition points as power demand is increased [5, 6].
These transition points are related to a limitation in the
generator power and/or single line overloads.  These transition
points correspond to single failures of the system and are the
first type of transition discussed above. However, in contrast to
the CASCADE model, there are multiple sources of single
failure in this model.

Here, we study the critical point from the perspective
of triggering system-wide blackouts as described in the
previous section. The first thing to consider is the possible
separation between regimes of single failures and regimes with
cascading failures. For this model, calculation of the probability
of a system collapse event is not possible. It would be
necessary to carry out calculations for a very long time to
obtain the necessary statistics. In particular, close to the
transition, the required computational time is beyond our
present capabilities. We need another approach.

In the OPA model, we find the separation between the
two regimes as a function of two parameters, Γ and µ. Here, Γ
is the ratio of minimal generator power margin,
∆P P P P P

c G( ) ≡ −( )0 0 , to the root mean square of the

fluctuation of the load demand g P P PD≡ −( )[ ]0 0
2 1 2/

.

Γ ∆= ( )P P g
c

. (8)

PG is the minimal generator power available, P P e t
0 0= ˆ λ̂  is the

mean load demand that increases at a constant rate λ̂ , and PD is
the actual load demand that fluctuates around the mean value.
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Figure 2: Averaged power delivered and number of
line outages per blackout as a function of Γ.

Varying Γ and/or µ is not necessarily a realistic way of
modeling the transmission system, but it allows us to
understand its dynamics.  For a 46-node tree network, we have
done a sequence of calculations for different values of the
minimal generator power margin ∆P P

c( )  at a constant g and

µ. We have changed this margin from 0 to 100%. For each
value of this parameter, we have carried out the calculations for
more than 100,000 days in a steady-state regime. This number
of days gives us reasonable statistics for the evaluations. One
way of looking at the change of characteristic properties of the
blackouts with Γ is by plotting the power delivered and the
averaged number of line outages per blackout. These plots are
shown in Fig. 2. We can see that at low and high values of Γ
the power served is low. In the first case, because of limited
generator power, the system cannot deliver enough power when
there is a relatively large fluctuation in load demand. At high Γ,
the power served is low because the number of line outages per
blackout is large.
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Figure 3: Averaged load shed per blackout
normalized to the power demand as a function of
iteration number for different values of Γ.

Looking at averaged quantities is not a good way of
identifying the demarcation between single (or a few
independent) failures and cascading events. To have a better
sense of this demarcation, we have calculated the load shed per
iteration, normalized to the total power demand, for all blackout
events. In Fig. 3, we have plotted the averaged value over all
the blackout events for five different values of Γ. We can see
that at very low Γ the averaged event is limited to less than five
iterations; most of the load is shed during the first couple of
iterations.  This is typical of isolated failures in a system.
However, for large values of Γ, sufficient power is available in
the first few iterations with very low load shed. The number of
iterations of the cascade events increases and the load shed
increases with the iteration number. These are the characteristic
properties of large cascading events. At about Γ = 1.0, where
the power served has a maximum (Fig. 2), there is the transition
from one type of event to the other.

A similar study can be done keeping the parameter Γ
fixed and varying the upgrading rate µ. In Fig. 4 and for the 94-
node tree network, we show the distribution of the number of
line outages for the worst blackouts in a year for different
values of µ. We see that for a high upgrade rate, the number of
line outages is rather small. However, as µ decreases, the worst
blackouts involve a large part of the network.

The Γ and µ parameters have no direct connection to
the parameter used in the probabilistic model to characterize the
transition from a single failure to a cascading failure. Using the
guidance of the CASCADE model, we will try to identify a
parameter analogous to λ in the OPA model. To do so, we need
to find a way of comparing both models.
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Figure 4: Probability distribution of the number of
outages per blackout for the worst yearly blackouts.
The calculation is for the 94-node tree network and
Γ = 0.96.

4. Averaged number of line outages per iteration

In relating the OPA model to CASCADE, we will
interpret the component failures in CASCADE as line outages
in OPA. We can then associate the normalized loads, li ∈[ ]0 1, ,
in CASCADE to the fractional line overloads, M i , in OPA.
The fractional line overload for line i is defined as

M
F

Fi
i

i

= max  , (9)

where Fi is the power flow through line i and Fi
max  is the

maximum possible power flow through this line.  For each
network considered, the fraction of overloads M i  is also
distributed in [0,1], but the distribution is not necessarily
random. The average value of the Mi’s as the average value of
the li’s in the CASCADE model gives no information on the
criticality of the system. It only provides some information on
the distribution of loads.

There are several ways of interpreting the parameter
λ  within the OPA model, and, of course, these different
methods do not necessarily lead to the same value for λ . One
way is to calculate the averaged number of line outages,

N jout ( ) , per step j in cascading failures, and in analogy with

Eq. (7) define

λeff out

jj N j( ) ≡ ( )
1

 . (10)



A priori, there is no reason for λeff to be independent of j or to

have any value similar to the critical value found in the
CASCADE model.
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Figure 5: λeff j( )  as a function of iteration number for

different tree networks.

In Fig. 5, we have plotted λeff j( )  as a function of j for

four network configurations.  These λeff j( )networks have a

tree-like structure with three line connections per node.  These
types of networks were discussed in Ref. [2].  The four
networks considered here have 46, 94, 190, and 382 nodes.

The numerical results in Fig. 5 show that λeff j( )  is
weakly varying with j for j > 1. For large values of j, the
statistics are rather poor and the evaluation of λeff  may have
significant error bars.  For the first iteration, we found strong
variations of λeff (1) with the size and conditions of the

network.  These variations are understandable because the
calculations in Fig. 3 are done for a fixed probability, p0, of the
event being initiated by a line outage. As the number of lines
increases, we can have more than one event simultaneously
triggered by these random events. Changing the value of p0

significantly changes λeff (1). However, the change of p0 has

only a weak effect on λeff j( )  for j > 1. In Fig. 6, we show the
effect of changing p0 on λeff (j).
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different values of Γ for the 46-node tree network.

Let us now consider the sequence of calculations in
which Γ is varied for the 46-node tree network.  We have seen
that by varying Γ we can change the blackout events from a
single failure to cascading events (Fig. 3). In Fig. 7, we have
plotted λeff (j) versus j for these different values of Γ.  We can

see that λeff (j) increases uniformly with Γ. Also, the
dependence on the iteration number, j > 1, becomes weaker.
This may reflect the change in the dynamics going from
blackouts dominated by generation limitations to blackouts that
are dominated by line outages. The comparison with the



CASCADE model is relevant in the latter regime. The
existence of a single λ describing the cascade process is one of
the more significant results of these comparisons.

The dependence of λeff  on j is not just a peculiarity of

the structure of the ideal tree networks.  In Fig. 8, we show the
calculated λeff j( )  for the IEEE 118 bus network [7].  We can

see that λeff j( )  is also weakly dependent on j for j > 1.
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six values of Γ  for the IEEE 118 bus network.

It is not surprising that λeff(j) is larger for the first
iteration than for the following ones. In the OPA model, unlike
in the CASCADE model, there is power shed during each
iteration. This power shed reduces the stress over the system
and accordingly reduces the probability of line outages at high
iterations. Therefore, we believe that the value of λeff(j) for j = 1
is the most significant one to be compared with the parameters
of the CASCADE model.

We can summarize the stability properties to
cascading events of these networks by plotting in the Γ-µ plane
the line λeff(1) = 1.  This line gives the demarcation between the
region with λeff(1) >1, where cascading events are possible, and
λeff(1) < 1, where the cascading events are suppressed. Such a
plot is shown in Fig. 9 for the 46-node and 94-node tree
networks and for the IEEE 118 bus network.  The position of
the line λeff(1) = 1 in the Γ-µ plane changes with the network
configuration, but the three networks show a very similar
structure.
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5. Load transfer during a cascading event

Another interpretation of the parameter λ in the
CASCADE model is the total load transfer associated with a
failing line.  To calculate this transfer load, we use a tree
network and we cause a single line outage at a time.  We
operate at very low power to prevent any of the Mi s from
reaching 1 after the chosen line outage because that can cause a
reorganization of the power that leads to a different solution.
For each line outage, we calculate the effective λ0j in the
following way:

λ0 0
1 0

1

1
j

j
i i

i

N

M
M M

L

= −( )
=
∑ , (11)

where, N L  is the number of lines minus 1 because there is only
one line outage. The superscript of the Mi’s indicates step zero,
the value of the Mi before the line outage, or step 1, after the
line outage. The transfer load is normalized to Mj because we
need the value of the transferred load when Mj = 1.  This
calculation is more elaborate than calculation of a standard line-
outage power-distribution factor because the generation
redispatches after the line outage.

We calculate λ0j for each line j of the network and
repeat the calculation n times for different random values of the
loads. Then, we average λ0j over the lines and over the
calculated n samples. This gives us another determination of
the effective λ, λ0 . We have done the calculation of λ0  for

the tree 46 configuration and several values of Γ. In Fig. 10, we
compare these results to the λeff 1( )  calculated in the previous
section. We can see that the values are quite similar. This result



is interesting because this method for determining λ0  can be
applied to a real power transmission network and this parameter
can be used as an alternative way of determining how close a
system is to the cascading threshold.

6. Conclusions

The CASCADE model gives a simple characterization
for the transition from an isolated failure to a system-wide
collapse. The characterization of this transition is very
important, not only for power systems but for any large, man-
made, networked system. The control parameter for this
transition is directly related to the load transfer during
cascading events. In real systems, perhaps more than one
parameter can characterize this transition. Here, we have
looked for ways of determining this control parameter for
power transmission systems to quantify the way in which
cascading failures propagate.
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The OPA model gives a test bed to apply some of the concepts
developed in the simpler probabilistic models. Using an
analogy between the two types of models, we have been able to
identify a similar transition from an isolated failure to a system-
wide collapse in OPA. Furthermore, in defining the transition
between these two operational regimes, we have been able to
correlate the two parameters Γ  and µ,  which are related to the
operation of the system,  to λ0 , which can be determined for
a real power transmission system. The relationship between
those parameters and the threshold for cascading failure may
lead to some practical criteria that will be applicable to the
design and operation of power transmission systems.
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