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Methods for calculating neoclassical transport in the National Compact Stellarator Experiment
(NCSX) are discussed, with particular attention to the needs of transport analysis studies.
Neoclassical transport is expected to set a lower bound on transport in NCSX, and many actual
stellarator plasmas are at, or not far from, this lower bound. The high degree of quasi-
axisymmetry and the ambipolar radial electric field greatly reduces neoclassical transport due to
helical ripple so axisymmetric neoclassical transport is dominant. It is hoped that the reduction in
viscosity will lead to the suppression of microturbulence by permitting the development of zonal
flows, large-scale sheared flows driven by neutral beam injection, and locally highly-sheared
flows associated with internal and edge transport barriers.

Nevertheless, helical neoclassical transport is still important because it is expected to determine
the viscosity and the non-ambipolar component of the radial particle flux. It therefore plays a
large role in determining the radial electric field that, in turn, is needed to reduce the helical
neoclassical transport to a small level. In the absence of unbalanced torque from neutral beam
injection the helical transport can be expected to be small, but an accurate estimate of the
viscosities and diffusivities is needed in order to estimate whether unbalanced torques are
capable of changing Er enough to create more significant ion particle and heat fluxes.

The magnetic geometry of NCSX can be modified significantly by changing the internal
bootstrap currents and the independently driven external currents in the modular field coils. This
makes it essential to develop efficient methods of estimating the helical neoclassical transport to
avoid time-consuming ‘first principles’ re-calculation of the neoclassical transport as
experimental operations explore the multi-dimensional configuration space.

Transport simulations for NCSX [1] have been based on solutions of the power balance
equations using thermal diffusivities are made up of three parts: neoclassical axisymmetric
transport, neoclassical helical ripple transport described below, and an anomalous transport
model. The estimated neoclassical ripple transport is negligible compared to the neoclassical
axisymmetric transport. A radially constant anomalous diffusivity is adjusted in the predictions
to match a target thermal <b> =3%; this determines how much anomalous transport can be
tolerated in the plasma core. We find that the anomalous transport exceeds the neoclassical
transport in the outer 2/3 of the plasma and the two are comparable in the core. The self-
consistent ambipolar radial electric field is in the ‘ion-root’ regime everywhere.

The analytic model for neoclassical ripple transport used here began with the Shaing-Houlberg
model [2, 3], which is based on asymptotic theory for two collisionality regimes (1/n and 

† 

n ) in a
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‘single helicity’ magnetic configuration. Crume, et al., [4] improved the model for the 

† 

n  regime
(confirmed in Ref. 5), and the 1/n regime was changed to more accurately reflect the original
asymptotic theory and to use the effective helical ripple described below. The resulting model is
described in detail in Ref. 6.

The analytic model for the 1/n regime has been extended from single helicity to more complex
magnetic configurations [7] and benchmarked against two other calculation methods [8]. The
calculation of the transport is considerably simplified by assuming that particle motion within a
flux surface is purely along field lines, ultimately allowing one to express the transport across the
flux surface as a weighted integral of the geodesic curvature along a field line of ‘infinite’ length
(i.e. sufficiently long to cover the entire magnetic surface). Evaluating the integral numerically
provides an efficient means of determining the radial transport for any non-symmetric magnetic
configuration in the 

† 

1/n  regime. The validity of the results is confined to this regime, however,
as a consequence of the assumption of negligible cross-field drift within a flux surface. While the

† 

1/n  regime is strongly influenced by the details of the magnetic-field geometry, the in-surface
ErxB drifts are more decisive in the 

† 

n  and 

† 

n  regimes. For typical magnitudes of the ambipolar
radial electric field the electrons are in the 

† 

1/n  regime so their neoclassical fluxes can be
efficiently calculated, but the ions are in the 

† 

n  or 

† 

n  regimes and more complicated methods
are needed.

The effective helical ripple for NCSX is shown in Figure 1, where the variation in magnitude and
shear of the rotational transform is also illustrated. The radial profile of the effective helical
ripple also exhibits a large range in magnitude and shape as a result of the operational flexibility
of the device. For comparison we note that the effective helical ripple of W7-X is close to 0.01 at
all radii, and that of ATF ranged from 0.3 near the edge to ~0.1 deep in the core.

Figure 1. a) the NEO code’s effective helical ripple for NCSX vs the square root of the
normalized toroidal flux; b) the rotational transform for the same configurations in a).
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‘First-principles’ neoclassical transport theories are based on a few fundamental diffusivities.
The local ansatz underlying neoclassical transport theory allows an ordering of the drift kinetic
equation so that the minor-radius and energy coordinates appear only as parameters, reducing a
nominally 5D problem to a more manageable 3D. It also becomes possible to characterize
neoclassical effects in terms of three mono-energetic coefficients describing the radial transport,
the bootstrap current, and the parallel conductivity. The full neoclassical transport matrix is
obtained by appropriate convolutions of the mono-energetic coefficients with the Maxwellian
particle distribution.

Analytic theory and numerical simulation support each other: Mynick [9] approximately verified
transport expressions for a single helicity magnetic configuration, and Beidler has shown that
numerical simulations of neoclassical transport exhibit the expected collisionality dependences in
a number of stellarator configurations [5, 10, 11,]. It is vital to note, however, that the theoretical
normalization of these scalings is not correct even for simple model magnetic configurations (see
Ref. 5 for details), and accurate normalization must be based on numerical transport calculations
for specific magnetic configurations.

Mono-energetic transport coefficients calculated by the DKES [12, 13] code and the Monte
Carlo code MOCA [14] are shown in Figure 2 for r=0.5a. In the low collisionality regime, the
normalized particle transport coefficient, G11

*, approaches the equivalent axisymmetric result as
the electric field is increased; and the expected magnitude of Er/Bv for ions is greater than the
3x10-3 level shown in the figure. With the radial electric field required for ambipolar flux (as
determined above) the transport should be close to the axisymmetric result. MOCA confirms the
DKES results and is able to extend them to lower collisionality where DKES convergence is
problematic.

To obtain an efficient calulation of neoclassical transport we represent the mono-energetic
diffusivities in terms of physically motivated basis functions and seek methods of easily
calculating (or estimating) the fit coefficients. A semi-analytic representation of the 

† 

D11
*

coefficient has been developed as part of the international collaboration on neoclassical transport
in stellarators [8]. This physics-based representation is derived from a semi-analytic model for

† 

D11
*  originally developed for classical stellarators. The model characterizes the transport as a

sum of three terms, 

† 

D11 = 

† 

Daxi  + 

† 

Dlmfp  + 

† 

Dadd ,where 

† 

Daxi  contains the usual Pfirsch-Schlüter,

plateau and banana regimes expected for the axisymmetric field 

† 

B = Bo(1+ bT cosq)  2 (for a
stellarator, these losses are only relevant when the mean free path is short), 

† 

Dlmfp  describes the

stellarator-specific long-mean-free-path regime and 

† 

Dadd  is an “additional” contribution relevant
only when 

† 

Daxi ~ 

† 

Dlmfp .

For each configuration the fit parameters are determined by least-squares minimization of the
errors. The fitting is done in two steps, beginning with the results obtained for zero electric field.
Here, 

† 

Dlmfp  is given by the asymptotic       result (with 

† 

eeff  most easily determined by NEO) and

least-squares fitting is used to determine “best” values of 

† 

bT  and two free coefficients
(magnitude and saturation) in 

† 

Dadd . With this step completed, 

† 

Dlmfp  is then given for arbitrary
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values of the electric field by means of an extremely efficient solution of the bounce-averaged
kinetic equation for a model field of the form 

† 

B = Bo(1+ bT cosq -eh (1-s cosq)cosh) , which is
the simplest model field capable of describing strong drift optimization. Least-squares fitting is
now carried out to determine values of 

† 

eh,s  B and a third quantity appearing in the boundary
conditions (physically, this quantity controls the importance of collisionless trapping and
detrapping in the local ripples of the magnetic field).

Figure 2. DKES (triangles) and MOCA (circles) results for NCSX at r=a/2: (a) mono-energetic
particle transport coefficient normalized to the plateau value of an equivalent elongated
axisymmetric configuration, and (b) the normalized bootstrap current coefficient. The abscissa is
the inverse of the mean free path. Radial electric field values: Er/(Bv)= 0 blue, 3x10-5 green,
1x10-4 yellow, 3x10-4 cyan, 1x10-3 red, 3x10-3 black.

Discuss the fit parameters’ radial variation and include a Figure 3 to illustrate this.

The pitch-angle-scattering collision operator used in these codes does not conserve momentum,
so the usual method of generating the transport matrix is incorrect for quasi-axisymmetric
configurations. It is possible, however, to use a correction procedure proposed by Sugama [15]
that employs the Hirshman-Sigmar moment method. The fluid momentum balance and friction-
flow relations (which include collisional momentum conservation) are used with the viscosity-
flow relations derived from the drift kinetic equation solutions. The procedure also takes
advantage of the fact that the calculated viscosities are less affected by the defects of the
collision operator than the particle and thermal diffusivities. It is necessary to use a correction
procedure to obtain physically meaningful predictions for radial fluxes from the DKES/MOCA
diffusivities, and preliminary steps in this direction have been taken. Note that the correction
procedure links the 

† 

D13  and 

† 

D33 coefficients to the calculation of the particle and energy fluxes.
In NCSX the 

† 

D33 coefficient has essentially no dependence on Er, but the dependence on
configuration is not known yet.
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DKES is the only tool available for determining the bootstrap current coefficient, 

† 

D13 , for
arbitrary values of collision frequency and radial electric field in stellarators. A typical result is
provided in Figure 2b, in which the mono-energetic bootstrap current coefficient, normalized to
the limiting value of the equivalent axisymmetric tokamak (with circular flux surfaces), 

† 

D31
*

  , is
plotted as a function of inverse mean free path for the flux surface at half the plasma radius in the
standard NCSX configuration. The theoretical prediction by Shaing and Callen [16] – valid only
for vanishing n -    is indicated by the dashed line. The bootstrap coefficient shows much less
dependence on Er than is usual for stellarators but this is typical of tokamaks. These results
exhibit a rather small dependence of 

† 

D31
*

 on the value of the radial electric field for
experimentally relevant values of n/v, and the theoretical low n limit is accurate. If the n
dependence could be provided by analytic predictions then DKES would not be required to
provide 

† 

D31
* .
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Figure 1. a) the NEO code’s effective helical ripple for NCSX vs the square root of the
normalized toroidal flux; b) the rotational transform for the same configurations in a).

Figure 2. DKES (triangles) and MOCA (circles) results for NCSX at r=a/2: (a) mono-energetic
particle transport coefficient normalized to the plateau value of an equivalent elongated
axisymmetric configuration, and (b) the normalized bootstrap current coefficient. The abscissa is
the inverse of the mean free path. Radial electric field values: Er/(Bv)= 0 blue, 3x10-5 green,
1x10-4 yellow, 3x10-4 cyan, 1x10-3 red, 3x10-3 black.

Figure 3. Profiles of fit parameters ….
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